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1 Strategy space and payoff function

Our main model considers agents playing 1-shot Prisoner’s Dilemma (PD) games or PDs with re-
ciprocal consequences (modeled using the framework of infinitely repeated games); and responding
using either a generalized intuition Si or paying a cost d∗ (stochastically sampled from the in-
terval [0, d]) to deliberate and tailor their strategy such that they use strategy Sr if the game is
repeated and S1 if the game is 1-shot. In each interaction, agents choose either the cooperative
strategy tit-for-tat (TFT) or the non-cooperative strategy always defect (ALLD). Importantly, as
we demonstrate below in Section 6, our results are not specific to TFT and ALLD playing repeated
PDs, but instead generalize to a wide range of coordination games.

An agent’s strategy profile is specified by four variables: their (i) probability of intuitively playing
TFT Si, (ii) probability of playing TFT when they deliberate and face a repeated game Sr, (iii)
probability of playing TFT (i.e. cooperating) when they deliberate and face a 1-shot game S1, and
(iv) maximum acceptable cost of deliberation T . Since we stipulate that the cost of deliberation is
sampled uniformly from the interval [0, d], an agent with threshold T deliberates with probability
T
d and on average pays a cost T

2 when deliberating. We use a uniform distribution for simplicity,
but more realistic cost distributions should not change our results qualitatively.

Here we specify the expected payoff π(x, y) of an agent with strategy profile x = [Si, S1, Sr, T ]
playing against an agent with strategy profile y = [S′i, S

′
1, S
′
r, T

′]. To do so, we calculate agent x’s
expected payoff from playing infinitely repeated PDs with probability p and 1-shot PDs with 1− p,
over the cases in which (i) both agents deliberate (probability TT ′

d2 ), (ii) agent x deliberates and agent

y decides intuitively (probability T
d (1− T ′

d )), (iii) agent x decides intuitively and agent y deliberates

(probability (1− T
d )T

′

d ), and (iv) both agents decide intuitively (probability (1− T
d )(1− T ′

d )):

π(x, y) =
TT ′

d2
(πDD −

T

2
) +

T

d
(1− T ′

d
)(πDI −

T

2
) + (1− T

d
)
T ′

d
πID + (1− T

d
)(1− T ′

d
)πII

where πDD is agent x’s expected payoff when both agents deliberate, πDI is agent x’s expected
payoff when agent x deliberates and agent y uses intuition, and so on.

These expected payoffs are calculated based on the payoff tables for 1-shot and repeated PDs. In
1-shot games, TFT cooperates and pays a cost c to give a benefit b to the partner, while ALLD
defects and does nothing. Thus, the payoff table for the 1-shot games is given by

1-shot PD Payoffs
TFT ALLD

TFT b− c −c
ALLD b 0

where the row player’s payoff is shown.

To make payoffs in an infinitely repeated game comparable to those of a 1-shot game, we use the
average payoff per round. Here, two TFT agents cooperate with each other in every round and
earn average payoffs per round of b − c, while two ALLD agents defect every round, earning 0.



3

Thus these payoffs are the same as the 1-shot PD. When a TFT agent and an ALLD agent meet,
however, the outcome differs from the 1-shot game, because the TFT agent cooperates only on the
first round, and then defects in every subsequent round. Because the interaction is modeled as being
infinitely repeated, the first round (where TFT cooperates) contributes only a negligible amount
to the average payoff. Therefore, both agents earn an average payoff per round of 0. Therefore the
payoff table for the infinitely repeated PD is given by

Infinitely Repeated PD Payoffs
TFT ALLD

TFT b− c 0
ALLD 0 0

where b, c > 0.

Importantly, using total payoff (rather than average payoff per round) in a game with a finite con-
tinuation probability, such that the first round does influence payoffs and causes some negative cost
for TFT and positive benefit for ALLD, does not qualitatively change our results; see Section 6
below.

Substituting in relevant payoff values yields

πDD = p(SrS
′
r(b− c)) + (1− p)(S1S

′
1(b− c) + S1(1− S′1)(−c) + (1− S1)S′1b)

πDI = p(SrS
′
i(b− c)) + (1− p)(S1S

′
i(b− c) + S1(1− S′i)(−c) + (1− S1)S′ib)

πID = p(SiS
′
r(b− c)) + (1− p)(SiS′1(b− c) + Si(1− S′1)(−c) + (1− Si)S′1b)

πII = p(SiS
′
i(b− c)) + (1− p)(SiS′i(b− c) + Si(1− S′i)(−c) + (1− Si)S′ib)

.

