S1 File. Supporting Information Tables.

VININAO.		
Name	Length (nt)	Sequence $5' \rightarrow 3'^{a}$
Rev	30	AGCAAAAGCAGGGTGACAAAAACATAATGG
For	61	AAAAA <u>TAATACGACTCACTATA</u> GGGAGTAGAAACAAGGGTGTTTTTTA TCATTAAATAAGC

Table A. Primers for polymerase chain reaction using to obtain DNA template for vRNA8 and mini-vRNA8.

^a The underlined nucleotides residues are the polymerase T7 promoter.

Table B. Primers for polymerase chain reaction using to obtain mini-vRNA8.

	Length (nt)	Sequence $5' \rightarrow 3'^{a}$
1	36	AA <u>GAATTC</u> AGTAGAAACAAGGGTGTTTTTTATCATT
2	33	AA <u>GGATCC</u> CAGAAGTTTGAAGAAATAAGGTGGC
3	30	AA <u>GGATCC</u> GATGTCCAGACCAAGAGTGTTG
4	25	AA <u>CTGCAG</u> AGCAAAAGCAGGGTGAC

^a The underlined nucleotides residues are restriction sites: 1 - EcoR1, 2, 3 - BamH1, 4 - Pst1.

Table C. Primers for reverse transcription.

Name	Length (nt)	Complementary region in segment 8 RNA	Sequence 5' \rightarrow 3' ^a
Pr1	23	847-869	AGCaGGgTGaCAAaAACaTAATG
Pr2	22	719-740	GCCgAGaTCaGAAgTCCCTaAG
Pr3	23	572-591	CTGACATGACTCTCGAAGAAATG
Pr4	26	287-312	CTTGAATGGAATGATAACACAGTTCG
Pr5	22	429-450	GACCGGTTGGAAACCCTAATAC
Pr6	22	142-163	GGTGGCTGATTGAAGAAGTAAG

^a DNA primers 1-6 were used to vRNA8; primers 1, 2, 6 to mini-vRNA8; in small letter (a, g) - LNA nucleotides. Each primer was labeled with 6-FAM at 5' end.

Complementary	Sequence and modifications of probes ^a
binding sites	5'→3'
7	UgUuUcUPy
30	UdUuUdAPy
126	AdUuAcAPy
174	GuUuGdAPy
424	AcUuAgAPy
430	AdUdCuAPy
454	GdUuUuUPy
476	UdUuGdAPy
618	CuUdAdAPy
806	UuCuUuGPy

Table D. Heptamer probes complementary to vRNA8.

^a nucleotides in capital letter (A, C, G, U, D) are 2'-O-methyl-RNA nucleotides, in small letter (a, c, g, u, d) - LNA nucleotides; D and d - 2,6 –diaminopurine (2'-O-methyl type or LNA, respectively). Py – pyrene (56-57).

Binding sites for vRNA8	Sequence of DNA oligonucleotide ^{<i>a</i>}	Predicted ΔG°_{37} for DNA/RNA duplex ^b (kcal/mol)	Predicted ΔG°_{37} of duplex calculated as RNA/RNA ^c (kcal/mol)	Predicted ∆G° ₃₇ of mismatched duplex calculated as RNA/RNA ^c (kcal/mol)	RNase H cleavage site ^d
68 (534)	AAGTGG	-3.44	-6.3 (534) -6.2 (68)		70 (s) 535 (s)
194 (254, 390)	GAGAAG	-2.20	-5.7 (194) -5.0 (390) -5.0 (254)	-4.8 (148/149) -4.6 (729) -4.6 (179) -4.6 (407/408) -4.3 (57/58) -4.3 266/267	248-254 (s) 388 (w) 392 (s) 407 (s) 410 (s)
17 (118, 251, 684, 854)	AAACAG	-1.47	-4.2 (251) -3.9 (684) -3.9 (118) -1.8 (17) -1.8 (854)	-3.5 (107)	18-19 (w) 117 (s) 249 (s)
108 (192)	GAACAG	-2.63	-7.4 (108) -5.2 (192)	-4.6 (250/251) -4.3 (683/684) -4.3 (117/118)	249-250 (s)
143	AGTAAGACA	-6.43	-10.6	-6.1 (61/62) -6.1 (781/782) -5.9 (707) -5.5 (488) -5.4 (91) -5.4 (816/817)	143-145 (s)
163	ATAAGGTGG	-7.10	-12.0	-7.3 (818) -7.3 (534) -7.0 (626) -6.5 (67/68) -6.3 (197/198) -6.3 (352) -6.0 (766/767)	165-166 (s)

 Table E. RNase H cleavage of vRNA8 in the presence of selected DNA oligonucleotides.

