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Supplementary Materials

Code

MATLAB code for simulation studies in this article are provided.

Comparison of JGGM and separate approaches

We compared AUC values from the JGGM and the separate approaches (Figure 3). 150, 134
and 149 pathways (out of 277) show higher AUC values with the JGGM approach for B-cells,
fibroblasts and T-cells, respectively. We then identified the pathways that showfigremtes
greater than 0.4 (marked in Figure 3 and listed in Table 2). The largéstatice occurs in the
fibroblasts, where the pathways 5, 6 and 7 show high AUC values only with the JGGM approach.
Since these pathways have high AUC values in other cell types and are related to the immune

responses, the result may be driven by the joint regularization. The pathways 8 and 9 show high
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AUC values only with the separate approach, but these pathways are metabolic pathways and not
directly related to the fibroblasts. In addition, the pathways 11 and 12 show high AUC values
in T-cells only from the separate analysis, but these pathways have remote relationships with the
immune activity. Overall, the B-cells and the T-cells show higher AUC values with the JGGM

approach than with the separate approach, while the fibroblasts do not.

Appendix

Proof of Proposition 1

Proof 1 The proof for the 4 penalty function is provided in Huang et al. (2009).

We start to prove the proposition for the case of th@dnalty function. Whel,, |wtj’j,| > €,
one can find that the solution of the derivative equatgg%y,PNL({Qt}tT:l, 0) =0,is6;j = 1-log(e)+
log(XLs lo! ). Hence XL, w! ;| > € is equivalent tad; ; > 1. Pluggin this intoPL({Q"}T, ©)
yields a profiled penalized likelihood pt5L({Qt}tT:1) = L({QYL,) +7 X, (l0g(Z Ly |wtj,j,|)—log €+
1). By takingd = 7, one can find thapPL({QY] ;) = PLUQ!T)).

WhenZtT:l Ia)tj’j,l < ¢, the penalty form of PQLQ‘}tT:l) becomeée Zthl |a)tj’j,|. This is equivalent
to not assuming a common structure, which can be achieved by seting tp be a constant
functionZ when0 < 0, < 1.

We then prove the proposition for the case of theehalty function by using the same principle.
We find that the solutiof;j; = ve'™ — (3, lwj)'™. Hence, XL, lw! ;| > € is equivalent to
6, > (v — 1)e*™. This yields a profiled likelihood giPL({QY] ;,) = LUQYL ) + T X}, (e -
(S lwip)™) = PLHQYL,) by takinga = <.

Lemma 1 If either x or y is greater tham(> 0), then|x® — y?|r¥* < |x—y|, forO< a < 1.

Proof 2 Without loss of generality, we can assume that
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When x> 7 >y,

(x* -yt < x—yirte

IA

X—Y.
When x>y > 7,

L (x-y).

XT — Y < -
-

1
ya (X-y) <

Proof of Theorem 1

Proof 3 Theorem 1 can be proved with a slight extension to the proof of Guo et al. (2011), which

is similar to the proof of Theorem 1 of Rothman et al. (2008).

Denote the objective function 1 ag€), whereQ = {Q'}] | and we write the true precision
matrices a€2y = {Qg}. We would like to show @) has the local minimum ne&®,.

Specifically, we would like to show thatf@A) = Q(€, + A) — Q(0) > 0) converges to 1,
whenA € 8A, wheredA = {A : 3L, lIAYlr = Mry), andA' = O - Qf, and M is a positive
constantandf= 4/ &09p,

We will use the following notation: for a matrid = [m;;]pxp, IMIL = X5 Im;5l, M* is a
diagonal matrix with the same diagonal &, M~ = M — M*, and Ms is M with all elements
outside an index s&replaced by zeros. Also, @é) for the vectorized form d¥l, and® for the
Kronecker product of two matrices.

As in Guo et al. (2011)Q is the sum of the following components:

=
1

.
> trace((S' - £5AY)

t=1

T 5 1 5
l, = Z AV fo (1-v)(Qf + vAY ™ ® (QF + vA)dVA!

t=1
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T T
e = 2 D (ROl i) = £ lwol D)
t=1

(j,i)eE t=1

The bound for the likelihood part can be found in Guo et al. (2011), where

lo ! lo i
11 < Coy[ 220 " AT + Co | 2022 D A,
t=1 t=1

T

> 2 NI
2

t=1

for some constantsGand G with probability tending to 1.

