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Supplementary Materials

Code

MATLAB code for simulation studies in this article are provided.

Comparison of JGGM and separate approaches

We compared AUC values from the JGGM and the separate approaches (Figure 3). 150, 134

and 149 pathways (out of 277) show higher AUC values with the JGGM approach for B-cells,

fibroblasts and T-cells, respectively. We then identified the pathways that show the differences

greater than 0.4 (marked in Figure 3 and listed in Table 2). The largest difference occurs in the

fibroblasts, where the pathways 5, 6 and 7 show high AUC values only with the JGGM approach.

Since these pathways have high AUC values in other cell types and are related to the immune

responses, the result may be driven by the joint regularization. The pathways 8 and 9 show high
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AUC values only with the separate approach, but these pathways are metabolic pathways and not

directly related to the fibroblasts. In addition, the pathways 11 and 12 show high AUC values

in T-cells only from the separate analysis, but these pathways have remote relationships with the

immune activity. Overall, the B-cells and the T-cells show higher AUC values with the JGGM

approach than with the separate approach, while the fibroblasts do not.

Appendix

Proof of Proposition 1

Proof 1 The proof for the f1 penalty function is provided in Huang et al. (2009).

We start to prove the proposition for the case of the f2 penalty function. When
∑T

t=1 |ω
t
j, j′ | > ε,

one can find that the solution of the derivative equation,∂
∂θ j, j′

P̃L({Ωt}Tt=1,Θ) = 0, isθ j, j′ = 1−log(ε)+

log(
∑T

t=1 |ω
t
j, j′ |). Hence,

∑T
t=1 |ω

t
j, j′ | > ε is equivalent toθ j, j′ > 1. Pluggin this intoP̃L({Ωt}Tt=1,Θ)

yields a profiled penalized likelihood of̃pPL({Ωt}Tt=1) = L({Ωt}Tt=1)+τ
∑

j, j′(log(
∑T

t=1 |ω
t
j, j′ |)−logε+

1). By takingλ = τ, one can find that ˜pPL({Ωt}Tt=1) = PL({Ωt}Tt=1).

When
∑T

t=1 |ω
t
j, j′ | ≤ ε, the penalty form of PL({Ωt}Tt=1) becomes1

ε

∑T
t=1 |ω

t
j, j′ |. This is equivalent

to not assuming a common structure, which can be achieved by setting g(θ j, j′) to be a constant

function 1
ε

when0 ≤ θ j, j′ ≤ 1.

We then prove the proposition for the case of the f3 penalty function by using the same principle.

We find that the solutionθ j, j′ = νε
1−ν − (

∑T
t=1 |ω j, j′ |)1−ν. Hence,

∑T
t=1 |ω

t
j, j′ | > ε is equivalent to

θ j, j′ > (ν − 1)ε1−ν. This yields a profiled likelihood of ˜pPL({Ωt}Tt=1, ) = L({Ωt}Tt=1) +
τ
ν

∑
j, j′(νε

1−ν −

(
∑T

t=1 |ω j, j′ |)1−ν) = PL({Ωt}Tt=1) by takingλ = τ
ν
.

Lemma 1 If either x or y is greater thanτ(> 0), then|xα − yα|τ1−α ≤ |x− y|, for 0 < α < 1.

Proof 2 Without loss of generality, we can assume that x≥ y.
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When x> τ > y,

(xα − yα)τ1−α ≤ x− yατ1−α

≤ x− y.

When x> y > τ,

xα − yα ≤
1

y1−α
(x− y) ≤

1
τ1−α

(x− y).

Proof of Theorem 1

Proof 3 Theorem 1 can be proved with a slight extension to the proof of Guo et al. (2011), which

is similar to the proof of Theorem 1 of Rothman et al. (2008).

Denote the objective function 1 as Q(Ω), whereΩ = {Ωt}Tt=1 and we write the true precision

matrices asΩ0 = {Ωt
0}. We would like to show Q(Ω) has the local minimum nearΩ0.

Specifically, we would like to show that P(Q̃(Δ) = Q(Ω0 + Δ) − Q(Ω0) > 0) converges to 1,

whenΔ ∈ ∂A, where∂A = {Δ :
∑T

t=1 ||Δ
t||F = Mrn}, andΔt = Ω̂t − Ωt

0, and M is a positive

constant and rn =
√

(p+q) log p
n .