2 Nash equilibrium calculations

2.1 Setup

To facilitate Nash equilibria calculations, we consider a strategy space which is simplified relative to
the main model in two ways: (i) agents’ intuitive response Si is limited to being either 0 (never play
TFT) or 1 (always play TFT); and (ii) agents’ deliberative responses are fixed to be S1 = 0 and
Sr = 1; i.e., always defecting when deliberating and facing a 1-shot game, and always playing TFT
when deliberating and facing a repeated game. As in the main model, agents specify a maximum
cost of deliberation T (0 ≤ T ≤ d) that they are willing to pay in order to deliberate, and this
determines when they deliberate.

Thus, an agent’s strategy profile is specified by two variables: 1) a binary variable Si indicating
whether or not the agent intuitively plays the cooperative strategy and 2) a continuous variable T
indicating the agent’s maximum cost they are willing to pay to deliberate. We denote a strategy
profile for this reduced strategy space as x = [Si, T ]. (These simplifications of the intuitive and
deliberative strategy spaces are justified by our evolutionary simulations using the full strategy
space, whose results are in agreement with the results of the Nash calculation for the simplified
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strategy space – see main text Figure 2.)

A strategy profile x is a Nash equilibrium if no strategy profile y is able to get a higher payoff
against x than x gets against itself. That is,

∀y : π(x, x) ≥ π(y, x).

Given our restricted strategy space, the set of possible strategy profiles that an agent can adopt can
be thought of as two continuous sets: 1) the set of strategy profiles that intuitively defect (Si = 0)
and have threshold 0 ≤ T ≤ d, and 2) the set of strategy profiles that intuitively cooperate (Si = 1)
and have threshold 0 ≤ T ≤ d.

2.2 Intuitively defecting equilibria

We first consider whether any strategy profile with Si = 0 is a Nash. To do this, we calculate the
expression for the payoff that an agent with Si = 0 and T = T gets against an agent with Si = 0
and T = T ′:

π([0, T ], [0, T ′]) =
T 2(T

′

d − 1)

2d
−
TT ′(T

′

2 − p(b− c))
d2

.

Since the concavity of this function (with respect to T ) is always negative ( ∂2

∂T 2π([0, T ], [0, T ′]) < 0),
there is a unique best-response [0, Tb] that maximizes one’s payoff when playing against [0, T ′], which
can be found by asking what value of T satisfies the equation

∂

∂T
π([0, T ], [0, T ′]) = 0.

Doing so yields

Tb =
p(b− c)T ′

d
.

Since a strategy profile must be a best response against itself in order to be Nash, it must be the
case that Tb = T ′ in the above equation for T ′ to be Nash. That is, this is the unique case in which
T ′ maximizes its payoff by playing itself. Solving for T ′ yields the solution of T ′ = 0 (regardless
of the values of any of the parameters). Thus, [0, 0], a strategy that never deliberates and always
defects, is a best response to itself.

For the strategy [0, 0] to be a Nash, however, it must also be the case that no intuitively cooperative
strategy can beat it. This follows straightforwardly. The payoff that strategy [0, 0] gets against
itself is 0 (since neither player is paying a cost of cooperation to benefit the other or paying a cost to
deliberate). Any intuitively cooperative strategy, on the other hand, is going to incur a cooperation
cost c on the fraction of interactions that it cooperates. Moreover, since the [0, 0] agent is always
defecting, this intuitively cooperative strategy receives no benefit from the [0, 0] agent. Thus, its
payoff is always negative and it cannot invade the [0, 0] strategy under any value of p. As a result,
[0, 0] (referred to as the ”Intuitive defector (ID)” strategy profile in the main text) is always a Nash
equilibrium.



5

2.3 Purely deliberative equilibrium

Next we investigate the other boundary case of [0, d], a purely deliberative agent that never uses
intuition. Note that because this agent never uses intuition, the intuitive response Si is irrelevant,
such that the strategy [0, d] is functionally identical to [1, d]. We therefore refer to this strategy as
[−, d]. To see whether this strategy can be Nash, we start by asking what the best response [0, Tb]
is when playing against [−, d]. Using the expression above, we find Tb = p(b − c). This makes it
seem that [−, d] is not Nash because Tb 6= d (except in the special case where d = p(b− c)).

However, because d is the maximum cost of deliberation, T is bounded such that 0 ≤ T ≤ d.
Therefore, when d < p(b − c), this best response Tb = p(b − c) lies outside the range of pos-

sible T values. Recall that because ∂2

∂T 2π([0, T ], [0, T ′]) < 0 is satisfied for all T, T ′,the payoff
π([0, T ], [−, d]) decreases monotonically as T moves further from the best-response value p(b − c).
Thus, when d < p(b− c) (such that the best response is greater than the maximum value of T ), the
value of T within the allowed interval which best responds to [−, d] is in fact [−, d] itself (i.e. the
maximum allowed value of T ).

