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Supplementary Methods 
 

Mapping and Variant Calling 
Read-pairs were mapped onto the human genome reference (GRCh37, with the pseudo-

autosomal regions of the Y chromosome masked). Briefly, reads are mapped using the bwa 
mapper (version 0.5.9), an aligner that reports a confidence metric associated with each aligned 
read. The resulting alignments are then processed to identify PCR duplicates (using Picard, 
http://picard.sourceforge.net/), empirically recalibrate the quality values associated with each 
base call based on observed rates of differences from the reference, and realignment of all 
samples together around candidate small insertion-deletion variants (using the Genome Analysis 
Tool Kit [GATK] version 1.2-65) (1). The output of this process is a set of cleaned, calibrated, and 
mapped reads from each individual, suitable for subsequent analysis. 
 

Contamination and Data Quality Control 
 Sample contamination and data quality issues can compromise the results of large-scale 
genome sequencing efforts. Contamination was assessed for each individual by comparing the 
genotypes from Illumina Human660K array SNP data (2) and the Illumina HiSeq data from an 
initial per-sample call set using samtools. A concordance rate was calculated from the number of 
HiSeq homozygous non-reference calls (HNR) that were also homozygous non-reference on the 
Illumina Human660K array, divided by the total number of HNR calls from the 660K array. If the 
concordance dropped below 90%, a new library was made and contamination assessed in a 
second run. 

Base pair composition plots were examined visually to identify reads with a skewed 
composition. In cases where the average quality score dropped below 15, all reads for a given 
lane were trimmed from base pair 101 backwards until the score became elevated above 15. 
Additionally, only reads with a minimum of 50 base pairs exceeding Q=15 were retained. This 
trimming procedure resulted in an increase in the percent of reads mapping to the human 
reference sequence. However, trimming did not appear to noticeably improve the concordance 
with the Illumina SNP array at homozygous non-reference sites. 
 

Identifying Single Nucleotide Variants 
 Candidate single nucleotide variants were identified based on joint calling across all 
samples using the Unified Genotyper in the GATK.  We applied the Variant Quality Score 
Recalibration (VQSR) procedure to retain a set of variants such that 99% of variant positions that 
overlap with HapMap3 SNPs were retained. Refined genotypes for the resulting set of positions 
were obtained using Beagle v3 (3). Sites were called on the autosomes and the pseudo-
autosomal portions of the X chromosome, but only variants on the autosomes were utilized in 
subsequent analysis. 
 

Callable Genome Mask for WGS analysis 
 To aid comparisons between exome and WGS calls, we created a mask file to identify 
regions of the genome that can be confidentially called based on the WGS data.  We utilized 
metrics reported in the GATK UnifiedGenotyper ‘Emitall Sites’ file.  We set cutoffs for DP, the total 
read depth at each site, MQ, the average mapping quality at a site, and the fraction of MQ0 reads 
at a site.  We determined cutoffs based on comparison of putatively variable sites that pass or fail 
the VQSR selection criteria (Figure S2).  We found that DP cutoffs of >= 192 and <=547 capture 
98% of the VQSR pass sites, that 99% of VQSR pass sites have MQ >= 48 and 99.5 of VQSR 
sites have a MQ0 fraction <= 1%.  Applying these cutoffs to the non-variable sites (variable site 
mask is determined by the VQSR procedure), identified 89.79% of the non-gap autosomes as 
being callable.  We further refined this by removing sites within 5bp of a candidate indels, 
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removing annotated segmental duplications, and intersecting with the target regions of the exome 
capture array (Figure S3).  

Exome Sequence Data Analysis 
Exome capture data was processed as described above. Variants were selected based 

on the VQSR criteria implemented in the GATK. We restricted analysis to the 44 Mb target set for 
the Agilent Sure Select Exon Enrichment platform.  

Variant Annotation 
The putative ancestral state of each variant was annotated following the 1000 Genomes 

Project (4) based on ancestral sequences determined by Ortheus using multi-species alignments 
from Ensembl Compara release 59 
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/supporting/ancestral_alignmen
ts/). Only variants for which the ancestral state was known were kept for downstream analysis.  

 
Recent studies have shown that establishing the damaging potential of a variant is 

extremely difficult. As an example, one of the commonly used predictive algorithms, Polyphen (5), 
has been shown to have a strong reference bias, annotating as neutral variants that are 
represented in the reference genome, regardless of their ancestral state (6). We therefore used 
two algorithms, one that is a measure of conservation across species (GERP scores) (7), and 
another that is based on the biological effect of the variant (ANNOVAR) (Table S2). Positive 
GERP (RS) scores reflect a site showing high degree of conservation, based on the inferred 
number of “rejected substitutions” across the phylogeny.  GERP scores were obtained from the 
UCSC genome browser (http://hgdownload.cse.ucsc.edu/ gbdb/hg19/bbi/All_hg19_RS.bw) based 
on an alignment of 35 mammals to human. The allele represented in the human hg19 sequence 
was not included in the calculation of GERP RS scores.  GERP scores from the exome dataset 
range from -12 to 6.17, though only variants with a GERP score greater than -2 were selected for 
subsequent analysis, as negative values may be indicative of poor sequence alignments across 
the phylogeny.  Most analysis focus on variants with positive GERP RS scores > 2.  Since the 
range of RS scores is dependent on the depth of the multi-species phylogeny used, we re-
annotated GERP scores for the 1000 Genomes data using this procedure. We first examined the 
distribution of GERP RS scores for both all exome single nucleotide changes and for only 
nonsynonymous changes (Figure S8). We observe an approximately normal distribution for all 
exome variants between -2 and 6.5, but for nonsynonymous variants, there is sharp decrease in 
the number of variants greater than GERP score of 4. This difference in the distributions is 
consistent with the prediction that more conserved nonsynonymous sites are more likely to be 
functionally important and therefore subject to purifying selection when mutations occur at highly 
conserved sites. We focus on all exome variants in the analyses that follow.  In order to explore a 
possible ancestral bias we examined the site frequency spectra across effects for the different 
populations. Figure S4 shows results for moderate effect variants. Though no evidence of an 
ancestral bias was detected, we note that excluding variants where the ancestral allele is the 
alternate allele according to the reference sequence has a very strong effect in the site frequency 
spectrum overall shape. While the true fitness of these mutations cannot be measured directly, 
GERP scores are indicative of long-term selection in many species and the severity of mutation 
effect should be similar in human populations. 