				0.1 (575)	172 ()	
				-8.1 (5/5)	172 (s)	
				-7.5 (150)	251 (s)	
170	TGAAGAAAT	3.83	87	-6.3 (408/409)	253 (s)	
170	IUAAUAAAI	-5.85	-8.7	-5.0 (714)	149 (w)	
				-4.8 (70)	73 (w)	
				-4.5 (253)		
				-10 (149)	411-415 (s)	
109		5 72	12.4	-7.2 (170)		
408	AGAAGAAGG	-3.72	-12.4	-7.2 (576)		
				-6.9 (713)		
				-7.9 (13)	438 (w)	
				-7.5 (722/723)	221-223 (w)	
436	AAACCCTAA	-7.25	-10.2	-7.0 (759)	522-523 (w)	
				-6.3 (221/222)	724 (w)	
				-6.2 (522/523)		
				-8.5 (657)	535-536 (s)	
525		6.26	10.0	-7.6 (664/665)		
535	AGAAAGIGG	-6.36	-12.3	-7.5 (68)		
				-6.7 (472)		
				-8.0 (169/170)	578 (w)	
	COLLON AT	1.10		-6.8 (149/150)	172 (w)	
576	CGAAGAAAT	-4.43	-9.9	-6.5 (408/409)		
				-5.3 (714)		
721	CCCTAAGAG	-8.78	-14.8	-7.8 425		
				-10.3 (179/180)	730 (w)	
729	TCAGAAGTC	-7.65	-12.6	-6.9 (410/411)	182 (w)	
				-6.6 (211)		
729	TCAGAAGTC	-7.65	-14.8	-7.8 425 -10.3 (179/180) -6.9 (410/411) -6.6 (211)	730 (w) 182 (w)	

a – Sequences of DNA 6-mers were the same as probe for certain site, sequences of DNA 9-mer were specific for designated site; b - calculated for DNA/RNA duplex in 300 mM NaCl, as in experiment (http://ozone3.chem.wayne.edu); c - calculated in RNAstructure5.3 program as RNA/RNA duplex for standard condition (1 M NaCl) to show the difference in ΔG°_{37} between complementary and predicted mismatched duplexes, in parenthesis - site of possible DNA oligonucleotide binding, denoted by the middle nucleotide of the complementary RNA region (or two nucleotides for duplex with an even number of nucleotides; d – nucleotides preceding RNase H cleavage site; s-strong cut, w-weak cut.