We find a similar result when asking which intuitively cooperative strategy best-responds to [−, d].
Solving ∂

∂T π([1, T ], [−, d]) = 0 gives a best response of [1, c(1−p)]. Thus, by the logic from the pre-
ceding paragraph, [−, d] cannot be beaten by any intuitively cooperative strategies if d < c(1− p).
As a result, we see that the purely deliberative strategy [−, d] can be Nash when the maximum cost
of deliberation is sufficiently small, such that both d ≤ p(b− c) and d ≤ c(1− p) are satisfied.

This result is natural - if deliberating were free, it would obviously be better to deliberate in our
model than to use intuition. Thus it is no surprise that there is a minimum d above which it is
no longer worth paying to deliberate on all occasions. Given the wide-spread use of intuition by
humans, we believe it is a safe assumption that the d > p(b− c), c(1− p) condition is satisfied.

2.4 Intuitively cooperating equilibria

We next consider whether any intuitively cooperative strategy profile is a Nash. Following the
procedure used above, we calculate the expression for the payoff that an intuitively cooperative
agent with strategy profile [1, T ] gets against an intuitively cooperative agent with strategy profile
[1, T ′]:

π([1, T ], [1, T ′]) =
((1− p)(−b)− (b− c)p+ T

2 )(T
′

d − 1)T

d

+ (p(b− c)− (1− p)(c− b))(1− T

d
)(1− T ′

d
)

−
(T2 − p(b− c))TT

′

d2

−
((1− p)c− p(b− c))(1− T

d )T ′

d
.

We then find the best-response Tb by solving for when the partial derivative of this expression with
respect to T is 0, yielding
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Tb = (1− p)c.

Thus, an intuitively cooperative agent’s best response against another intuitively cooperative agent
is to deliberate only in cases where the cost of deliberation is not greater than (1− p)c. Note that
this is the product of the probability of a 1-shot game occurring (1− p) and the cost of cooperating
c, which is precisely the expected benefit of deliberation for an intuitive cooperator (since what
deliberation does here is allow the agent to override her cooperative intuition when she finds herself
in a 1-shot game).

In order to test whether the strategy profile [1, c(1−p)] is Nash, we must also consider whether any
intuitively defective strategy profile [0, T ′] can beat it. To do this, we find the intuitively defective
strategy profile that is a best response against the optimal intuitively cooperative strategy profile
[1, (1− p)c] by solving ∂

∂T π([0, T ], [1, (1− p)c]) = 0 for T .

This yields the strategy profile [0, p(b− c)] as the intuitively defecting strategy that performs best
against the intuitively cooperative strategy [1, (1 − p)c]. We then find the conditions under which
the optimal intuitively cooperative strategy profile does better against itself than the best response
intuitive defecting strategy profile does,

π([1, (1− p)c], [1, (1− p)c]) ≥ π([0, p(b− c)], [1, (1− p)c]),

in order to find out when [1, (1− p)c] is Nash. We find that this inequality is satisfied when p ≥ c
b .

It is also necessary to consider whether [1, c(1 − p)] can be beaten in the boundary case where
d > (1 − p)c, but d ≤ p(b − c), such that the best response against [1, (1 − p)c] is actually [−, d]
(as T = p(b − c) is outside the allowed range). Doing so, we find that it is always the case that
π([1, (1− p)c], [1, (1− p)c]) ≥ π([−, d], [1, (1− p)c]) when p ≥ c

b . Thus the purely deliberative agent
π([−, d] cannot invade the intuitively cooperative strategy under these conditions.

We therefore conclude that the intuitively cooperative strategy profile [1, (1 − p)c] is a Nash equi-
librium when p ≥ c

b .

2.5 Summary of Nash results

In sum, we find two main equilibria:

1. The Intuitive Defector (ID) strategy profile that intuitively defects (Si = 0) and never delib-
erates (T = 0) is always Nash (the deliberative strategy variables S1 and Sr are irrelevant, as
this strategy never deliberates).

2. The Dual-process Cooperator (DC) strategy profile that intuitively plays TFT (Si = 1),
deliberates when the cost of deliberation is no greater than T = (1 − p)c, and deliberatively
plays TFT in repeated games (Sr = 1) and deliberatively defects in 1-shot games (S1 = 0),
is Nash when repeated games are sufficiently common, p ≥ c/b.
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In addition, a purely deliberative strategy that never uses intuition (T = d, thus the value of Si
is irrelevant), and deliberatively plays TFT in repeated games (Sr = 1) and deliberatively defects
in 1-shot games (S1 = 0), is Nash when the maximum cost of deliberation is sufficiently small,
d ≤ c(1 − p) and d ≤ p(b − c), such that it is always worth paying to deliberate. As this behavior
is psychologically unrealistic, we focus our evolutionary analyses on parameter regions where d is
large enough to make this strategy not an equilibrium.