Local Ancestry Assignment 
 

Local ancestry segments in the 8 Mayan samples were inferred using RFMix (8). Two 
reference panels were constructed, one for Native American ancestry and one for European 
ancestry. The Native American reference panel was constructed by including all samples from the 
Maya, Pima, Columbian, Karitiana and Surui populations in HGDP(2). The European reference 
panel was constructed by using all samples from the Sardinian and French populations. One 
Mayan sample at a time from the Native American reference panel was removed to form the 
admixed panel for the initial inference step. RFMix was run in PopPhased mode with the 
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“Generations After Admixture” parameter set to 12. Expectation-maximization (EM) was 
performed and the results from the first iteration were used for analysis. All other RFMix 
parameters were left as their default values. 

Individual-‐based	  simulations	  
To simulate changes in heterozygosity across human populations during a range 

expansion with founder effects, we kept track of allele frequencies at a set of 100 loci. All loci are 
diallelic and unlinked. At selected loci, the ancestral allele is assumed selectively neutral and 
mutants reduce an individual’s fitness by a factor 1-s only if it is present in homozygous state, that 
is, deleterious mutations are completely recessive. Because we are modeling mutations at single 
nucleotides, we assume the frequency of back-mutation to be sufficiently rare that it can be 
neglected, and that each mutation occurs at a unique locus. We modeled human range 
expansion across an array of 10x100 demes, with an ancestral population restricted to the first 
10x10 demes at one edge of the habitat. After reaching migration-selection-drift equilibrium, 
populations expand into the empty territory, which is separated from the ancestral population by a 
geographical barrier, through a spatial bottleneck (to mimic the bottleneck out of Africa, see 
Figure S19 for an illustration of the model). After 3,000 generations, we computed the average 
expected heterozygosity for all populations. To compare the simulation results with the data, the 
spacing of demes was chosen such that distance between two neighboring demes is 250 km. 
Since computational limitations of individual-based simulations prohibit a complete exploration of 
the parameter space for this model, we focused on a set of reasonable demographic and 
mutations parameters (K = 100 diploid individuals per deme, mutation rate of u = 10-5 per locus 
per generation), and the migration rate and selection coefficient were adjusted to generate 
heterozygosity consistent with the observed data, without formally maximizing the fit. 
 

Models of dominance 
Several models of dominance were considered in the calculation of mutational load. 

Formally, h=0 if the mutation is completely recessive (ancestral homozygotes and heterozygotes 
have the same fitness), h=0.5 indicates that the mutation effect is additive (the fitness is exactly 
intermediate between the reference homozygote and the alternate homozygote) and when h=1 
the mutation is dominant (heterozygotes and derived homozygotes have the same fitness). We 
also consider a dominance model developed from mutation-accumulation results where the 
dominance coefficient is inversely related to the selection coefficient by an asymptotic distribution. 
Specifically, h decreases from additive to recessive as the selection coefficient becomes stronger. 

Testing for a recessive model of dominance 
 
Hardy-Weinberg: If deleterious variants are completely recessive, we would expect a deficit of 
derived homozygous mutations (or conversely, an excess of heterozygotes) as purifying selection 
would tend to remove recessive homozygotes. One might test for this hypothesis by considering 
the ratio of heterozygotes to derived homozygotes for different function effect classes; the 
het/homDer  ratio increases as variants are predicted to be of greater effect. However, this pattern 
could also be due to the enrichment of low frequency variants (namely singletons) by purifying 
selection alone without a significant number of recessive variants. We thus considered the 
het/homDer ratio in the Luhya population, removing singletons from the dataset and calculating the 
ratio for different frequency bins (Figure S15). Our results show that even after removing 
singletons, extreme variants are enriched for heterozygotes, in the low frequency bins. This is 
consistent with a recessive model of purifying selection, whereby recessive homozygotes are 
more likely to be removed. 

We also investigated deviations from Hardy-Weinberg using the polymorphic exome sites 
in the Luhya population from the 1000 Genome Project (Figure S16A) by plotting the observed 
number of derived homozygotes versus heterozygotes. Color indicates the number of 
observations found in each bin (i.e. the number of sites that have x homozygotes and y 
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heterozygotes.) We used the derived allele frequency, q, to calculate the number of 
heterozygotes (hetHW) and derived homozygotes (homHW

Der) under the Hardy Weinberg 
expectation. Variants that do not follow the neutral pattern with a p-value of 0.01 are shaded. 

 

 

 
where N is the population sample size. To calculate the significance we used the Chi-Square 
statistic to test whether the observed genotype frequencies where significantly different from the 
ones expected under Hardy-Weinberg Equilibrium, with a p-value of 0.01 and 1 degree of 
freedom.  
 

