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S1. HAAR WAVELET

The Haar wavelet is commonly used to approximate velocities over different time-scales from
noisy trajectories. For instance, it has been employed in single particle tracking studies to distin-
guish actively transported vesicles from those diffusing passively in the cytoplasm[1]. This wavelet
is defined by the coefficients,

wj = 1
n(n+ 1)


1 for 0 < j ≤ n

−1 for − n ≤ j < 0
0 for j = 0.

(S1)

FIG. S1: Coefficients for different wavelet shapes, shown for span n = 20. (a) wi coefficients for the
trajectory positions. (b) ŵi coefficients for the trajectory steps. Wavelet shapes shown are the sliding
mean wavelet (black), Haar wavelet (yellow), and 1st, 3rd, and 5th order Savitzky-Golay wavelets (blue,
green, and red, respectively).
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The simple form of the Haar wavelet enables direct calculation of the summations in Eq. 10 to
yield a closed form solution for the rescaling functions,

A
(n)
k,Haar =



1
60n2(n+ 1)2

[
3k5 − k4(10n+ 5) + k3(40n2 + 40n− 5)− k2(80n3 + 120n2 + 30n− 5)

+k(60n4 + 120n3 + 80n2 + 20n+ 2)
]

for k ≤ n

1
60n2(n+ 1)2

[
−k5 + k4(10n+ 5)− k3(40n2 + 40n+ 5) + k2(80n3 + 120n2 + 30n− 5)

−k(80n4 + 160n3 + 60n2 − 20n− 6) + (44n5 + 110n4 + 80n3 + 10n2 − 4n)
]

for n < k < 2n

(2n+ 1)(3n2 + 3n+ 4)
30n(n+ 1) for k ≥ 2n

(S2)

B
(n)
k,Haar =



1
n2(n+ 1)2

[
−k3 + k2(2n+ 1)− 4kn(n+ 1) + 2n(n+ 1)(n2 + n+ 1)

]
for k ≤ n

1
3n2(n+ 1)2

[
k3 − 3k2(2n+ 1) + 2k(6n2 + 6n+ 1) + 2n3(3n+ 4)− 12n2(n+ 1)− 2n

]
for n < k < 2n

6n2 − 2n+ 2
3n(n+ 1) for k ≥ 2n

S2. SAVITZKY-GOLAY WAVELETS

The BNEW method relies on the drift velocity varying slowly in time, so that it can be effectively
subtracted out by applying a wavelet that calculates a local estimate of the velocity across a window
of span n. In the case where the drift velocity is not constant in time, one can estimate it more
effectively by performing a less aggressive smoothing of the data. This can be done by either
decreasing the span n, or by using a non-linear local approximation for the velocity. In either case,
decreasing the smoothing also results in a more noisy estimate for the local velocity.

A common data smoothing technique uses the Savitzky-Golay filter[2], which involves fitting
a local polynomial to each window of the data series. Higher-order polynomial fits provide less
aggressive smoothing of the data. In practice, the Savitzky-Golay filter is applied by convolving
each window of the data with a set of weights based on the least-square regression to the polynomial
of a given degree[3]. Consequently, this smoothing technique can be formulated as a wavelet, with
the particular set of weights wi defined below.

To find the best-fit polynomial of degree d to data points pi in a window −n ≤ i ≤ n, we
can perform ordinary least-squares regression. The coefficients a0, . . . , ad of such a polynomial are
given by

~a = (ATA)−1AT~p (S3)
where A is a (2n + 1) × (d + 1) matrix with Ai,j = ij,−n ≤ i ≤ n, 0 ≤ j ≤ d . The local first
derivative (velocity) approximation at the center of the window is given by a1/∆, where ∆ is the
time step. The weights for each of the data points used to compute this approximation are simply
the second (j = 1) row of the matrix (ATA)−1AT . That is, the Savitzky-Golay wavelet is defined
by

~w = (0, 1, 0, . . . , 0) · (ATA)−1AT . (S4)
We note that since the best fit polynomial to a trajectory with constant velocity pi = yi + z has
a1 = y, then the required constraints on the wavelet shape (Eq. 4) are satisfied. It can be shown[3]
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that the Savitzky-Golay filter for calculating first derivatives is identical for degree d and d + 1
where d is an odd integer. We thus limit our discussion to filters of odd degree. The wavelet
associated with the degree d Savitzky-Golay filter will be abbreviated as SG-d. The shape of such
wavelets in terms of both the weights wi associated with the positions and the equivalent weights ŵi
associated with the trajectory steps are plotted in Fig. S1. Unless otherwise noted, SG-3 wavelets
are used throughout this work, for reasons discussed in Supplemental Section S6.