2.6 Why is there no equilibrium with Si = 0 and T > 0?

A notable feature of our Nash results is the absence of a strategy that intuitively defects but uses
deliberation to play TFT when faced with a repeated game. Why can’t such a strategy be Nash?
The answer is as follows. Unlike in 1-shot games, where it is always beneficial for an agent to defect
no matter what the other agent does (because she always avoids paying the cost of cooperation
c), the benefit of playing TFT in repeated games depends on coordinating with the other agent.
Hence, when two intuitively defecting agents interact and play a repeated game, an agent that pays
a cost to deliberate and thereby switch to TFT only benefits from doing so when her partner also
deliberates (and thus also plays TFT). As a result, the returns from deliberative cooperation in
repeated games for these agents depend not only on the benefit of mutual cooperation b − c and
the probability of repeated games p, but also on the probability that the other player deliberates.

Specifically, when two intuitive defectors [0, T ] and [0, T ′] interact, the expected gain from deliber-

ating for the first agent is p(b−c)T ′
d , the product of the probability of there being a repeated game

p, the benefit of mutual cooperation b − c, and the probability that the partner also deliberates
T ′

d . As a result, she should be willing to pay a maximum cost of deliberation T ∗ = p(b−c)T ′
d to

get this benefit; and indeed, as we saw above, the best response to [0, T ′] is [0, p(b−c)T
′

d ]. Thus,
assuming that one’s partner has T ′ > 0, there is always an incentive to deviate by deliberating
less (T ∗ < T ′). In other words, because of the coordination problem presented by cooperation in
repeated games, any nonzero amount of deliberation T ′ among intuitive defectors is unstable and
will be out-performed by intuitive defectors who engage in less deliberation. Therefore, the only
equilibrium level of deliberation for a population of intuitive defectors is none at all (T = 0). (Or,
as discussed above, if the maximum cost of deliberation d is sufficiently low, d < p(b − c), then
agents with T ′ < d will instead be beaten by more deliberative agents with T ∗ > T ′, resulting in
the equilibrium where agents always deliberate and never use intuition.)

2.7 Nash calculations with assortment

We now consider a version of the game with assortment a > 0. In the context of population
dynamics, assortment represents non-random mixing, such that with probability (1 − a) a given
agent plays with another agent selected at random from the population, whereas with probability a
that agents plays with another agent having the same strategy as herself. To incorporate assortment
in our Nash calculations, we therefore modify the Nash condition to be

∀y : π(x, x) ≥ ((1− a)π(y, x) + aπ(y, y).

We then solve for strategies that are best responses to themselves, in the manner described above.
(Note that when a = 0, this is exactly equivalent to the above calculations.) Doing so finds that
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the ID strategy remains the same when assortment is added (T = 0), but that the DC strategy
now deliberates with T = (1 − p)(c − ba). Note that a consequence of this is that when a = c/b,
the DC strategy reaches the boundary case of [1, 0], such that a ≥ c/b implies no deliberation by
DC, just intuitive cooperation (such that DC stops being an actual dual-process strategy).

3 Risk dominance calculations

3.1 Without assortment

Given that we have identified the game’s two Nash equilibria, we are now interested in identifying
when one equilibrium or the other will be favored by natural selection. For parameters where ID
is the only Nash, it is clearly predicted that evolution will lead to ID. When DC becomes Nash,
however, ID also remains Nash. Thus knowing when DC becomes Nash is not enough to know
when selection will favor DC.

Risk-dominance, which is a stricter criterion than Nash, has been shown to answer this question:
in symmetric 2x2 games such as the one we study, when two symmetric equilibria exist, evolution
will favor the risk-dominant equilibrium [1].

One Nash risk-dominates another Nash when the first Nash earns a higher expected payoff than
the second Nash when there is a 50% chance of playing against either of the two strategies. Or,
in population dynamic terms, the risk-dominant strategy profile is the one that fares better in a
population where both are equally common.

We now ask when DC [1, c(1− p)] risk-dominates ID [0, 0] as a function of p. First, we consider the
expected payoffs of these two strategy profiles against themselves and each other:

π(ID, ID) = 0

π(DC, ID) = −c(1− p)(1− (1− p)c
d

)− (1− p)2c2

2d

π(ID,DC) = b(1− p)(1− (1− p)c
d

)

π(DC,DC) = ((1− p)(b− c) + p(b− c))( (1− p)c
d

− 1)2

− (1− p)2c2(.5(1− p)c− p(b− c))
d2

+
(1− p)c(−b(1− p)− p(b− c) + .5(1− p)c)( (1−p)c

d − 1)

d

−
(1− p)c(−c(1− p) + p(b− c))( (1−p)c

d − 1)

d
.