 

 
Proportion of deleterious variants in dominant and recessive genes 

 
We additionally tested for a recessive model of dominance by examining the average 

proportion of neutral, moderate, large and extreme effect variants in known recessive and 
dominant genes. With this purpose, we used the OMIM database (ftp.omim.org) to obtain a list of 
genes and physical positions of autosomal genes related with a recessive or dominant disease, 
and classified with a Confirmed status. Genes associated with both dominant and recessive 
diseases were excluded from the dataset. In this way we had a list of regions in the genome 
related with recessive and dominant diseases, respectively. 

We next examined those regions in our HGDP exome dataset, as well as in 1000G 
Agilent exome dataset. For each gene we calculated the proportion of variants within each effect, 
and weighted the proportions according to the length of the gene. Specifically, genes further away 
from the median gene length distribution were down weighted. We then averaged the proportion 
of the number of variants within each effect category (Figure S16B) and performed a Wilcoxon 
test to determine if the distribution of the proportion of LARGE effect variants were different 
between dominant and recessive genes. Results for HGDP were not significant with a p-value of 
0.06, but results for 1000G reached significance with p-value of 0.03. In both cases the proportion 
of LARGE effect variants in dominant genes was lower than in recessive genes, suggesting that 
the distribution of high effect variants varies with the degree of dominance of the gene or the 
genotype. 

Model for the underlying distribution of dominance 
 
We aimed to relate the dominance coefficient, h, and the absolute value of the selection 

coefficient, s, for deleterious single-nucleotide mutations segregating in human populations. 
 

1. Boundary conditions 
To begin, we make use of a relationship between h and s that was previously obtained for  

mutations in yeast (9): 
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     𝒉 𝒔 = 𝜷𝟏
�𝟏!𝜷𝟐𝒔

− 𝒅     ( 1 ) 

where β1, β2, and d are some constants. As described in Agrawal and Whitlock and others 
(9), as selection strength increases, the dominance coefficient tends to zero. In other words, we 
assume that strongly deleterious mutations are fully recessive: 

 
lim
𝑠→!

ℎ 𝑠 = −𝑑 = 0 
 
We also make use of a frequent assumption that the dominance coefficient for neutral 

mutations (i.e. those for which s = 0) is equal to ½: 
 

ℎ 0 = 𝛽! =
!
!
 

 
When we specify d = 0 and β1 = ½ in equation (1), the dependence of the dominance 

coefficient on the selection coefficient becomes 

ℎ 𝑠 =
1
2

1 + 𝛽!𝑠
 

 
2. Least-squares fit 
 
In order to fins the best value for parameter β2 in h(s) above, we start by defining h(s) as a 

function of both s and β2: 

𝒉 𝜷𝟐, 𝒔 =
𝟏
𝟐

�𝟏!𝜷�𝟐𝒔
             ( 2 ) 

We now make use of the selection coefficients we have obtained independently for four 
GERP categories of single nucleotide polymorphisms segregating in human populations. The 
absolute values of these selection coefficients are – in order of increasing selection strength – s0 
= 0, s1 = 10-4, s2 = 10-3, s3 = 2 ×10-3. 

We assume that, of the four classes of mutations mentioned above, the one with the smallest 
selection coefficient has a dominance coefficient that is very close to ½ and that the class of 
mutations with the largest selection coefficient has a dominance coefficient that is very close to 
zero. 

One can show that the former requirement, that |h(β2, s = s0) – ½| is minimized, tends to 
decrease β2. At the same time, the latter requirement, that |h(β2, s = s3) – 0| is minimized tends to 
increase β2. If we require that the sum of |h(β2, s = s0) – ½| and |h(β2, s = s3) – 0| is minimized – 
or, similarly, that the sum of the squares of these two expressions is minimized – one obtains an 
intermediate value of β2 that corresponds to a balance between the two requirements. In other 
words, we are looking for 

arg𝑚𝑖𝑛
𝛽!

𝑓 𝛽! , 

the value of β2 that results in a minimum of function f(β2), defined below: 
 

𝒇 𝜷𝟐 = 𝒉 𝜷𝟐, 𝒔 = 𝒔𝟎 − 𝟏
𝟐

𝟐
+ 𝒉 𝜷𝟐, 𝒔 = 𝒔𝟑 − 𝟎 𝟐                       ( 3 ) 

 
In order to find β2 that minimized f(β2), we take derivative of that function with respect to β2 and 
set it to zero: 

 
𝒅𝒇
𝒅𝜷𝟐

=
𝟏
𝟐𝒔𝟎
𝟐𝜷𝟐

𝒔𝟎𝜷𝟐!𝟏 𝟑 −
𝟏
𝟐𝒔𝟑

𝒔𝟑𝜷𝟐!𝟏 𝟑 = 𝟎          ( 4 ) 
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When we use s0 = 0 and s3 = 2 × 10-3 in equation (4) and look for positive, real roots of that 

equation, we find that the only such root is 
 

𝛽! =
1

𝑠!×𝑠!
= 7071.07 

 
and that f(β2) is at its lowest value at this root if β2 is restricted to be greater than 0. 

 
3. Dominance coefficient function. 
We can now use the resulting dependence of the dominance coefficient on the selection 
coefficient, 

ℎ 𝑠 =
1
2

1 + 7071.07×𝑠
, 

 
to obtain h for various values of s: 

ℎ 𝑠! = ℎ 0 = 0.46698, 
ℎ 𝑠! = ℎ 10!! = 0.292893, 
ℎ 𝑠! = ℎ 10!! = 0.0619497   
ℎ 𝑠! = ℎ 2×10!! = 0.0330204. 

