Missense Mutations Allow a Sequence-blind Mutant of SpoIIIE to Successfully Translocate Chromosomes During Sporulation

SUPPLEMENTAL MATERIALS AND METHODS

Strain and plasmid construction

B. subtilis strains used in this study are listed in Table A in S1 text and are all derivatives of the prototrophic strain PY79, unless otherwise noted [1]. Alleles were introduced to *B. subtilis* strains by transformation. Fresh streaks were used to inoculate MC medium [2], cells were grown for 4 hours at 37° C, DNA was added, and cells were grown for an additional 1 to 2 hours before plating. The *E. coli* strain DH5 α was used for all cloning and for purification of soluble SpoIIIE variants. Primers used to generate new plasmids for this study are listed in Table B in S1 text. All site-directed mutagenesis was performed by Quikchange (Stratagene). Relevant portions of all generated plasmids were sequenced (Genewiz).

Because of gene conversions that restored *spoIIIE* at the native locus obtained during suppressor selection, for any strain exhibiting near wild-type sporulation efficiency, the presence of the Δ *spoIIIE* allele was confirmed by PCR.

The *ycgO::{spoIIIE* $\Delta \gamma$ *cat}* allele was previously used, but not described [3]. It was generated by transformation of bDR2036 (*PY79 ycgO::spc*; D.Z. Rudner, HMS) with pBB273; double crossovers were detected by marker replacement of *spc*. To construct pBB273, *spoIIIE* $\Delta \gamma$ was amplified from PY79 genomic DNA using primers oBMB162 and oBMB242. The resulting fragment was ligated into pKM063 (double-crossover vector for integration with chloramphenicol resistance at *ycgO*; K.A. Marquis & D.Z. Rudner, HMS) by EcoRI/BamHI.

Plasmids to integrate *spollIE* $\Delta \gamma$ mutants at *ycgO* with *cat* were generated by mutagenesis of pBB273. Plasmids for integration of *spollIE* at *ycgO* with *cat* were generated by mutagenesis of pBB078 [4]. Plasmids for integration of alleles at *ycgO* were used to transform bDR2036, and double-crossovers were detected by marker replacement of *spc*.

The *yhdGH::{spoIIIE* $\Delta \gamma$ *mls}* allele was generated by transformation of bBB445 (PY79 yhdGH::cat) with pBOSE2203; double-crossovers were detected by marker replacement of *cat*. To construct pBOSE2203, a fragment including *spoIIIE* $\Delta \gamma$ was amplified from bBB388 genomic DNA using oBMB162 and oBMB242, and the fragment was ligated into pBB279 (double-crossover vector for integration with mls-resistance at *yhdGH;* [5]) by EcoRI/BamHI. The promoter and coding sequences for *spoIIIE* $\Delta \gamma$ *cat*} allele.

Several new strains were generated for *spollIE* $\Delta \gamma$ suppressor selection. The codon for P492 in *spollIE* $\Delta \gamma$ was mutated from ccg to cct by mutagenesis of pBB273 and the resulting plasmid was used to create BOSE2254. BOSE2254 was then transformed with Δ *spollIE::neo* from bDR1066 to generate BOSE2282, Δ *spollIE::spc* from PL412 [6] to generate BOSE2425, and Δ *spollIE::mls* from bMG007 to generate BOSE2427. The extents of the Δ *spollIE::neo* and Δ *spollIE::spc* deletions (S1 Fig) were determined by PCR of bDR1066 and PL412 genomic DNA and sequencing of the PCR products. bDR1066 (D.Z. Rudner, HMS) was made by crossing a partial replacement of *spoIIIE* with *aphA-3* [7] into PY79 twice.

bMG007 was made by transforming PY79 with pMG008, a plasmid for integration of a mls-resistance marker by double crossover at *spoIIIE*. The double crossover was verified by PCR. pMG008 was generated by inserting upstream (oBMB284+oBMB285; EagI/Sall) and downstream (oBMB286+oBMB287; EcoRI/Xbal) *spoIIIE*-flanking sequences from PY79 into pKM074 [5] on either side of *cat*. The *cat* gene was then replaced with an mls-resistance gene from pKM084 (K.A. Marquis & D.Z. Rudner, HMS) using BamHI/Sall.