We will use the following notation: for a matrixM = [mj, j′ ]p×p, |M |1 =
∑

j, j′ |mj, j′ |, M+ is a

diagonal matrix with the same diagonal asM , M− = M − M+, and MS is M with all elements

outside an index setS replaced by zeros. Also, vec(M ) for the vectorized form ofM , and⊗ for the

Kronecker product of two matrices.

As in Guo et al. (2011),̃Q is the sum of the following components:

I1 =

T∑

t=1

trace((St − Σt
0)Δ

k)

I2 =

T∑

t=1

Δ̃t′
∫ 1

0
(1− v)(Ωt

0 + vΔt)−1 ⊗ (Ωt
0 + vΔt)−1dvΔ̃t

I3 = λ
∑

( j, j′)∈Ec

fi(
T∑

t=1

(|δtj, j′ |))
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I4 = λ
∑

( j, j′)∈E

( fi(
T∑

t=1

|ωt
j, j′ |) − fi(

T∑

t=1

|ω0
t
j, j′ |))

The bound for the likelihood part can be found in Guo et al. (2011), where

|I1| ≤ C1

√
log p

n

T∑

t=1

|Δt−|1 + C2

√
p log p

n

R∑

t=1

||Δt+||F ,

I2 ≥
1

4ξ22

T∑

t=1

||Δt||2F ,

for some constants C1 and C2 with probability tending to 1.

When(p+ q)(log p)/n is small,

I3 ≥ λ
T∑

t=1

|Δt−
Ec|1,

due to the concavity of the penalty functions.

Also,

I4 ≤ λ
∑

j, j′:( j, j′)∈E

∣∣∣∣∣∣∣
fi(

T∑

t=1

|ωt
j, j′ |) − fi(

T∑

t=1

|ω0
t
j, j′ |)

∣∣∣∣∣∣∣
.

For the f1 function, by using Lemma 1,

I4 ≤
λ

ξν3

∑

j, j′:( j, j′)∈E

|
T∑

t=1

|ωt
j, j′ | −

T∑

t=1

|ω0
t
j, j′ ||

≤
λ

ξν3

T∑

t=1

∑

j, j′:( j, j′)∈E

|ωt
j, j′ − ω0

t
j, j′ |

≤
λ

ξν3

√
q

T∑

t=1

||Δt||F

≤
Λ2

ξν3

√
(p+ q) log p

n

T∑

t=1

||Δt||F .
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For the functions f2 and f3,

|I4| ≤ λ
∑

j, j′:( j, j′)∈E

| fi(
T∑

t=1

|ωt
j, j′ |) − fi(

T∑

t=1

|ω0
t
j, j′ |)|

≤ λ
∑

j, j′:( j, j′)∈E

f ′i (ξ3 −
T∑

t=1

||Δt||F)
T∑

t=1

|ωt
j, j′ − ω0

t
j, j′ |

≤ λ
∑

j, j′:( j, j′)∈E

f ′(ξ3/2)
T∑

t=1

|ωt
j, j′ − ω0

t
j, j′ | for sufficiently small rn,

≤ λ
∑

j, j′:( j, j′)∈E

ν − 1
(ξ3/2)ν

T∑

t=1

|ωt
j, j′ − ω0

t
j, j′ |

≤
(ν − 1)λ
(ξ3/2)ν

√
q

T∑

t=1

||Δt||F

≤
(ν − 1)Λ2

(ξ3/2)ν

√
(p+ q) log p

n

T∑

t=1

||Δt||F ,

whereν ≥ 1 and f′i (a) denotes∂ fi (x)
∂x |x=a

The second inequality comes from the application of the mean value theorem and the fact that

f ′ is decreasing function as well as|ω0
t
j, j′ | > ξ3.