 
 

4. Variance of the dominance coefficient 
 
We also make use of a previously described function, namely, a displaced gamma 

distribution, which has been shown to be a best fit to the data in previous studies (Agrawal 
Whitlock, 2011). In summary, the dominance coefficient for a given variant follows the equation: 

 

h!"#,! s!, β!, β!, σ!! , δ = µμ! !"# ,! + Q! δ! σ!! , σ!! δ , !
!"

k − !
!

− d, 
 

where 𝑠𝑗, 𝛽!, 𝛽! have already been estimated, 𝜇ℎ 𝑑𝑒𝑙 ,𝑗 is the dominance coefficient for each 

selection coefficient that has also been calculated, 𝑑 ≈ 𝛿, and 𝜎ℎ
!   and  𝛿 are the variance and the 

mean of QG, which is a gamma distribution to introduce variance to the dominance coefficient. 
Values for 𝜎ℎ

!   𝑎𝑛𝑑  𝛿 have been taken from (9) and are 0.010 and 0.038, respectively. 
 

 

Testing for significance in differences in Load 
 

In order to test whether differences in Load under the different models of dominance (Fig. 
5) are significant we performed 1,000 iterations under each model where the 54 individuals in the 
dataset were randomly re-assigned to the 7 populations. For each iteration we would recalculate 
Load accordingly to the model of dominance assumed and then calculate the maximum 
difference in Load (ΔLoad) obtained in the simulated mosaic dataset. After the 1,000 iterations we 
would compare the real ΔLoad  and the mosaic ΔLoad, and determine if the real observation was a 
statistical outlier (Figure S22). Under the recessive and intermediate model there were virtually 
no scenarios in which simulated ΔLoad was larger or equal to the observed one. For the additive 
model, the observed ΔLoad was still statistically significant, with only 1.6% of the mosaic 
populations having a greater value than the real one (p-value < 0.05). 
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Supplementary Results 
 

PSMC Simulations and demography 
  

We constructed profiles of effective population size through time using PSMC method 
(10).  Since this model relies on heterozygous sites within an individual it is not applicable to low 
or moderate coverage whole genome sequencing.  However, if the rate of ‘missing’ 
heterozygotes is known and uniform, the PSMC curves can be corrected through a rescaling of 
the mutation rate to an effective rate that incorporates heterozygote false negative rates.  We 
applied this rescaling idea, utilizing Pathan sample HGDP00222, which has 22x coverage, as a 
test case.  We subsampled reads from this sample to lower coverage levels, ran the PSMC 
calling procedure on the sub sampled read sets, and compare the proportion of heterozygous 
sites identified at each coverage level.  Based on this, we constructed a correction curve relating 
coverage level with to heterozygote SNP false negative rates.  We found that reasonable 
concordance between down-sampled and original PSMC curves could be obtained for coverage 
levels >10x.  Since all of the samples were sequenced and processing in the same manner, we 
reasoned that the correction curve constructed for HGDP00222 would be applicable to other 
samples in this data set.  We verified this through comparison of our corrected PSMC curves with 
PSMC curves constructed from a high coverage San individual and a high coverage Mbuti Pygmy 
sample obtained from (11) (Figure S1).   

Effect of sample size on mean number of homozygotes 
 
We observe approximately equal numbers of extreme homozygotes per individual, unlike 

other effect ranges. The pattern may be the result of strong purifying selection equally efficient in 
different populations in removing homozygotes. However, these results could also be due to lack 
of power to find differences across populations due to the small number of variants we observe in 
the extreme effect category. One way to test this hypothesis is to sub-sample the same number 
of extreme homozygotes for the other effect categories and test whether there is a difference 
among populations. We took a random individual from the San population and counted the 
number of extreme homozygotes, n=24. We then randomly sampled 24 variants in the neutral, 
moderate, and large categories and calculated the homozygotes per individual within each 
population. We iterated over 1,000 bootstraps. Results can be found in Figure S12A-D, and 
demonstrate that the number of homozygotes increases with distance from Africa for each effect 
even for a small sample of variants. This result lends support to the interpretation that the pattern 
Figure 2F is due to strong purifying selection, rather than low power to detect a cline. 

Effect of sample size on Ai for each functional category 
 
In order to find out whether the observed pattern for moderate, large and extreme 

variants is actually a consequence of differences in variant sample size across categories we 
opted for following strategy. For each effect category, we randomly selected an increasing 
number of variants, and calculated individual load for the selected set. If the pattern of mean 
individual load across populations is random and a consequence of the variant sample size, one 
would expect a certain stochasticity in the individual counts, independent from the observations in 
Figure 2D-F. Alternatively, if the minimum informative sample size is reached, the pattern is 
expected to remain constant from that point on. Results are shown in Figure S2 and show that 
the pattern we see in the individual load boxplots is already visible with fewer variants. This is 
especially true for the large effect variants, where the increase in derived counts with distance 
from Africa is can be detected with only 7,000 variants (vs. the more than 25,000 variants in the 
full exome dataset).  
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Extreme alleles (GERP >= 6) across populations 
 
We were interested in looking at the pattern of extreme alleles across populations. 

Population theory predicts that extreme alleles will be held at low frequencies if their effect is 
deleterious, and eventually be eliminated. The SFS of extreme variants shows an excess of low 
frequency variants (namely singletons), compared to the neutral SFS (Figure S13). For a given 
population, no less than 45% of the extreme variants are singletons. We next asked how variants 
were distributed across the complete dataset (Figure S20A). Surprisingly when we consider all 
the populations 60% of the variants are singletons (514 out of 854). If we focus on variants 
private to a specific population the percentage increases to 76%. Thus, the vast majority of 
variants with extreme effect are either new or kept at very low frequencies, being private to a 
population. Interestingly, few variants (a dozen) are almost fixed in the dataset. This could be due 
to errors in the assignment of the ancestral allele or evidences of positive selection. When we 
focus on variants found in homozygosity (Figure 20B) we observe as expected an increase in the 
number of homozygotes, with distance from Africa. Sub-Saharan African populations have more 
variants in homozygosity that are found only once in the dataset (like “homozygous – singletons”), 
whereas Out of Africa populations have more homozygous singletons at higher frequencies. 
Some variants are found at high frequencies in African populations, and are found at lower 
frequencies elsewhere.  