Strains for the cfp/yfp microscopy assay were made by transforming bBB115 (*ycgO::tet* Δ*spoIIIE::spc yycR::{PspoIIQ-yfp phleo} pelB::{PspoIIQ-cfp kan}*) with the indicated *ycgO* allele.

The $\Delta sftA::spc$ allele originated from SB1150, which we obtained from the BGSC [8]. This allele was crossed into PY79 twice to generate BOSE2074, and genomic DNA from the resulting strain was used for subsequent strain construction.

Plasmids for purification of soluble, His-tagged versions of SpoIIIE $\Delta\gamma$ from *E. coli* were made by mutagenesis of pMB041. pMB041 was previously used to purify a soluble form of SpoIIIE $\Delta\gamma$ but was not described [3]. pMB041 was made by using divergent primers (oMB165, oMB166) to PCR from template pJB103 [9], ligating together the resulting fragments, and transforming DH5 α *E. coli* with the products.

References

1. Youngman P, Perkins JB, Losick R. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid. 1984;12(1):1-9. PubMed PMID: 6093169.

2. Kunst F, Msadek T, Rapoport G. Signal-Transduction Network Controlling Degradative Enzyme-Synthesis and Competence in Bacillus-Subtilis. In: Piggot P, Moran C, Youngman P, editors. Regulation of Bacterial Differentiation. Washington, D.C.: American Society for Microbiology; 1994. p. 1-20.

3. Besprozvannaya M, Pivorunas VL, Feldman Z, Burton BM. SpoIIIE protein achieves directional DNA translocation through allosteric regulation of ATPase activity by an accessory domain. The Journal of biological chemistry. 2013;288(40):28962-74. doi: 10.1074/jbc.M113.484055. PubMed PMID: 23974211; PubMed Central PMCID: PMC3789994.

4. Burton BM, Marquis KA, Sullivan NL, Rapoport TA, Rudner DZ. The ATPase SpoIIIE transports DNA across fused septal membranes during sporulation in Bacillus subtilis. Cell. 2007;131(7):1301-12. Epub 2007/12/28. doi: S0092-8674(07)01413-4 [pii] 10.1016/j.cell.2007.11.009. PubMed PMID: 18160039; PubMed Central PMCID: PMC2913279.

5. Bernard R, Marquis KA, Rudner DZ. Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis. Mol Microbiol. 2010;78(4):866-82. doi: 10.1111/j.1365-2958.2010.07369.x. PubMed PMID: 20807205; PubMed Central PMCID: PMC2978284.

6. Pogliano K, Hofmeister AE, Losick R. Disappearance of the sigma E transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis. J Bacteriol. 1997;179(10):3331-41. Epub 1997/05/01. PubMed PMID: 9150232; PubMed Central PMCID: PMC179115.

7. Wu LJ, Errington J. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science. 1994;264(5158):572-5. Epub 1994/04/22. PubMed PMID: 8160014.

8. Biller SJ, Burkholder WF. The Bacillus subtilis SftA (YtpS) and SpoIIIE DNA translocases play distinct roles in growing cells to ensure faithful chromosome partitioning. Mol Microbiol. 2009;74(4):790-809. doi: 10.1111/j.1365-2958.2009.06893.x. PubMed PMID: 19788545.

9. Bath J, Wu LJ, Errington J, Wang JC. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science. 2000;290(5493):995-7. Epub 2000/11/04. doi: 8957 [pii]. PubMed PMID: 11062134.