When(p + g)(log p)/n is small,

I3 > AZIA =

due to the concavity of the penalty functions.

Also,

o<1y f(Z|w,,|) f(ZIwo,JI)

i#)(L1NeEl  t=1

For the f, function, by using Lemma 1,

T T
A
A N Z TN
&3 | j#i(j,i)eE  t=1 t=1
1 T
t
< ?Z Z lwjj = wo |
321 j#(1))eE
1 T
< SV Ak
& o
(P+Q)|09p
< \/ ZHA‘H
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For the functions fand §,

T T
< 4 > IO 1w ) = FO lwol ;)
i#i:(j,i")eE t=1 t=1
T T
< 4D HE= AR D I - wol
i1 (11")<E t=1 t=1
T
< A Z f’(§3/2)2|w‘j,j, — wo; ;| for syficiently small f,
j#§:(.1")eE t=1
= Z y Z' Wiy _“’OJJ
i#i:(J")<E (§3/2)
(v-1) t
< q) ATk
@y ‘FZJ

(v-=DA; [(p+a)logp <
< Gy N ;HAHF,

wherey > 1 and f(a) denotes1¥|,_,
The second inequality comes from the application of the mean value theorem and the fact that
f’ is decreasing function as well asotj,j,| > &3.

Combining all the results,

Q) > —||1|+|2+|3—||4|
> G\ 20P Z(|At‘|1+|A )~ Co PPy 4 2 ZHNHF
2t1
log p B (p+q)logp t
ALy = Zm < g@)\/ ZIIAII
> (A-Cy 2P Z|AEC|1—(01+C)\/(p”)'ongnAtnF
1\ (p+q)logp :
o 20 e g@)\/ ZHAH
>

LN gy (P+a)logp N o Az (p+q)(logp) !
4§§T(Z||A||F) (cl+C)\/—Z|| Ie —g(f)\/ ZIIA

t=1
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for A1 > C;

;
1 C1+Co+ A/Q(é3)
= QI | = - ,
=1 ATES Zthl lAY|E/ /(P+Q)r(]|09 p)

where d¢) = & for f; penalty function, and(@) = (v—1)(&/2)™ for f, and § penalty functions.
Thus, for sificiently large M, we hav€)(A) > 0 for anyA € dA.

Proof of Theorem 2

Proof 4 DefineE, = Ens U... UEnr, whereEn, = {(j, ]') 1 j # ', &) # O}.

We first show that (& C E,) converges to 1.

P(E C En) = P} ;| > Oforsome te 1,..., T forall (j, j') € E). Sincethzl||f2tj’j,—95,j’j,||p =
Op( /222°98) by Theorem 1, one can see thgld | > Ofor somete 1,..., T for all (j, j’) € E)
- P(|a)to,j’j,| > Oforsomete 1,...,T forall (j, j’) € E) which should be 1 due to the fact that
lwy i1 > &3> 0 for some tfor all(j, j’) € E.

In order to show that FE,, C E) converges to 1, we will show(E° € Ef) convergesto 1. For
this, we need to show that for afy j’) € E¢, the derivativeaf% has the same sign a?éﬂ for all
1 <t < T with probability tending to 1. H

We first discuss the penalty function. The derivative of the objective function can be written
as
2 _ WAt ) + Wesig(e ),

0
= =
6w“,

where W(t, j, j) = S, - X!, and W = A(1 - v)(X L4 o} 1), where0 < v < 1.

Arguing as in Theorem 2 of Lam and Fan (2009), one can showrttaag;;; Wi(t, j, j’) =
Op((Z22)Y2 + ).

For (j.J') € ES %4181 = Op(nn) and ;" goes toco, and (RLR)Y2 1 pif? = O(2), W,

dominatesnax j ) Wi(t, j, j).
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and W = —40-Y ___respectively, and

max((z;l;l |(4)tj’j, |)V’Ev)

H _ A
For the functions fand §, W, = T 09
v > 1
For (j, ) € E®, X1 1@} | = Op(n). Then, W = Oy(Amin(z,", €)), v = 1 and W dominates

max  y Wa(t, J, j*), by taking sgficiently smalle.
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