Hardy-Weinberg Equilibrium Test 
 
We tested for deviations from Hardy-Weinberg equilibrium in a sample of 72 Luhya 

individuals from 1000 Genomes Nimblgen exome capture (Figure S16A). We show that there is 
an excess of heterozygotes compared to Hardy-Weinberg expectations, particularly when the 
homozygotes are at low frequency. However, no extreme effect alleles were found to have 
significantly more heterozygotes than predicted. The bulk of the heterozygotes with a paucity of 
corresponding derived homozygotes occurs in the neutral and moderate effect categories. We 
conclude that alleles are either generally additive or moderately recessive such that incomplete 
penetrance does not cause them to significantly violate Hardy-Weinberg at p<0.01. Alternatively, 
we note that the HW model has low power for rare allele frequencies, so if most selection occurs 
against deleterious recessive variants less than 25% in frequency than this test does not have 
sufficient power to detect deviations from an additive model. For example, if there is one derived 
homozygotes in the population then there would need to be more than 37 heterozygotes to 
deviate from Hardy-Weinberg at p<0.01, an allele frequency of at least 28%. Interestingly, we 
also observe many variants that have a deficient number of heterozygotes / excess of 
homozygotes. This pattern can occur due to haploinsufficiency (12) or false negatives in the next-
generation sequencing data (i.e. heterozygotes are more error prone for variant calling software).   

Inference based on the site frequency spectrum: 
 
Although we classify extreme effect mutations as being potentially deleterious, there is 

also a possibility that these mutations are functionally adaptive, large effect mutations that are 
under positive selection.  We test this hypothesis by considering the site frequency spectrum 
(SFS) of predicted extreme and neutral effect mutations. For each population, we considered the 
number of extreme and neutral effect variants in each allele frequency bin, proportional to the 
total number of mutations in the extreme and neutral category such that the spectra are directly 
comparable. While the two spectra generally demonstrate an exponential decay, as expected 
under constant size or low population growth, there is an enrichment of extreme effect mutations 
in low frequency bins for all populations. This observation is consistent with other studies that 
have shown an enrichment of deleterious alleles at low frequencies (13, 14).  Some populations 
also display an enrichment of extreme effect variants at intermediate frequencies (e.g. Pathan), 
potentially indicative of adaptive alleles under balancing selection; such inference would require 
additional modeling (15). No populations display an enrichment of extreme effect alleles at 
fixation, suggesting that overall, selective sweeps have not played a dominant role in shaping the 
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frequencies of extreme effect alleles (16). No such pattern is present for large effect alleles either 
(Fig. 3B). 

Mutation Load 
It has also been argued that the relationship between effective population size and load is 

non-linear for a model with partially, but not completely, recessive mutations (i.e. h=0.05) (17). 
This is because in a population with larger effective size, mutations of equal s are less likely to be 
lost by drift and thus recessive deleterious alleles can float to higher frequencies, impacting more 
individuals when exposed as homozygotes. We do not observe this effect within African 
populations, which carry fewer weakly deleterious alleles per individual than non-African 
populations (Figure 2A). 

It is also interesting to note that there are negligible differences in additive load between 
western Africans and Europeans. This is in keeping with the fact that western African populations 
have experienced dramatic population growth over the past 5,000 years (18), which alters the 
distribution of deleterious alleles within a population (19). There are sharp differences in 
demography among African populations, and populations with western African ancestry should 
not be taken to be representative of all of Africa. 
  



	   13	  

Table S1: Genome and exome variant statistics by 
population after imputation 
	  
 San Mbuti Mozabite Pathan Cambodian Yakut Maya 
Sample Size 6 7-85 8 8 8 8 8 
Genome Statistics 
Coverage1 10.57x 6.67x 6.32x 8.93x 7.41x 5.96x 7.86x 
NR alleles2 3976209 3826512 3240806 3121928 3100036 3072826 3008568 
Heterozygotes3 2424664 2316159 2002220 1870784 1762812 1715462 1609374 
Singletons4 223066 151579 75293 66821 59120 36385 37099 
Ti/Tv 2.166 2.17 2.176 2.175 2.17 2.168 2.167 
NR alleles ≥ 2 reads 3948479 3774409 3198236 3089167 3066118 3024982 2969049 
Homozygous NR 
concord. 

0.992 0.979 0.981 0.987 0.990 0.987 0.991 

Heterozygous 
concordance 

0.978 0.964 0.981 0.986 0.990 0.986 0.988 

Exome Statistics 
Coverage1 82.3 77 85 75.5 77 78 75.5 
NR alleles2 34918 34148 28486 27380 27048 26889 26233 
Heterozygotes3 21366 20994 17914 16645 15652 15232 14218 
Singletons4 2936 2392 1513 1424 1328 1061 980 
1 Mean population coverage for genomes assessed by sampling each individual for ~650,000 
sites on the Illumina Human660K BeadChip SNP platform and counting read depth after quality 
filtering. Median population coverage for the exomes encompassing all mapped, on target reads.  
2 Mean number of non-reference alleles for an individual in the population (i.e., a non-reference 
homozygous genotype is counted twice.)  
3 Mean number of heterozygotes for an individual in the population. 
4 Mean number of singletons for an individual in the population. 
5 Eight individuals were included for exome and genome sequencing; one sample did not pass 
genome quality control and was excluded from the full genome dataset. 
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Table S2: ANNOVAR functional annotations as 
compared to GERP 
 