S3. BNEW ANALYSIS FOR FRACTIONAL BROWNIAN MOTION

We now analyze the behavior of the BNEW method when applied to particle trajectories where
the stochastic component of the motion corresponds to fractional Brownian motion[4]. Discrete
increments from a fractional Brownian motion process ~p(t) at time steps of size ∆ are referred to
as discrete fractional Brownian noise, and defined by

~vi = ~p [(i+ 1)∆]− ~p [i∆]
∆ . (S5)

The ~vi are identically normally distributed, with mean 0, variance 4D∆, and covariance function
(for k ≥ 1) [5, 6]

〈~vi · ~vi+k〉 = 2D∆α−2 (|k + 1|α − 2|k|α + |k − 1|α) , (S6)
This model is appropriate for thermal motion in a viscoelastic material. Note that throughout
this work we assume that the stochastic motion occurs independently in each of two dimensions,
though this approach can be easily extended to thre-dimensional trajectories. Sampling of discrete
fractional Brownian noise for purposes of simulation was carried out using the circulant embedding
approach for generating stationary processes[5].

When BNEW analysis is applied to a trajectory consisting of constant drift, fractional Brownian
motion, and localization error, the adjusted MSD is derived from Eq. 6, 10 as

MSD
(n)
k =

〈
|~p(n)
k − ~p

(n)
0 |2

〉
=4D∆αA

(n)
k + 4ε2B(n)

k

+4D∆α
k+n−2∑
i=−n

k+n−2−i∑
j=1

c
(n,k)
i c

(n,k)
i+j ((j + 1)α − 2(j)α + (j − 1)α) ,

(S7)

where c(n,k)
i refers to the coefficients in Eq. 8 associated with a particular combination of wavelet

span n and time separation k.
Rescaling the adjusted MSD by B(n)

k as for diffusive motion gives

M̂SD
(n)
k = 4D∆αÃ

(n)
k + 4ε2, (S8)

where Ã(n)
k is plotted as a function of the rescaled time t̂k = A

(n)
k /B

(n)
k in Fig. S2a,b, for both the

Haar wavelet and the 3rd order Savitzky-Golay wavelet. The function Ã
(n)
k depends on α and on

the shape of the wavelet used, but not on the parameters D, ε.
We note that the results for different wavelet spans n collapse approximately onto a power-law

curve, with downward “hooks” at larger values of k. So long as the maximal k values are relatively
small compared to the span n, then Ã

(n)
k can be approximately fit by the functional form,

Ã
(n)
k = f(α)t̂αk + g(α)2 (S9)
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FIG. S2: BNEW analysis applied to trajectories consisting purely of fractional Brownian motion (no
localization error or drift). (a) Function Ã

(n)
k plotted against the rescaled time, for α = 0.5 and α = 0.7.

Haar wavelet spans 2 ≤ n ≤ 17 are included. Black lines correspond to the functional form in Eq. S9.
Inset shows same data plotted on log-log axes. (b) Same results plotted using 3rd order Savitzky-Golay
(SG-3) wavelets for the wavelet analysis. (c) Fractional bias in fitted scaling exponent αfit, as a function
of maximal k value used in the fits, for Haar wavelets (solid lines) and SG-3 wavelets (dashed lines). (d)
Function values f(α) (blue) and g(α) (red), for Haar wavelets (solid line) and SG-3 wavelets (dashed
line), obtained by fitting Ã(n)

k to Eq. S9 for 2 ≤ n ≤ 17, 1 ≤ k ≤ bkmaxnc
.

We are interested primarily in extracting an accurate estimate of the viscoelastic scaling parameter
α from such fits, in order to determine whether the particle motion is consistent with a viscous
or a viscoelastic environment. Using wavelet spans 2 ≤ n ≤ 17 for the fits, we plot the error in
the parameter αfit depending on the maximal k values used in the fit. Specifically only values of k
such that 1 ≤ k ≤ bkmaxnc are used for each span n. When fitting data from a limited number of
trajectories, larger values of kmax would retain more information from the data, allowing for a less
noisy fit. However, at higher values of kmax, the downward “hooks” in the rescaled curves lead to
incorrect estimations of the scaling parameter. We thus use the maximal value that allows for an
accurate estimation of αfit (see Fig. S2c). Namely, kmax = 0.74 is used for all data analysis using
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FIG. S3: Result of BNEW analysis with
3rd-order Savitzky-Golay wavelets on the
same simulated trajectory dataset de-
scribed in Fig. 1. Time separations 1 ≤
k ≤ b0.74nc are shown for each wavelet
span n. Fitted curves are shown in black,
and the estimated values from the fits are
listed for both the diffusive and the subd-
iffusive case.