SUPPLEMENTAL TABLES

Strain	Genotype ^{a,b}	Source/reference	
PY79	Prototrophic derivative of <i>B. subtilis</i> 168	[1]	
bBB128	ycgO::{spoIIIE cat}	[4]	
bBB388	ycgO::{spoIIIEΔγ cat} ΔspoIIIE::spc	This study	
bBB412	ycgO::{spoIIIEΔγ cat} ΔspoIIIE::spc yycR::{PspoIIQ-yfp phleo} pelB::{PspoIIQ-cfp kan}	This study	
bDR1066	ΔspollIE::neo	D.Z. Rudner, HMS	
bKM776	ycgO::{spoIIIE cat} ΔspoIIIE::neo	[4]	
BOSE2042	ycgO::{spolllEΔγ cat} ΔspolllE::neo	This study	
BOSE2120	ycgO::{spoIIIEΔγ(P492Q) cat} ΔspoIIIE::neo	This study	
BOSE2121	ycgO::{spoIIIEΔγ(E312A) cat} ΔspoIIIE::neo	This study	
BOSE2123	ycgO::{spoIIIEΔγ(T617A) cat} ΔspoIIIE::neo	This study	
BOSE2200	ycgO::{spoIIIEΔγ(P492Q) cat} ΔspoIIIE::spc yycR::{PspoIIQ-yfp phleo} pelB::{PspoIIQ-cfp kan}	This study	
BOSE2201	ycgO::{spoIIIEΔγ(E312A) cat} ΔspoIIIE::spc yycR::{PspoIIQ-yfp phleo} pelB::{PspoIIQ-cfp kan}	This study	
BOSE2202	ycgO::{spoIIIEΔγ(T617A) cat} ΔspoIIIE::spc yycR::{PspoIIQ-yfp phleo} pelB::{PspoIIQ-cfp kan}	This study	
BOSE2282	ycgO::{spollIEΔγ [P492(ccg> cct)] cat} ΔspollIE::neo	This study	
BOSE2284	ycgO::{spoIIIEΔγ(Y316D) cat} ΔspoIIIE::neo	This study	
BOSE2286	ycgO::{spoIIIEΔγ(P260L) cat} ΔspoIIIE::neo	This study	
BOSE2288	ycgO::{spoIIIEΔγ(A343V) cat} ΔspoIIIE::neo	This study	
BOSE2290	ycgO::{spoIIIE(E312A) cat} ∆spoIIIE::neo	This study	
BOSE2292	ycgO::{spoIIIE(T617A) cat} ΔspoIIIE::neo	This study	

 Table A. B. subtilis strains used in this study.