RS Score Intergenic Intronic UTR-5 UTR-3 Missense Nonsense Synon. Total 
Neutral: -2,2 5566 28592 1167 1751 14614 187 16883 68760 

Moderate: 2,4 1676 8956 540 721 13648 160 9913 35614 

Large: 4,6 682 2789 248 314 19645 183 4935 28796 

Extreme: >6 11 64 4 8 741 7 88 923 

Total: 7935 40401 1959 2794 48648 537 31819 134093 
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Figure S1: Assessment of PSMC coverage correction 
 

 
 
Figure S1 Assessment of PSMC coverage correction. A) PSMC curves from original 
moderate coverage data before and after coverage correction are compared with B) PSMC 
curves constructed from high-coverage sequences from the same populations.  Strong 
concordance is observed, with discrepancies mostly restricted to the point of maximum 
population size inferred by PSMC. 
 
  

A!

B!
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Figure S2: Determination of whole genome masks 
 

 
 
 
Figure S2: Determination of whole genome masks.  Distribution of DP, MQ, and MQ0 fraction 
values for genomic sites that pass (blue) and fail (red) the VQSR procedure are shown.  Cutoffs 
correspond to 192 <= DP <= 547, MQ >= 48 and MQ0 fraction <= 0.01. 
 
 
 
  



	   17	  

Figure S3: Genotype concordance for full genome data 

 
 
 
Figure S3: Genotype Concordance for Full Genome Data. Phasing and imputation for the full 
genomes was performed using BEAGLE v3.2. We assessed genotype concordance for SNP calls 
pre- and post-BEAGLE by comparing genotypes to the Illumina 660K SNP array data for each 
individual (2). A) Concordance between homozygous non-reference genotypes for each of 53 
individuals. B) Concordance between heterozygous genotypes. C) Relationship between 
concordance at homozygous non-reference genotypes for the post-BEAGLE imputed genome 
data and overall genome coverage. 
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Figure S4: Contrasting the SFS for ancestral and derived 
alleles 
 

 
 
Figure S4: Contrasting the SFS for Ancestral and Derived Alleles. We asked whether there 
were systematic differences in the SFS for ancestral and derived variants, relative to the human 
reference genome. Shown are moderate effect variants, GERP >2 and <4. The left plot for each 
population shows the SFS for which the reference allele is ancestral, and thus the non-reference 
allele is derived. The right hand SFS shows the opposite pattern, where the reference allele is 
derived and the non-reference allele is ancestral. This pattern has been observed elsewhere (20), 
and is even expected because alleles that have already been observed once, in the human 
reference genome, have a higher probability of being observed again when sampling a new 
population. OOA populations, being more closely related to the human reference genome, have 
more alleles that have been previously observed in the single human reference sample. African 
populations have a higher proportion of novel, derived alleles (or conversely fewer derived alleles 
shared with the reference).  
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Figure S5:  Number of heterozygotes per individual 
genome for 7 populations 
	  

	  
Figure S5: Number of heterozygotes per individual genome for 7 populations. Boxplots of 
number of heterozygotes per individual from the 2.48Gb callable region of the human genome for 
all 7 seven populations. 
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Figure S6: Karyograms of the Mayan individuals 
reflecting the inferred ancestry 
	  

	  
Figure S6: Estimates of European (blue) and Native American (red) ancestry at the chromosome 
level were plotted for every individual (A-G). Every pair of chromosomes is depicted along the Y-
axis and the genetic position is reflected on the X-axis. Note that two out of eight individuals (F,G) 
showed more than 20% of European ancestry and were thus removed from analysis based on 
deleterious variants. 
	   	  

A! B! C! D!

E! F! G H!
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Figure S7: Simulations of bottleneck length and 
magnitude as inferred from PSMC 

 
Figure S7: Simulations of Bottleneck Length and Magnitude as Inferred from PSMC. We 
tested whether PSMC was robust to changes in either the duration of a bottleneck or the 
magnitude of a population bottleneck. A) Using a simulation of population history parameters 
similar to the original paper (10), we varied the duration of a bottleneck to reflect more realistic 
5,000 or 10,000 year periods. The inferred time of the bottleneck is substantially overestimated 
for briefer bottleneck periods (by approximate 25% to 75% for the tested scenarios). Additionally, 
when the bottleneck is of brief duration the magnitude of the bottleneck is underestimated. B) 
Using the original 70,000y bottleneck, we varied the magnitude of the reduction in effective 
population size. The magnitude of shallower bottlenecks maybe somewhat overestimated, but 
approaches accuracy for severe (e.g. 90%) reductions in effective population size. 
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Figure S8: Comparison of ancestral/derived variants by 
GERP score 
 
a) 

 
b) 

 
 
Figure S8. Comparison of GERP scores across sites where the reference allele is derived 
or ancestral, and to ANNOVAR classes. A) Variant sites were binned by derived allele 
frequency (across all 54 samples from the HGDP collection) and categorized based on the state 
of the allele represented in the human genome reference assembly.  The box plots represent the 
median and 25th and 75th percentiles of data, the whiskers correspond to the 5th and 95th 
percentile, and the red diamond indicates the mean.  Sites with a GERP RS score < -2 were 
omitted from analysis. B) Proportion of functional classes of mutations, as defined by ANNOVAR, 
in different GERP scores categories (see also Table S2). 
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Figure S9: Distribution of derived variants with 
conservation scores -2 ≤ GERP ≤ 6.5 
 