Combining all the results,

Q̃(Δ) ≥ −|I1| + I2 + I3 − |I4|

≥ −C1

√
log p

n

T∑

t=1

(|Δt−
E |1 + |Δ

t−
Ec|1) −C2

√
p log p

n
||Δt+||F +

1

4ξ22

T∑

t=1

||Δt||2F

+Λ1

√
log p

n

T∑

t=1

|Δt−
Ec|1 −

Λ2

g(ξ3)

√
(p+ q) log p

n

T∑

t=1

||Δt||F

≥ (Λ1 −C1)

√
log p

n

T∑

t=1

|Δt−
Ec|1 − (C1 + C2)

√
(p+ q) log p

n

T∑

t=1

||Δt||F

+
1

4ξ22

T∑

t=1

||Δt||2F −
Λ2

g(ξ3)

√
(p+ q) log p

n

T∑

t=1

||Δt||F

≥
1

4ξ22T
(

T∑

t=1

||Δt||F)2 − (C1 + C2)

√
(p+ q) log p

n

T∑

t=1

||Δt||F −
Λ2

g(ξ3)

√
(p+ q)(log p)

n

T∑

t=1

||Δt||F
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for Λ1 > C1

= (
T∑

t=1

||Δt||F)2




1

4Tξ22
−

C1 + C2 + Λ/g(ξ3)
∑T

t=1 ||Δt||F/
√

(p+q)(log p)
n



,

where g(ξ) = ξν for f1 penalty function, and g(ξ) = (ν−1)(ξ/2)−ν for f2 and f3 penalty functions.

Thus, for sufficiently large M, we havẽQ(Δ) > 0 for anyΔ ∈ ∂A.

Proof of Theorem 2

Proof 4 DefineEn = En,1 ∪ . . . ∪ En,T, whereEn,t = {( j, j′) : j , j′, ω̂t
j, j′ , 0}.

We first show that P(E ⊆ En) converges to 1.

P(E ⊆ En) = P(|ω̂t
j, j′ | > 0 for some t∈ 1, . . . ,T for all ( j, j′) ∈ E). Since

∑T
t=1 ||Ω̂

t
j, j′−Ω

t
0, j, j′ ||F =

Op(
√

(p+q) log p
n ) by Theorem 1, one can see that P(|ω̂t

j, j′ | > 0 for some t∈ 1, . . . ,T for all ( j, j′) ∈ E)

→ P(|ωt
0, j, j′ | > 0 for some t∈ 1, . . . ,T for all ( j, j′) ∈ E) which should be 1 due to the fact that

|ωt
0, j, j′ | > ξ3 > 0 for some t for all( j, j′) ∈ E.

In order to show that P(En ⊆ E) converges to 1, we will show P(Ec ⊆ Ec
n) converges to 1. For

this, we need to show that for any( j, j′) ∈ Ec, the derivative ∂Q
∂ωt

j, j′
has the same sign aŝωt

j, j′ for all

1 ≤ t ≤ T with probability tending to 1.

We first discuss the f1 penalty function. The derivative of the objective function can be written

as

∂Q
∂ωt

j, j′
= W1(t, j, j

′) + W2sign(ωt
j, j′),

where W1(t, j, j′) = St
j, j′ − Σ

t
j, j′ and W2 = λ(1− ν)(

∑T
t=1 |ω

t
j, j′ |)

−ν, where0 < ν < 1.

Arguing as in Theorem 2 of Lam and Fan (2009), one can show thatmaxt, j, j′ W1(t, j, j′) =

Op((
log p

n )1/2 + η1/2
n ).

For ( j, j′) ∈ Ec,
∑T

t=1 |ω̂
t
j, j′ | = Op(ηn) and η−νn goes to∞, and ( log p

n )1/2 + η1/2
n = O(λ), W2

dominatesmax(t, j, j′) W1(t, j, j′).
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For the functions f2 and f3, W2 = λ

max((
∑T

t=1 |ω
t
j, j′
|),ε)

and W2 =
λ(ν−1)

max((
∑T

t=1 |ω
t
j, j′
|)ν,εν)

, respectively, and

ν > 1.

For ( j, j′) ∈ Ec,
∑T

t=1 |ω̂
t
j, j′ | = Op(ηn). Then, W2 = Op(λmin(η−νn , ε

−ν)), ν ≥ 1 and W2 dominates

maxt, j, j′ W1(t, j, j′), by taking sufficiently smallε.
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