3rd order Savitzky-Golay wavelets, while kmax = 1 is used for analysis with Haar wavelets (e.g.
Fig. 1).

The functions f(α) and g(α) are necessary for determining the effective diffusion coefficient (D)
and localization error (ε), respectively. In particular the rescaled adjusted MSD is fit to,

M̂SD
(n)
k = 4D̂∆αt̂αk + 4ε̂2, (S10)

and the parameters D and ε are then extracted by

Dfit = D̂fit

f(αfit)
, (S11)

εfit =
√
ε̂2fit −Dfit∆αfitg(αfit)2. (S12)

In the limit of diffusive motion (α = 1), we have f(1) = 1, g(1) = 0, recovering Eq. 11. The
functions f and g are determined numerically, by fitting Ã(n)

k as a function of t̂k for 2 ≤ n ≤ 17
for a range of α values (Fig. S2d).

The validity of this procedure for extracting estimates of α,D, ε to characterize the stochastic
component of the motion is demonstrated for simulated trajectories in Fig. 1, using the Haar
wavelet form. Analysis of the same trajectories with a 3rd order Savitzky-Golay wavelet is shown
in Fig. S3.

S4. STATISTICS OF A PERSISTENT RANDOM WALK

To explore the effect of time-varying drift on the BNEW analysis method, we focus on a concrete
model for the drift velocity as a continuous-time persistent random walk. This model has been used
to describe the animal behavior[7], locomotion of motile cells[8], and paths of semiflexible polymers
(where it is termed the worm-like chain)[9, 10]. It is appropriate for situations where there is a
single characteristic timescale of persistence for the dynamical process. More complicated dynamics
with multiple timescales can generally be expressed as sums of multiple persistent random walks.

One realization of a persistent random walk is motion with a constant speed (γ) along an
orientation that varies diffusively in time with decorrelation time τ . In this section we derive some
useful results regarding multi-point velocity correlations in this model. The propagator for the
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persistent random walk in two dimensions satisfies

∂G(θ|θ0; t)
∂t

= 1
τ

∂2G(θ|θ0; t)
∂θ2 , (S13)

where G(θ|θ0; t) is the distribution of orientations for the velocity vector ~u at time t, given an
orientation along θ0 at time 0. This propagator can be expressed as

∂G(θ|θ0; t) = 1
2π

∞∑
m=−∞

gm(t)eim(θ−θ0) (S14)

gm(t) = e−m
2t/τ .

The velocity autocorrelation function is,

〈~u(t)~u(0)〉 =γ2
∫ 2π

0
dθ
∫ 2π

0
dθ0 cos(θ − θ0)G(θ|θ0; t)

=γ
2

2 [g1(t) + g−1(t)] = γ2e−t/τ
(S15)

At times shorter than the correlation time τ , the persistent random walk behaves like a ballistic
motion with speed γ, while at longer times, the velocity orientation decorrelates and the motion
appears diffusive with effective diffusion coefficient γ2τ . As a model for drift velocity, this formalism
is convenient because it interpolates between constant drift (τ →∞) and rapidly time varying drift
τ → 0. In cases where the correlation time becomes comparable to the time step of the observed
particle motion (τ ≤ ∆), this drift velocity can no longer be distinguished from the diffusive
component of the particle trajectories and BNEW analysis will not be accurate. In Fig. 2, we
explore the bias and error introduced into the BNEW analysis in cases where the correlation time
is finite but still much larger than the time step ∆.

In order to calculate errors in the fit parameters obtained with the BNEW method, we require
also the fourth-order correlations in the particle velocities. For the persistent random walk, these
correlations are given by,

〈
u

(x)
i0 u

(x)
i1 u

(x)
i2 u

(x)
i3

〉
=
(
γ

2π

)4 ∫ ∫ ∫ ∫
dθ0dθ1dθ2dθ3 cos θ0 cos θ1 cos θ2 cos θ3

×G(θ3|θ2, t3)G(θ2|θ1, t2)G(θ1|θ0, t1)

=
(
γ

2

)4
[2g1(t1)g2(t2)g1(t3) + 4g1(t1)g0(t2)g1(t3)]

=γ
4

4 e
−(t1+t3)/τ

[1
2e
−4t2/τ + 1

]
,

(S16)

where tj = (ij − ij−1)∆ and the indices are ordered as i0 ≤ i1 ≤ i2 ≤ i3. Similarly, we have