 
 
Figure S9: Distribution of derived variants with conservation scores -2 ≤ GERP ≤ 6.5. For 
bin sizes of 0.2, the number of derived variants within each population are plotted according to 
the prior population color scheme (Figure 1A).  Binned counts were standardized by the number 
of samples per population. GERP scores were divided into four functional categories: neutral (-2 
to 2), moderate (2 to 4), large (4 to 6), extreme (>6). A) Nonsynonymous variants are not 
normally distributed. B) All exome variants conform to a normal distribution. No population had a 
significant excess or deficit of variants within a particular GERP score range. 
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Figure S10: Median number of derived variants per 
individual 

 
 
 
Figure S10: Median number of derived variants per individual. For all variants, regardless of 
GERP score annotation, we tabulated the number of derived variants per individual, 
heterozygotes and derived homozygotes. Out of Africa populations have roughly equivalent 
numbers of derived variants per individual. African populations have ~1% fewer derived variants 
per individual.  
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Figure S11: Individual counts of neutral derived variants 
 
 

 
 
Figure S11: Individual counts of Neutral derived variants. For exome variants with GERP 
score in the -2 to 2 range, we evaluated the average number of A) The total number of derived 
variants (equivalent to number of heterozygotes + twice the number of homozygotes), B) derived 
homozygotes, and C) heterozygotes by population. 
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Figure S12: Number of common and rare variants per 
individual’s genome by predicted effect 
 

 
 
Figure S12: Number of common and rare variants per individual’s genome by predicted 
effect. For a given individual, deleterious variants within each predicted effect category were 
divided into common (>10%, solid colors) and rare (<10%, shaded colors). The contribution of 
common deleterious variants to an individual’s burden is much greater than rare variants. A) 
Moderate, B) Large, and C) Extreme.  
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Figure S13: Number of homozygotes per population with 
subsampling 

 
 
Figure S13: Number of homozygotes per population with subsampling. The minimum 
number extreme homozygotes in a San individual, 26, was used to sub-sample the variants of 
neutral, moderate, large and extreme effect, and calculate the average number of homozygotes 
per population. The red line indicates the average number across 10,000 bootstraps, the dashed 
lines indicate the average number per population for every bootstrap and blue background 
indicated the individual ranges for every bootstrap. 
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Figure S14: Site Frequency Spectra (SFS) of neutral and 
extreme effect variants 
 

 
 
Figure S14: Site Frequency Spectra of Neutral and Extreme Effect Variants. We compared 
the proportion of neutral variants by their frequency class to extreme effect variants by frequency 
class.  The proportion of variants is shown along the Y-axis and each frequency bin is shown 
along the X-axis. Extreme effect variants are colored translucent. Neutral variants are shaded 
grey. Overlap between the two categories is opaque.   
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Figure S15: Relative reduction in heterozygosity (RH) 
 

 
 
Figure S15: Relative reduction in heterozygosity (RH) at sites under selection as compared 
to neutral sites. Correlation between reduction in heterozygosity, or “RH”, and distance from 
northeastern Africa for all 41 OOA individuals, separated by GERP score category. African 
individuals are represented by the squares. 
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Figure S16: Heterozygosity under range expansion 
simulations assuming codominance at selected loci 
 
a) 

 
b) 

 
 
Figure S16: Heterozygosity under Range Expansion Simulations Assuming Codominance 
at Selected Loci. A) Colored circles show average expected heterozygosity for populations with 
ancestry from the OOA bottleneck. Solid lines show the regression lines obtained from 
simulations and dashed lines indicate 95% confidence intervals for the regression. The boxplots 
and colored circles on the left show the simulated heterozygosities in ancestral (i.e. African) 
populations, and the observed heterozygosity in our African dataset (San / Mbuti), respectively. 
B) Observed and simulated patterns of the reduction of heterozygosity (RH) under an additive 
model. Selection coefficients used in the simulations are s= 0 (black), s= -0.00005 (lavender), s= 
-0.00012 (red), and s = -0.0002 (orange).   
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Figure S17: Luhya het/homder ratio by effect category 
 

 
 
Figure S17: Luhya (LWK) Het/Hom Ratio by effect catgory: Under a recessive model, it is 
expected that EXTREME effect variants will have an excess of heterozygotes, compared to 
homozygotes, because of the effect of purifying selection on homozygotes. However, this pattern 
could also be biased by an excess of low frequency variants with extreme effect, compared to 
other categories. In order to distinguish between the two processes, we removed singletons for 
the dataset and calculated the ratio of heterozygotes / homozygotes in the 1000G LWK for all 
variants within each effect, and plotted the results according to the variants frequency. Results 
show an excess of heterozygotes in variants of extreme effect for low frequency bins (≤ 30%), 
being particularly evident for variants between 10% derived allele frequency. The inset shows 
boxplots for the 10% allele frequency bin along the x-axis. 
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Figure S18: Testing a recessive model 
 

 
 
Figure S18: Testing a recessive model. A) A non-additive model of dominance could lead to 
deviations from HW equilibrium if the derived variant selection coefficient is strong enough. We 
compared the observed genotype frequencies with the expected frequencies, considering the 
observed allele frequencies. Variants are plotted according to the observed number of 
homozygotes (x-axis) and heterozygotes (y-axis) in the LWK population. Heat map reflect a 
higher number of variants. The grey dashed line reflects the HW expectation. Colors are shaded 
when variants significantly deviate from HW expectation (p-value < 0.01). Specifically, variants on 
the upper left corner represent an excess of heterozygotes compared to what would be expected, 
compatible with a recessive model. B) Weighted average proportion of variants grouped by effect 
in recessive (green) vs. dominant (blue) genes. LARGE effect variants are found, on average, at 
lower proportions in OMIM annotated dominant genes, compared to OMIM recessive genes, 
consistent with purifying selection acting more efficiently in dominant genes, where the LARGE 
effect variants is more likely to be expressed. 
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Figure S19: Mutational load in 1000 Genomes exome 
data 
 