DC risk-dominates ID when

1

2
π(DC, ID) +

1

2
π(DC,DC) >

1

2
π(ID, ID) +

1

2
π(ID,DC).
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Solving for p in the above equation yields the following condition:

p >
1
2 (2c2 − bd− cd+

√
d
√
−4bc2 + 4c3 + b2d+ 2bcd+ c2d)

c2
.

As we will see below, this value of p successfully captures the transition point we observe in evo-
lutionary dynamics from a population of all ID players to a population of all DC players. For
example, for b = 4, c = 1, and d = 1, DC begins to risk dominate ID when p > .30 (see Figure
2 of main text). Some other values, which we explore in steady state analyses below, include the
following:

b c d p at which DC risk-dominates ID
2 1 1 .62
8 1 1 .14
4 2 1 .50
4 .5 1 .19
4 1 .75 .25
4 1 2 .36

3.2 With assortment

When including assortment a > 0, the risk dominance condition for DC becomes

aπ(DC,DC) + (1− a)(
1

2
π(DC, ID) +

1

2
π(DC,DC)) >

aπ(ID, ID) + (1− a)(
1

2
π(ID, ID) +

1

2
π(ID,DC))

with the DC agent’s deliberation threshold now being T = (1− p)(c− ba) (as shown above in the
Nash calculations with assortment).

Thus, the minimum a value at which DC comes to risk dominate ID is given by

a >
1

2(b2 − 2pb2 + p2b2)

(2bc− 4pbc+ 2p2bc− 2bd+ pbd+ pcd

+
√

(−2bc+ 4pbc− 2p2bc+ 2bd+ pbd+ pcd)2 − 4(b2 − 2pb2 + p2b2)(c2 − 2pc2 + p2c2 + pbd− 2cd+ pcd)).

.

4 Evolutionary dynamics

4.1 Basic setup

We now turn from Nash calculations to evolutionary dynamics. We study the transmission of
strategies through an evolutionary process, which can be interpreted either as genetic evolution or
as social learning. In both cases, strategies that earn higher payoffs are more likely to spread in the
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population, while lower payoff strategies tend to die out. Novel strategies are introduced by muta-
tion in the case of genetic evolution or innovation and experimentation in the case of social learning.

We study a population of N agents evolving via a frequency dependent Moran process with an
exponential payoff function [2]. In each generation, one agent is randomly selected to change strat-
egy. With probability u, a mutation occurs and the agent picks a new strategy at random. With
probability (1 − u), the agent adopts the strategy of another agent j, who is selected from the
population with probability proportional to ewϕj , where w is the intensity of selection and ϕj is
the expected payoff of agent j when interacting with agents that have the same strategy with prob-
ability a, and interacting with agents picked at random from the population with probability (1−a).

For ease of calculation, our main analyses focus on the limit of low mutation. Later, we also explore
higher mutation rates using agent-based simulations, and demonstrate the robustness of our low
mutation limit calculations.

4.2 Limit of low mutation calculation method

In the low mutation limit, a mutant either goes to fixation or dies out before another mutant ap-
pears. Thus, the population makes transitions between homogeneous states, where all agents use
the same strategy. Here the success of a given strategy depends on its ability to invade other strate-
gies, and to resist invasion by other strategies. We use an exact numerical calculation to determine
the average frequency of each strategy in the stationary distribution [3, 4, 5].

Let si be the frequency of strategy i, with a total of M strategies. We can then assemble a transition
matrix between homogeneous states of the system. The transition probability from state i to state
j is the product of the probability of a mutant of type j arising ( 1

M−1 ) and the fixation probability
of a single mutant j in a population of i players, ρi,j . The probability of staying in state i is thus
1 − 1

M−1
∑
k ρk,i, where ρi,i = 0. This transition matrix can then be used to calculate the steady

state frequency distribution s∗ of strategies:
s∗1
s∗2
...
s∗M

 =


1− Σj

ρj,1
M−1

ρ1,2
M−1 · · · ρ1,M

M−1
ρ2,1
M−1 1− Σj

ρj,2
M−1 · · · ρ2,M

M−1
...

...
. . .

...
ρM,1
M−1

ρM,2
M−1 · · · 1− Σj

ρj,M
M−1




s∗1
s∗2
...
s∗M



The eigenvector corresponding to the largest eigenvalue (1) of this matrix gives the steady state
distribution of the stochastic process.

