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Supplementary Note 1

Among notable long-tail hotspots was E14K in Nucleoporin 93kDa (NUP93) (Fig. 4A). This
highly expressed essential gene encodes a critical subunit of the nuclear pore complex. This
hotspot was present in six breast cancers and one sample each of bladder, head and neck,
hepatocellular, lung adenocarcinoma, and papillary thyroid cancers (Supplementary Fig. 8A,
left). Among assessable breast cancers, these appear to arise in HER2-negative luminal tumors
and is the fifth most commonly mutated gene in the 1303 breast cancers studied here (after
hotspots in PIK3CA, TP53, SF3B1 K700E, and AKT1 E17K) (Supplementary Fig. 8A, right).
Directly adjacent to E14K was a Q15* truncating hotspot, however, affected tumors expressed
high levels of both the wildtype and mutant alleles. There was no detectable effect on gene
expression of transcripts carrying a mutation predicted to trigger nonsense-mediated decay’.
This is consistent with prior studies of loss-of-function alleles in human genomes?, but contrary
to the effect of such mutations in other cancer genes such as TP53> and even CDKNZ2A
(Supplementary Fig. 7C).

Among other genes with two or more hotspots in the long tail, mutations in the MYC-associated
factor X (MAX) were notable. MYC is an oncogene broadly implicated in the pathogenesis of
multiple human cancers. While genomic amplification of MYC is common in many tumor types,
MYC mutations are rare. We identified two MYC hotspots in this study (T58 and S146L), in one
to three tumors each of head and neck cancers, lung adenocarcinomas, melanomas,
lymphomas, neuroblastomas, colorectal cancers. However, MYC-mediated transformation
through either activation or repression of MYC targets is dependent on its heterodimerization
with MAX*, which is an integral and constitutively expressed protein. It was notable, therefore,
that we identified two MAX hotspots mutations (H28R and R60Q) in the helix-loop-helix
(bHLHZ) DNA binding domain (Supplementary Fig. 8B). While recurrent germline MAX
mutations have been reported in hereditary and sporadic pheochromocytoma and
paragangliomas®®, these were truncating mutations at different residues compared to the
somatic missense hotspots detected here (Supplementary Fig. 8B). The three dimensional
structure of the MYC-MAX heterodimer revealed that the R60 and H28 interact with 5° CA and 3’
G of the CACGTG E-box respectively (Supplementary Fig. 8C), indicating that the mutations
target DNA binding of the complex rather than MYC dimerization. Notably, all four H28R
mutations and 20% of the R60Q mutations arose in endometrial tumors spanning three of the
four previously established subtypes, including one POLE-ultramutated, three MSI-H
hypermutated, and two copy number-low endometrioid-like tumors. Moreover, we also identified
in another copy number-low endometrial tumor a MYC H374R mutation that is homologous to
MAX H28R (Supplementary Fig. 8C). The presence of these mutations in diverse cancer types
and subtypes driven by very different underlying mutational processes indicates they are
unlikely passengers due only to the mutational burden of the affected tumors. Finally, whereas
the truncating germline mutations in MAX imply a tumor suppressor role, we found that MAX
hotspots mutations were mutually exclusive with MYC mutations and genomic amplifications
across affected tumor types (Supplementary Fig. 8D). This suggests that somatic MAX hotspots
may be gain-of-function. However, due to the complexity of MYC function and the functional
antagonism of MAX heterodimerization with MAD’, functional validation is necessary.
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