Probe	Dinding sites for yDNA9 ^c	Proh e seguence ^d	Strength of probe binding ^e		ΔG°_{37} of duplex for complementary binding	Nucleotide of RNA target complementary	ΔG°_{37} of duplex for possible
name ^b	Difiding sites for VKINA8	Probe sequence	vRNA8	mini-vRNA8	site ^f (kcal/mol)	to 3'g of hexamer probe	(kcal/mol)
1p	149 (170, 408, 576, 774)	dDgDdg	1.000 (S)	0.4391 (S)	-4.4 (-11.37) 149 -4.2 (-11.37) 408	149C 170U	-4.5 (-9.34) 179 -4.5 (-9.34) 729
					-2.7 (-9.24) 774	408C	-4.1 (-6.0) 69/70
					-2.3 (-9.24) 170	576U	
					-2.3 (-9.24) 576	774G	
2p	69 (147, 178, 728)	GdDgUg	0.7241 (S)	-	-7.6 (-11.17) 69	69C	-4.4 (-9.45) 534/535
					-5.4 (-9.23) 728	147U	
					-5.4 (-10.03) 147	178A	
-					-5.3 (-10.03) 178	728G	
3р	150 (171, 409, 577, 714)	GdDgDg	0.6299 (S)	0.2180 (M)	-6.9 (-11.76) 714	150U	-4.2 (-8.53) 52
					-5.9 (-9.74) 171	171U	-4.2 (-8.53) 59
					-5.9 (-9.74) 150	409U	-4.1 (-5.47) 69 /70
					-5.9 (-9.74) 577	5770	
		D D 10	0.40.67.69	0.4055.(0)	-5.4 (-9.74) 409	714C	
4p	148 (179, 407, 410, 729)	DgDdGg	0.4967 (S)	0.4877 (S)	-6.4 (-12.19) 407	148A	-4.7 (-10.08) 536/537
					-5.2 (-9.61) 179	179A	-4.6 (-4.77) 69/70
					-5.2 (-9.61) 729	407C	-4.5 (-4.77) 171/172
					-5.1 (-9.61) 410	4100	-4.5 (-4.77) 577/578
	140		0.4012 (0)	0.1.410 (0.0)	-4.6 (-9.61) 148	129A	
эр	142	aDgDcg	0.4913 (S)	0.1412 (M)	-5.4 (-9.58) 142	1420	
бр	52 (59, 713, 719)	dDgDgg	0.4837 (S)	0.8894 (S)	-7.0 (-12.96) 719	52G	-4.6 (-10.03) 267/268
					-6.5 (-12.96) 713	59U	-4.2 (-8.52) 729
					-5.1 (-10.03) 59	713C	-4.2 (-8.52) 179
					-5.0 (-10.03) 52	719C	4.1 (-10.55) 148/149
7p	106 (123, 269, 412)	dCdGdg	0.4772 (S)	0.3867 (S)	-7.1 (-11.96) 269	106A	-4.1 (-5.96) 538/539
					-5.4 (-9.83) 123	123U	-4.1 (-5.96) 180 /181
					-5.4 (-9.83) 412	269C	-4.1 (-5.96) 730/731
					-4.6 (-9.83) 106	412U	-4.1 (-5.96) 211 /212
8p	163	dDgGug	0.4470 (S)	0.1264 (M)	-7.0 (-12.07) 163	163C	
9p	68 (534)	dDgUgg	0.4449 (S)	0.787 (S)	-6.3 (-12.37) 534	68C	
	. ,				-6.2 (-12.37) 68	534C	

Table F. Isoenergetic microarrays probes that bind strongly and moderately to vRNA8 and mini-vRNA8 and their thermodynamic properties^a.

10p	107 (117, 250, 683)	dDcDgg	0.2661 (M)	0.1429 (M)	-4.4 (-9.15) 250	107U	-4.3 (-5.62) 412/413
-					-4.4 (-9.15) 107	117G	-4.2 (-5.62) 269 /270
					-4.2 (-9.15) 683	250A	-4.2 (-5.62) 123/124
					-4.2 (-9.15) 117	683G	
11p	194 (254, 390)	GdGdDg	0.2659 (M)	-	-5.7 (-9.5) 194	194G	-4.8 (-9.8) 148/149
1		C			-5.0 (-9.5) 390	254U	-4.6 (-8.29) 729
					-5.0 (-9.5) 254	390U	-4.6 (-8.29) 179
					× /		-4.6 (-9.8) 407/408
							-4.3(-6.39) 57/58
							-4.3 (-6.39) 266/267
12p	58 (267)	dGdGdg	0.2393 (M)	0.3886 (S)	-5.4 (-10.71) 267	58A	-5.1 (-10.38) 536/537
г					-4.8 (-10.71) 58	267A	-5.0 (-6.39) 194 /195
							-4.8 (-8.3) 719
							-4.3 (-7.89) 390/391
							-4.4 (-6.39) 254/255
13p	17 (118, 251, 684, 854)	dDdcDg	0.2387 (M)	0.1989 (M)	-4.2 (-10.49) 251	17G	-3.5 (-8.46) 107
- 1					-3.9 (-10.49) 684	118C	
					-3.9 (-10.49) 118	251C	
					-1.8 (-8.47) 17	684C	
					-1.8 (-8.47) 854	854A	
14p	121 (169, 210, 253, 389,	dGdDdg	0.2302 (M)	0.2805 (M)	-5.0 (-11.13) 537	121U	
Г	537, 575)				-2.9 (-9.00) 121	169A	
					-2.7 (-9.00) 210	210A	
					-2.1 (-9.00) 253	253G	
					-2.1 (-9.00) 169	389A	
					-2.1 (-9.00) 389	537C	
					-2.1 (-9.00) 575	575A	
15p	80 (275)	dDcUag	0.2241 (M)	-	-2.9 (-7.89) 80	80G	
- 1					-2.3 (-7.89) 275	275A	
16p	141	dGdCdg	0.2072 (M)	0.1543 (M)	-4.6 (-9.83) 141	141A	-4.3 (-9.50) 250/251
- °r		8					-4.0 (-9.50) 117/118
							-4.0 (-9.50) 683/684
17p	60 (775)	cDdGdg	0.1966 (M)	0.5904 (S)	-6.0 (-11.62) 60	60C	-4.0 (-9.10) 719
· r					-5.2 (-9.49) 775	775U	
18p	13 (436)	AcCcUg	0.1905 (M)	-	-7.6 (-10.18) 13	13A	
1	、 <i>'</i>	6	, , , , , , , , , , , , , , , , , , ,		-7.1 (-10.18) 436	436U	