BOSE2294	ycgO::{spoIIIE(P492Q) cat} ΔspoIIIE::neo	This study
BOSE2296	ycgO::{spoIIIE(Y316D) cat} ∆spoIIIE::neo	This study
BOSE2298	ycgO::{spoIIIE(P260L) cat} ΔspoIIIE::neo	This study
BOSE2301	yhdGH::{spoIIIEΔγ mls} ycgO::{spoIIIEΔγ cat} ΔspoIIIE::neo	This study
BOSE2303	yhdGH::{spoIIIEΔγ mls} ycgO::{spoIIIEΔγ(P492Q) cat}	This study
BOSE2305	Δspolle::heo yhdGH::{spollEΔγ mls} ycgO::{spollEΔγ(E312A) cat}	This study
BOSE2307	Δspolleneo yhdGH::{spollEΔγ mls} ycgO::{spollEΔγ(T617A) cat}	This study
BOSE2309	ΔspollE::heo yhdGH::{spollEΔγ mls} ycgO::{spollEΔγ(Y316D) cat}	This study
BOSE2311	Δspolle::heo yhdGH::{spollIEΔγ mls} ycgO::{spolIIEΔγ(P260L) cat} ΔspollIE::neo	This study
BOSE2313	yhdGH::{spoIIIEΔγ mls} ycgO::{spoIIIEΔγ(A343V) cat}	This study
BOSE2321	ycgO::{spollIEΔγ(P319S) cat} ΔspollIE::neo	This study
BOSE2323	ycgO::{spollIEΔγ(E347G) cat} ΔspolIIE::neo	This study
BOSE2325	ycgO::{spoIIIE(E347G) cat} ΔspoIIIE::neo	This study
BOSE2331	ycgO::{spoIIIEΔγ(P260L) cat} ΔspoIIIE::spc yycR::{PspoIIQ-yfp phleo} pelB::{PspoIIQ-cfp kan}	This study
BOSE2332	ycgO::{spoIIIEΔγ(A343V) cat} ΔspoIIIE::spc yycR::{PspoIIQ-yfp phleo} pelB::{PspoIIQ-cfp kan}	This study
BOSE2425	ycgO::{spoIIIEΔγ[P492(ccg> cct)] cat} ΔspoIIIE::spc	This study
BOSE2427	ycgO::{spoIIIEΔγ[P492(ccg> cct)] cat} ΔspoIIIE::mls	This study
BOSE2486	ycgO::{spollIEΔγ(E312A) cat} ΔspollIE::neo ΔsftA::spc	This study
BOSE2488	ycgO::{spollIEΔγ(T617A) cat} ΔspollIE::neo ΔsftA::spc	This study
BOSE2490	ycgO::{spollIEΔγ(Y316D) cat} ΔspolIIE::neo ΔsftA::spc	This study
BOSE2492	ycgO::{spoIIIEΔγ(P260L) cat} ΔspoIIIE::neo ΔsftA::spc	This study
BOSE2494	ycgO::{spollIEΔγ(A343V) cat} ΔspollIE::neo ΔsftA::spc	This study
BOSE2496	ycgO::{spolllEΔγ(P319S) cat} ΔspolllE::neo ΔsftA::spc	This study

BOSE2498	ycgO::{spoIIIEΔγ(E347G) cat} ΔspoIIIE::neo ΔsftA::spc	This study
BOSE2538	ycgO::{spoIIIEΔγ(H493Y) cat} ΔspoIIIE::neo	This study
BOSE2540	ycgO::{spoIIIEΔγ(S264I) cat} ΔspoIIIE::neo	This study
BOSE2935	ycgO::{spoIIIEΔγ(P492Q) cat} ΔspoIIIE::neo ΔsftA::spc	This study
BOSE3083	yhdGH::{spolllE $\Delta\gamma$ mls} ycgO::{spolllE $\Delta\gamma$ (P319S) cat} Δ spolllE::neo	This study
BOSE3085	yhdGH::{spollIEΔγ mls} ycgO::{spollIEΔγ(E347G) cat} ΔspollIE::neo	This study
BOSE3087	yhdGH::{spollIEΔγ mls} ycgO::{spollIEΔγ(H493Y) cat} ΔspollIE::neo	This study
BOSE3089	yhdGH::{spollIEΔγ mls} ycgO::{spollIEΔγ(S264I) cat} Δ spollIE::neo	This study
BOSE3091	ycgO::{spoIIIE(D586N) cat} ∆spoIIIE::neo	This study

^a All strains are PY79 derivatives

^b None of the listed strains are original isolates from the suppressor selection. All indicated mutations in *spolIIEΔγ* were made as indicated in Materials and Methods. For each, site-directed mutagenesis was performed using a plasmid that was cloned in *E. coli*, sequenced, and introduced into the *B. subtilis* chromosome by double crossover at the indicated ectopic site. The resulting strains were transformed or genomic DNA was purified from them and used to transform other strains.

Table B. Primers used in this study.