 

 
 
 
Figure S19: Differences in Load - 1000 Genomes Dataset. For each population, load is 
calculated under a recessive, intermediate and dominant model (as in Figure 4), reflecting 
contributions from variants with moderate, large and extreme effect. 
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Figure S20: Distribution of highly differentiated variants 
vs. the genome 
 
 

 
 
 
Figure S20: Distribution of functional alleles in highly differentiated variants vs. the whole 
Genome. A) Distribution of GERP scores across the Genome B) Distribution of GERP scores in 
highly differentiated variants for different demographically relevant population comparisons: (Afr- 
Afr), (Afr-OoA), (OoA,OoA). Results show now apparent differences in the distribution of 
functional variants in those two datasets.  
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Figure S21: Schematic of the range expansion model 
 

 
 

 
Figure S21: Schematic of the range expansion model. The model includes a spatial 
bottleneck we used to simulate the evolution of heterozygosity during a linear 2D expansion. 
Panel A) shows the ancestral population (gray) separated from the empty habitat by a migration 
barrier (black line). After a burn-in phase of 20,000 generations, a single deme in the middle of 
the migration barrier is removed for 5 generations, during which individuals from the ancestral 
population can migrate into the empty habitat. Panel B) shows the onset of the expansion and 
panel C) the colonization of the empty habitat by the expanding population (gray). Panel D shows 
the whole metapopulation after the colonization is complete. Migration is bidirectional among 
demes in the simulation. For a similar simulation model, see (21). 
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Figure S22: Sharing of GERP ≥ 6 variants across 
populations  

 
 
 
Figure S22: Sharing of GERP >6 Variants Across Populations. A) For the 800 extreme 
variants we sorted alleles into homozygote and heterozygote states. Variants are sorted along the 
X-axis according to their global frequency in the dataset, with common variants on the left and 
rare variants on the right. In each population, the counts of heterozygotes are ordered in 
decreasing frequency from top to bottom. Homozygotes are ordered in the opposite fashion, with 
frequent counts on the bottom row and increasing toward the top within each population. The 
majority of variants are singletons, indicated to the right of grey line. Out of Africa populations 
carry more EXTREME variants at higher frequencies and share more EXTREME variants with 
each other than they share with African populations. Only a small number of GERP >6 variants 
are fixed in African populations. B) A version of the homozygous GERP>6 variants is shown in 
the bottom panel.  
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Figure S23: Site frequency spectrum under different 
selection regimes and locations of the range expansion. 
 

 
 
 
 
Figure S23: Site frequency spectrum under different selection regimes and locations of the 
range expansion. The site frequency spectrum was plotted for simulated demes from different 
locations under a range expansion model. Each row represents a different simulated selection 
coefficient, corresponding to A) moderate B) large C) extreme estimated effect. As the negative 
selection coefficient increases, the proportion of low frequency variants increases, and as 
geographic distance between the deme and the ancestral population increases, a greater amount 
of variants reaches fixation, even for highly deleterious variants.   
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Figure S24: Testing significance in observed differences 
in load under the assumed models of dominance. 
 

 
 
Figure S24: Testing significance in observed differences in Load under the assumed 
models of dominance. A) Under each model, 1,000 iterations were performed where individuals 
were randomly re-assigned to populations and the maximum difference in mutation load was 
calculated. The observe difference in load is represented by a red square and the simulated 
differences are represented via boxplots. Under all three models the observed difference in Load 
is statistically significant with a p-value < 0.05 (See SI Methods). B) Distribution of the simulated 
differences in mutation load (blue) and the observed difference in load (red square). 
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Figure S25: Relationship between runs of homozygosity 
and mutation load 

 
 
Figure S25: Median cumulative runs of homozygosity (cROH) for HGDP populations. The 
median number of cumulative runs of homozygosity was calculated for each of our seven 
populations from >600,000 SNPs obtained from SNP array data (2). Each ROH was at least 1 
megabase (Mb) and contained a minimum of 25 SNPs. We allowed for 1 missing genotype per 
window and 2 heterozygotes per Mb in order to account for genotyping error rates. ROHs were 
calculated in plink. Long runs of homozygosity represent segments shared IBD between an 
individual’s parents and represent inbreeding in the population. While strong genetic drift in 
Native Americans results in long ROH, endogamy in the San has also resulted in a substantial 
fraction of the genome in ROH (22) and shared IBD among members of the group (23).  
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Figure	  S26:	  Annotation	  of	  variants	  with	  PhyloP	  and	  correlation	  
with	  distance	  from	  Africa	  
 
a) 
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b) 

 
 
Figure S26: Number of derived homozygous sites per individual and derived deleterious 
alleles per individual for different PhyloP categories. A) The PhyloP categories are chosen 
such that the probability of a site to be neutral is >0.05 (black, Neutral), 0.05 < p < 0.01 (green, 
Moderate), 0.01<p<0.001 (blue, Large) and p < 0.001 (red, Extreme). B) The PhyloP categories 
are chosen such that the probability of a site to be neutral is >0.05 (black, Neutral), 0.05 < p < 
0.01 (green, Moderate), 0.01<p<0.001 (blue, Large) and p < 0.001 (red, Extreme).   
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