19p	122 (180, 211, 411, 538,	CdGdDg	0.1614 (M)	0.1508 (M)	-7.1 (-11.09) 180	122U	-4.0 (-8.29) 148
1	730)	C C			-7.1 (-11.09) 730	180C	
	,				-6.2 (-11.09) 411	211U	
					-5.0 (-9.07) 211	411C	
					-4.5 (-9.07) 122	538U	
					-4.3 (-9.07) 538	730C	
20p	405	dDgGdg	0.1302 (M)	-	-6.5 (-12.72) 405	405C	-4.0 (-8.47) 729
.1		00					-4.0 (-8.47) 179
21p	535	dDdGug	0.1254 (M)	-	-4.0 (-10.48) 535	535C	-3,7 (-8.45) 68
22p	268	CdGdGg	0.1239 (M)	-	-6.7 (-9.86) 268	268U	-6.8 (-10.33) 179/180
1		e					-6.8 (-10.33) 729/730
							-5.9 (-10.33) 410/411
							-4.7 (-7.08) 211
							-4.2 (-7.08) 122
							-4.1 (-5.56) 58/59
							-4.0 (-5.96) 538
							-3.7 (-7.53) 148
							-3.6 (-5.1) 163/164
23p	108 (192)	GDdCdg	0.1126 (M)	-	-7.4 (-10.64) 108	108C	-4.6 (-8.92) 250/251
- 1		8			-5.2 (-8.51) 192	192U	-4.3 (-8.92) 683/684
							-4.3 (-8.92) 117/118
24p	53 (143, 720)	uDdGdg	-	1.000(S)	-5.3 (-10.91) 720	53C	-4.5 (-10.91) 59/60
г					-4.5 (-10.91) 53	143G	
					-2.9 (-8.78) 143		
25p	61 (91)	GcDdGg	-	0.1904 (M)	-7.5 (-9.87) 91	61U	
1	× ,	e		× ,	-7.1 (-9.87) 61	91G	
					× ,		
26p	62 (873)	DgCdDg	-	0.2114 (M)	-6.2 (-11.89) 62	62C	
1		0 0			-4.5 (-9.87) 873	873U	
27p	63 (874)	GdGCdg	-	0.1555 (M)	-7.2 (-10.44) 63	63U	-7.4 (-10.17) 107 /108
					-6.2 (-10.44) 874	874U	
28p	66	GUgGdg	-	0.3200 (M)	-9.4 (-12.52) 66	66C	-5.0 (-7.27) 847