Primer	Sequence (5' to 3')	Purpose
		nBB372 nBO(E3303
		μοσζίο, μουσεζζυσ nBB272 nBOSE2203
	CTCAG	μυσείο, μουσεεευο
oBMB284	GCGCGGCCGTGTTGAAGCTGGTCTTGCCATAGC	pMG008
oBMB285	GCCGTCGACCTTCCGCTTCATTCCCTTTCATTT	pMG008
oBMB286	CGGGAATTCGCTCTCTTCTTAATGAAGG	pMG008
oBMB287	GGCTCTAGATCATCGGAATTTTGTCTATAC	pMG008
oBOSE639	CCTTTACAGAGCTCGCAAATAAGGATTACGAGATGC	E312A
oBOSE640	GCATCTCGTAATCCTTATTTGCGAGCTCTGTAAAGG	E312A
oBOSE641	CCATCTTATTATTGCGGCACAGCGGCCATCGG	T617A
oBOSE642	CCGATGGCCGCTGTGCCGCAATAATAAGATGG	T617A
oBOSE643	GTATTTTAATGCGGGCGAAACAGCATGAAGTGAAAATGA	P492Q
	TG	
oBOSE644	CATCATTTTCACTTCATGCTGTTTCGCCCGCATTAAAATAC	P492Q
oBOSE645	GCTCGAAAATAAGGATGACGAGATGCCGTCACTGG	Y316D
oBOSE646	CCAGTGACGGCATCTCGTCATCCTTATTTTCGAGC	Y316D
oBOSE647	CGCCTCTTATTCATTCAGAGCTGATTATCTCAAGCTTTTCT	P260L
- 0.0000000	G	D2 COI
OBOSE648		P260L
oBOSE649	CGGCCAGCAGGCTGATAAAAAGAATATTTATGAAAATGT	A343V
	GAGAAAGCTTGAACGCACATTCC	
oBOSE650	GGAATGTGCGTTCAAGCTTTCTCACATTTTCATAAATATTC	A343V
	TTTTTATCAGCCTGCTGGCCG	
oBOSE651	GTATTTTAATGCGGGCGAAACCTCATGAAGTGAAAATGA	P492 (ccg to cct)
	TG	
oBOSE652	CATCATTTTCACTTCATGAGGTTTCGCCCGCATTAAAATAC	P492 (ccg to cct)
oBOSE653	GGATTACGAGATGTCGTCACTGGATTTGCTGGC	P319S
oBOSE654	GCCAGCAAATCCAGTGACGACATCTCGTAATCC	P319S
oBOSE655	GCGAGAAAGCTTGGACGCACATTCCAAAGCTTTGG	E347G
oBOSE656	CCAAAGCTTTGGAATGTGCGTCCAAGCTTTCTCGC	E347G
oBOSE660	CTGCTCCTCCTATGACCTTTACAAAGCTCGAAAATAAGG	E310K
oBOSE661	CCTTATTTTCGAGCTTTGTAAAGGTCATAGGAGGAGCAG	E310K
oBOSE702	GCGGGCGAAACCGTATGAAGTGAAAATGATGATG	H493Y
oBOSE703	CATCATCATTTCACTTCATACGGTTTCGCCCGC	H493Y
oBOSE704	GAGCCGATTATCTCAATCTTTTCTGATCGTAATGAAGAGG	S264I
oBOSE705	CCTCTTCATTACGATCAGAAAAGATTGAGATAATCGGCTC	S264I
oMB165	Phos-CAGGTCACCACCACCACCAC	pMB041
oMB166	Phos-GAGTTTCCGTCGTCTCCTCAGGAATCATTTCTTCTTG	pMB041