Note that this method requires discretizing the strategy space, such that there is some finite number
of strategies M that agents can select. We consider a strategy space in which: (i) agents’ coopera-
tion strategies Si, S1, and Sr are limited to being either 0 (never play the cooperative strategy) or 1
(always play the cooperative strategy); and (ii) agents’ maximum cost of deliberation T (0 ≤ T ≤ d)
that they are willing to pay in order to deliberate is rounded to the nearest d

10 (so T is selected from
the set {0, d/10, 2d/10, . . . , d}). Thus, the strategy space consists of a total of 2 ∗ 2 ∗ 2 ∗ 11 = 88
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strategies.

Using the Moran process, the fixation probability ρB,A (the probability that a single A mutant
introduced into a population of B-players will take over) is calculated according to an exponential
fitness function. In a population of i A-players and N − i B-players, the fitness of an A-player fi
and B-player gi are defined as

fi = ew(aπ(A,A)+(1−a)( i−1
N−1π(A,A)+N−i

N−1π(A,B)))

gi = ew(aπ(B,B)+(1−a)( i
N−1π(B,A)+N−i−1

N−1 π(B,B)))

where π(A,A) is the expected payoff of an A-player against an A-player, π(A,B) is the expected
payoff of an A-player against a B-player, etc.

The fixation probability of a single A-player in a population of B-players can then be calculated as
follows:

ρB,A =
1

1 +
∑N−1
k=1

∏k
i=1

gi
fi

The calculations presented in the main text numerically evaluate this expression for each strategy
pair and then solve for the steady state distribution according to the procedure described above.
As shown in Figure S1, these evolutionary calculations are in quantitative agreement with the risk-
dominance calculations across p and a values shown in the main text Figure 3.

5 Robustness of evolutionary results

5.1 Robustness to parameter variation

Figure S2 shows results of evolutionary steady state calculations for various parameter sets. In
each case, we see a qualitatively equivalent pattern to what is observed in the main text Fig 2a:
the steady state transitions from intuitive defection Si = 0 with little deliberation T ≈ 0 when p is
small, to intuitive cooperation Si = 1 with substantial deliberation T >> 0 implementing cooper-
ation in repeated games Sr = 1 and defection in 1-shot games S1 = 0 when p is sufficiently large.
Then, as p increases further, the steady state value of T decreases. (Note that for some parameter
values (e.g. Figure S2 panels b, c, and e), when DC becomes risk-dominant, the equilibrium level
of T is close to 1 such that agents almost never use intuition, and therefore initially there is little
selection pressure on Si, leading to Si ≈ 0.5.)

Quantitatively, the transition from intuitive defection and non-deliberation to intuitive cooperation
and deliberation occurs at precisely the value of p where DC begins to risk-dominate ID; and after
this point the average value of T matches that of DC, with T = (1− p)c. Thus, these evolutionary
calculations show the power of the Nash calculations for characterizing the behavior of our system.
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5.2 Robustness to higher mutation rates and probabilistic strategies

We now compare the results of the steady state calculations presented in the main text with agent-
based simulations. These simulations use exactly the same evolutionary process as the calculations
described above, but relax two simplifying assumptions made in the calculations: the simulations
(i) allow agents’ probabilities of playing cooperative strategies Si, S1 and Sr to take on any value
on the interval [0, 1], instead of only allowing 0 or 1 as in the calculations; allow agents’ deliberation
threshold T to take on any value on the interval [0, d], instead of only allowing discrete values in
steps of d/10, and (iii) relax the calculation’s assumption of vanishingly small mutation and instead
use a relatively high mutation rate of u = 0.05. For each set of parameters, we conduct 10 simulation
runs, each of which lasts 107 generations. We then show the value of each of the 4 strategy variables
Si, S1, Sr, and T , averaged over all generations of all 10 simulation runs (Figure S3 symbols). For
comparison, we also show the low mutation limit calculation results (Figure S3 lines). Critically,
Figure S3 shows that these agent-based simulations produce very similar results to the calculations.
This demonstrates the validity of the calculation, despite its simplifying assumptions.

6 Generalized coordination game analysis

6.1 Setup

The key idea underlying our model is that cooperation sometimes involves a social dilemma (e.g.
the 1-shot PD), but other times involves coordination. In our main model, we focus on the infinitely
repeated PD as our example of coordination. Doing so, we find that there are two main strategies
that can be Nash in this setup: (i) a strategy that intuitively cooperates and sometimes deliberates
when the cost of deliberation is less than T = c(1 − p),and (ii) a strategy that always intuitively
defects and never deliberates. (We also find that when the maximum possible cost of deliberation
d is especially low (d ≤ p(b − c), c(1 − p)), agents who always deliberate and never use intuition
(T = d) can also be Nash.)

Here, we demonstrate that these basic results extend to cooperative interactions that involve coor-
dination more generally, rather than being specific to infinitely repeated PDs. To do so, we consider
a game where with probability 1− p agents play the 1-shot PD defined above, and with probability
p they play a coordination game with the following payoff structure:

Cooperate Defect
Cooperate A+B A− C

Defect A+B −D A
where A,C ≥ 0 and B,D > 0.