29p	716	DgGdDg	-	0.1506 (M)	-6.4 (-12.19) 716	716C	-4.1 (-9.78) 148/149 -4.1 (-7.48) 729
30p	736	CGdGdg	-	0.2762 (M)	-6.8 (-10.24) 736	736A	-5.7 (-12.37) 59/60
							-4.4 (-9.10) 719
							-4.3 (-6.17) 52
31p	847	dUgGdg	-	0.3015 (M)	-4.7 (-10.46) 847	847A	
32p	868	dDgCdg	-	0.1824 (M)	-6.4 (-12.42) 868	868C	-4.2 (-9.11) 62
							-4.2 (-6.76) 873/ 874
							-3.9 (-7.59) 117/118
							-3.5 (-7.69) 107
							-3.2 (-5.39) 123 /124
33p	181*	CCdGdg	-	0.1133 (M)	-7.6 (-10.27) 181*	181U	-4.5 (-5.96) 730 /731
							-3.8 (-7.46) 122
							-3.8 (-5.96) 105/ 106

a - All sites mapped by microarray mapping are marked on Figure S3; binding sites of probes are denoted by the middle nucleotide of the complementary RNA region (or two nucleotides for probes with an even number of nucleotides; b - probes 1p-23p bind vRNA8 and part of them mini-vRNA8, probes 24p-33p bind only mini-vRNA8; c - in parenthesis are other fully complementary binding sites for the probe; sites in *italic* do not exist in mini-vRNA8; d - nucleotides in capital letter (A, C, G, U, D) are 2'-O-methyl-RNA nucleotides, in small letter (a, c, g, u, d) are LNA nucleotides, D and d are 2,6 –diaminopurine (2'-O-methyl type or LNA, respectively); $e - value: 0.33 \le strong$ (S), $0.11 \le medium$ (M) <0.33 and no binding (-) < 0.11. Condition: buffer A (300 mM NaCl, 5 mM MgCl₂, 50 mM HEPES, pH 7.5), 37°C; f - calculated in RNAstructure program as RNA/RNA duplex and (in parenthesis) calculated considered modification of probe as modified probe/RNA duplex [1,2] the last number is the site of binding for which calculation was done; g - bolded are complementary sites of probe which binds strongly or moderatly; *- only mini-vRNA8 site.

Probable binding sites ^a	Probe sequence	Predicted ΔG°_{37} of probe/vRNA8 duplex ^c (kcal/mol)	Sites of strong RNase H cleavage in vRNA8 ^d	Strength of binding ^e	Deduced sites	Comments
58	dGdGdg	-10.71	-	М	58	No alternative sites
68	dDgUgg	-12.37	70	S	68	No alternative sites
107 (117)	dDcDgg	-9.15/ -9.15	117	М	117	Strong RNase H cleavage at 117 in vRNA8, which is in the region of simiar folding in mini-vRNA8 and vRNA8
141	dGdCdg	-9.83	143-144	М	141	Strong RNase H cleavage at 143-144 in vRNA8, which is in the region of simiar folding in mini-vRNA8 and vRNA8
142	dDgDcg	-9.58	143-144	S	142	No alternative sites
163	dDgGug	-12.07	166-167	М	163	No alternative sites
847	dUgGdg	-10.46	-	М	847	No alternative sites

Table G. Deduced strong and medium binding sites in mini-vRNA8 for microarray probes.

a - binding sites are denoted by the middle nucleotide of the complementary sequence of the target; *b* - nucleotides in capital letter (A, C, G, U, D) are 2'-Omethyl-RNA nucleotides, in small letter (a, c, g, u, d) - LNA nucleotides; D and d - 2,6-diaminopurine (2'-O-methyl type or LNA, respectively); *c*- ΔG°_{37} calculated as modified probe/RNA duplex [1,2]; *d* - vRNA8 nucleotide preceding RNase H cleavage. Cleavage within 3 nucleotides of probe site was considered confirmation of probe site, "-" – not tested; *e* – symbols: S – strong binding, M – medium binding.

References

- 1. Pasternak A, Kierzek E, Pasternak K, Fratczak A, Turner DH. and Kierzek R. The thermodynamics of 3'-terminal pyrene and guanosine for the design of isoenergetic 2'-O-methyl-RNA-LNA chimeric oligonucleotide probes of RNA structure. Biochemistry 2008;47: 1249-1258.
- 2. Kierzek E, Ciesielska A, Pasternak K, Mathews DH, Turner DH and Kierzek R. The influence of locked nucleic acid residues on the thermodynamic properties of 2'-O-methyl RNA/RNA heteroduplexes. Nucleic Acids Res. 2005; 33: 5082-5093.