a a a a a a a a a a a a a a a a a a a		spollIEΔγ(P492 ccg>cct),			spollIEΔγ(P492 ccg>cct),			
spolllEΔγ, ΔspolllE::spc			∆spoIIIE:neo ^b			∆spoIIIE:spc ^c		
perp.		rescue	perp.	erp. rescue		perp.	erp. re	
cult. ^e	outcome ^f	round ^g	cult. ^e	outcome ^f	round ^g	cult. ^e	outcome ^f	round ^g
1	Y316D	4	1	Y316S	3	1	P319S	12
2	extragenic	19	2	P319S	3	2	D586N	25
3	E310K	21	3	conversion	3	3	extragenic	25
4	P492Q	13	4	A343V	13	4	E310K	6
5	P492Q	18	5	rearranged	8	5	E312K	15
6-1	extragenic	21	6	A343V	13	6	H493Y	6
6-2	extragenic	21	7	unknown	42	7	E312K	6
7	extragenic	14	8	conversion	4	8	extragenic	25
8	conversion	4	9	A343V	4	9	E347G	15
9	conversion	4	10	10 conversion		10	S264I	15
10	P319S	18	11 unknown 35 <i>s</i> ;		spoll	IE∆γ(P492 ccg	₁>cct),	
11	P492Q	11	12	conversion	8		∆spoIIIE:mIs ^d	
12-1	E347G	18	13	conversion	10	perp.		rescue
12-2	extragenic	18	14	Y316C	3	cult. ^e	outcome ^f	round ^g
13	extragenic	14	15	conversion	8	1	A343V	12
14	no rescue	(>21)	16	conversion	7	2	E312K	15
15	P260L	9	17	lost	5	3	S264I	28
16	A343V	5	18	conversion	13	4	unknown	15
17	extragenic	16	19	A343V	3	5	A343V	12
18	P492Q	4	20	extragenic	8	6	Y316C	9
19	A343V	13		-		7	E310K	12
20	extragenic	18				8	P319R	6
21	E312A	4				9	no rescue	(>28)
22	P492Q	4				10	E312K	28
23	T617A	4						

 Table C. Suppressor selection summary

^a abbreviated genotype of bBB388

^b abbreviated genotype of BOSE2282

^c abbreviated genotype of BOSE2425

^d abbreviated genotype of BOSE2427

^e perpetuated culture, term for one culture cycled repeatedly through sporulation, heat-

kill, and germination

^f for intragenic suppressors, mutation is specified; "extragenic": suppressor isolate had wild-type *spolIIEΔγ* sequence; "conversion": denotes "gene conversion", where *ΔspoIIIE* marker was lost and wild-type sporulation efficiency recovered; "no rescue": perpetuated culture never exhibited increased sporulation efficiency; "rearranged": rescue involved a rearrangement of sequences such that the strain harbored *ycgO::{ΔspoIIIEΔγ::neo cat} and spoIIIE[P492(ccg--> cct)]*; "unknown": sequence of *spoIIIEΔγ* from isolates exhibiting rescue was not determined; "lost": the perpetuated culture went missing during passaging

^g approximate round of passaging during which culture exhibited rescue and individual isolates were recovered; for perpetuated cultures that never exhibited recovery ("no rescue"), the last round of passaging is indicated

Table D. Residues in SpoIIIE/FtsK family members corresponding to mutated residues in

SpollIEΔγ s	suppressors ^a
-------------	--------------------------

	P319	A343	E347	P492	H493	D586	T617
А		39.3		17.9	6.0		
		(61.7)		(4.3)	(10.6)		
					28.6	98.8	
D					(14.9)	(92.9)	(4.3)
			79.8		29.8		
E			(80.9)		(63.8)		
		2.4					
G		(2.1)					
Н				2.4			
			2.4				
		1.2	(6.4)				
К		8.3	2.4		4.8		
		(12.8)			(4.3)		
			6.0				
L			(2.1)				
M			1.2				
			(2.4)		7.1	1.2	
N	4.0.0		(2.1)	70.0			
	100			/9.8			
Р	(85.1)			(89.4)	2.6		
			(4.2)		3.0		
ų			(4.3)		(2.1)		
D			(2 1)	(2 1)	14.5		
N		/8.8	1.2	(2.1)	1.8		
s		(21.3)	1.2		4.0		
5		(21.3)	12		12		100
т		(2 1)	1.2		1.2	(71)	(95.7)
•		(=:=)	6.0			(7.1)	(33.7)
v			(2.1)				
Y			(=)				
gaps	(14.9)			(4.3)	(4.3)		

^aPercentages of different residues at each position in other family members, that have

(no parentheses) or lack (parentheses) y domains. Mutations found in suppressor

isolates are highlighted with dark grey.