This payoff structure has the following features. First, it captures the essence of coordination prob-
lems, which is that you cannot improve your payoff by playing something different from the other
person (the penality of not coordinating when the partner defects is captured by C ≥ 0, and when
the other person cooperates by D ≥ 0). As we are interested in cooperative coordination problems,
we introduce two additional features: that the cooperative equlibrium is more efficient (higher pay-
off) than the non-cooperative equilbrium, captured by B > 0; and that it requires coordination to
achieve the full benefits of this cooperation, such that defecting when the partner cooperates leads
to a strictly lower payoff than cooperating when the partner cooperates, D > 0 (rather the more
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general coordination requirement of just D ≥ 0). Note that this payoff structure reduces to the
infinitely repeated PD using A = 0, B = b− c, C = 0, D = b− c.

Using this much more general specification of cooperative coordination problems, we perform a
Nash analysis and ask whether (i) we continue to observe the dual process, intuitively cooperative
strategy profile that we found using the repeated PD, and whether (ii) an intuitively defecting Nash
that sometimes deliberates, which was not observed using the repeated PD, can occur here. We use
the same approach described above, in which we focus our Nash analysis on strategies with Sr = 1,
S1 = 0, and Si either 0 or 1.

6.2 Intuitively cooperating equilibria

As we did for the repeated PD model, we calculate the best response deliberation threshold with Tb
for an intuitively cooperating agent playing against an intuitively cooperating agent with delibera-
tion threshold T ′. We find, as before, that the best response is Tb = c(1−p), regardless of the value
of T ′ (or any of the coordination game parameters). To determine when this strategy [1, c(1− p)]
is Nash, we next consider under what conditions an intuitively defecting agent could beat it. To
do so, we find the best response intuitively defecting strategy against [1, c(1− p)], which we find to
be [0, pD] (note that this matches the result from repeated PD model, where the best response was
[0, p(b−c)]). We find that π([1, c(1−p)], [1, c(1−p)]) ≥ π([p, pD], [1, c(1−p)]), such that [1, c(1−p)]
is Nash, when p ≥ c

c+D and d > c(1 − p). (Note, again, that this matches the results from the
repeated PD model in which the Dual-process Cooperator was an equilibrium when p ≥ c/b and
d > c(1− p).)

6.3 Purely deliberative equilibrium

Next, we consider the boundary case that always deliberates, [−, d]. Analogous to the results for
the repeated PD version, we find that [−, d] is Nash when d ≤ pD and d ≤ c(1 − p) (as the best
response strategy when these conditions are met has T > d).

6.4 Intuitively defecting equilibria

Finally, we consider the intuitively defecting case. Unlike in the repeated PD model, we now find
that there are two possible intuitively defecting equilibria.

We begin by considering the boundary case [0, 0]. We find that the best responding intuitive de-
fector against [0, 0] is [0,−Cp]. Because T cannot be negative, this means that among the allowed
values of T , [0, 0] is the best response to itself (following the logic explained above in the repeated
PD Nash calculations for the purely deliberative equilibrium). Moreover, we find that no intuitively
cooperative strategy can ever do better against [0, 0] than [0, 0] does against itself. Thus, as in the
repeated PD model, [0, 0], a strategy that never deliberates and always intuitively defects, is always
Nash.

Unlike in the repeated PD model, however, our general calculation of the best response deliberation
threshold for an intuitive defector playing against [0, T ′] gives
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Tb =
p(C +D)

d
T ′ − Cp,

such that the intuitive defector strategy that best responds to itself is given by [0, cDp
(C+D)p−d ]. We

find that if the maximum cost of deliberation is sufficiently small, such that d < pD and either

d ≤ c(1− p) or 0 < C ≤ c(1−p)(Dp−d)
p(d−c(1−p)) are satisfied, then this strategy (which has Si = 0 and T > 0)

is Nash.

Thus, unlike in the repeated PD model, it is therefore possible to have a Nash equilibirium that
intuitively defects but sometimes uses deliberation to cooperate in the coordination game. Critically,
however, this strategy can never be risk-dominant, and therefore is never favored by selection!
Whenever [0, cDp

(C+D)p−d ] is Nash, there are always two other strategies which are Nash, and both of

these other strategies always risk-dominate [0, cDp
(C+D)p−d ]: [0, 0] is always Nash; when d < pD and

d ≤ c(1− p), the purely deliberative strategy [−, d] is also Nash; when d < pD and d > c(1− p) but

0 < C ≤ c(1−p)(Dp−d)
p(d−c(1−p)) , then [1, c(1− p)] is also Nash. Therefore, as in the repeated PD model, the

more general coordination model finds that an intuitively defecting strategy that uses deliberation
to cooperate when it is beneficial to do so can never be favored by selection.

6.5 Summary

In sum, the more general social dilemma versus coordination model we have analyzed provides two
main conclusions.

1. If the maximum cost of deliberation d is sufficiently large, we observe precisely the same two
equilibria observed in the simpler model: (i) an equilibrium that intuitively cooperates and
sometimes deliberates [1, c(1− p)], and (ii) an equilibrium that always intuitively defects and
never deliberates [0, 0].

2. If the maximum cost of deliberation d is smaller, more complicated equilibria can emerge, such
as an equilibrium that intuitively defects and does sometimes deliberate. Crucially, however,
this equilibrium is always risk-dominated by another equilibrium, and therefore will never be
selected for.

Thus, the conclusions from the repeated PD model hold across all models where agents sometimes
play 1-shot PD social dilemmas and other times play cooperative coordination games: selection can
favor dual process cooperators, but not dual process defectors.

6.6 Application to repeated PD with finite continuation probability

Our main analyses used the average payoff per round from an infinitely repeated PD between
TFT and ALLD for the game with reciprocity. Here, we use the generalized coordination game
calculations above to show that these results extend to the more realistic case of total payoff
in a repeated PD between TFT and ALLD where after every round, another round occurs with
probability δ (such that on average there are 1/(1−δ) rounds per game), yielding the payoff matrix
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PD with continuation probability δ
TFT ALLD

TFT b−c
1−δ −c

ALLD b 0
where b, c > 0, 0 < δ < 1.

Thus, in terms of the generalized coordination game, this gives A = 0, B = b−c
1−δ , C = c, D = b−c

1−δ−b.
Plugging in these values, we find that the DC strategy continues to be specified by [1, c(1 − p)],
just as it was for the infinitely repeated PD, and that the condition for DC to be an equlibrium
becomes p ≥ c

b−c
1−δ−b+c

and d > c(1− p).

6.7 Application to general PD with reciprocal consequences

Finally, we use our generalized results to show that the conclusions of the main model, which used
an infinitely repeated PD, extend to the general PD with reciprocity framework outlined in the
main text. Here, with probability p, the PD payoff structure is modified such that when one player
defects and the other cooperates, the defector’s payoff is reduced by α and the cooperaters payoff
is increased by β, yielding the payoff matrix

PD with Reciprocal Consequences
C D

C b− c −c+ β
D b− γ 0
where b, c, γ, β > 0.

In our main model, we focused on the case where γ = b and β = c, yielding a payoff structure
that is equivalent to average payoff per round of TFT and ALLD playing an infinitely repeated
PD. Plugging this more general form into our results for the cooperative coordination game (using
A = 0, B = b− c, C = c− β,D = γ − c), we find that the DC strategy continues to be specified by
[1, c(1 − p)], just as it was for the infinitely repeated PD, and that the condition for DC to be an
equlibrium becomes p ≥ c

γ and d > c(1− p).
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Figure S1: Evolutionary calculations of the steady state distribution using N = 50, b = 4, c = 1,
d = 1, w = 6, for various values of p and a. Shown are the average values of T (a), Si (b), Sr (c),
and S1 (d). We see quantitative agreement with the risk-dominance calculations shown in the main
text Figure 3: Si is near 0 when ID is risk-dominant and near 1 when DC is risk-dominant; T is
near 0 when ID is risk-dominant and equal to (c− ba)(1− p) when DC is risk-dominant; and Sr is
near 1 while S1 is near 0, except when T is close to zero such that there is little selection pressure
on deliberative responses, leading neutral drift to pull Sr and S1 toward 0.5.
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Figure S2: Evolutionary calculations of the steady state distribution using N = 50, a = 0 and (a)
b = 2, c = 1, d = 1, w = 6; (b) b = 8, c = 1, d = 1, w = 3; (c) b = 4, c = 2, d = 1, w = 5;
(d) b = 4, c = .5, d = 1, w = 6; (e) b = 4, c = 1, d = .75, w = 5; (f) b = 4, c = 1, d = 2,
w = 5. The point at which DC transitions to risk-dominating ID is presented as a dotted black line
for comparison. (Note that because of our use of exponential fitness, for certain parameter sets a
smaller selection strength w was needed to prevent the post-exponentiation fitnesses from exceeding
MATLAB’s computational limits.)
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Figure S3: Results of agent-based simulations (symbols) and steady state calculations (lines) showing
the average value of each strategy variable, using N = 50, b = 4, c = 1, d = 1, w = 6. (a) Fixing
a = 0; (b) fixing p = 0.2; (c) fixing p = 0.6.