〈
u

(x)
i0 u

(x)
i1 u

(y)
i2 u

(y)
i3

〉
= γ4

4 e
−(t1+t3)/τ

[
−1

2e
−4t2/τ + 1

]
〈
u

(x)
i0 u

(y)
i1 u

(x)
i2 u

(y)
i3

〉
=
〈
u

(x)
i0 u

(y)
i1 u

(y)
i2 u

(x)
i3

〉
= γ4

8 e
−(t1+4t2+t3)/τ ,

(S17)

and other combinations of the x, y dimensions can be obtained by symmetry.
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FIG. S4: Analytically calculated values of the
rescaled adjusted MSD for trajectories consist-
ing of persistent random walk drift with param-
eters τ = 40, γ = 1, diffusive random motion
(α = 1, D = 1), and localization error (ε = 1),
sampled at time intervals of size ∆ = 1. SG-
3 wavelets were used for the BNEW analysis,
with spans between n = 4 and n = 40 (colored
from blue to red). Black line corresponds to
the power-law fit, showing the bias away from
a linear function.

S5. ERROR ANALYSIS IN THE PRESENCE OF TIME-VARYING DRIFT

In this section, we calculate the bias and error in the fitted coefficients αfit, Dfit, εfit, when the
drift-velocity ~u varies in time as a persistent random walk (defined in Supplemental Section S4).
Throughout this section, we restrict to the case with diffusive stochastic motion (α = 1). The
rescaled, adjusted MSD after BNEW analysis using wavelets of span n is

M̂SD
(n)
k = 4D∆t(n)

k + 4ε2 + 1
B

(n)
k

∑
c

(n,k)
i c

(n,k)
j 〈~ui · ~uj〉 , (S18)

where t(n)
k = A

(n)
k /B

(n)
k , as defined by Eq. 10, and the drift correlation function is given by Eq. S15,

with t = |i− j|∆. The presence of the time-varying drift velocity causes the rescaled MSD curves
for different wavelet spans to deviate from a universal line, increasing super-linearly and curling
upwards at higher k values (Fig. S4). We find the bias in the fitted coefficients by fitting the power
law Eq. 12 to the analytically calculated values of M̂SD

(n)
k for 2 ≤ n ≤ nmax, 1 ≤ k ≤ b0.74nc.

The parameter values from these fits are denoted α0, D̂0, ε̂0.
In estimating the bias and the mean squared error of the fit parameters (described below),

we linearize the fit function (Eq. 12) in terms of the parameters α, D̂, ε̂ in the neighborhood of
α0, D̂0, ε̂0. That is, we take

g(t(n)
k , ~χ) ≈ g(t(n)

k , ~χ0) + Z(~χ− ~χ0), Zi,j = ∂g(ti, ~χ)
∂χj

. (S19)

Here, ~χ = (α, D̂, ε) is a vector of parameter estimates and Z is the matrix of partial derivatives of
the fitted function g with respect to the parameters. This approximation is valid in the case where
a large number of particle tracks are sampled, so that the measured MSD does not deviate far
from the analytically calculated value (Eq. S18). In this case, the bias, defined as 〈~χfit − ~χ〉 can be
approximated as ~χ0− ~χ. The approximation breaks down in the case of limited sampling or when
ε approaches 0, at which point additional bias inherent to the nonlinear regression can arise. To
retain tractable error approximations, however, we focus on the linearizeable case. A comparison
of bias and error estimates from simulated data as compared to our analytical approximations
is shown in Fig. S5, for parameter values relevant to experimental data on lysosome motion in
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FIG. S5: Comparison of bias (dashed lines) and root mean squared error (solid lines) in fitted parameters
(αfit, Dfit, εfit) as a function of dimensionless drift magnitude γ̃. Blue curves are from simulated data; red
curves are from approximate analytical calculations. Errors are calculated for 200 trajectories of length
200 timepoints, with dimensionless parameters α = 1, D̃ = 3, τ̃ = 100, using SG-3 wavelets with spans
2 ≤ n ≤ 17. Simulated values were averaged over 100 datasets.

.

HL60 cells (see Results section). We note that due to the presence of time-varying drift and the
assumption of diffusive stochastic motion, we have α0 ≥ α = 1, so that we take Dfit = D̂fit, and
εfit = ε̂fit when calculating the bias and error.

We calculate an estimation of the total mean squared error (S2) in the fitted parameters as,

S2
α = (α0 − α)2 +

〈
(αfit − α0)2

〉
(S20)

S2
D = (D0 −D)2 +

〈
(Dfit −D0)2

〉
(S21)

S2
ε = (ε0 − ε)2 +

〈
(εfit − ε0)2

〉
, (S22)

where the first term arises from the bias due to deviation of the rescaled MSD from a universal line
and the second term arises from noise in the sampled values. The brackets 〈. . .〉 indicate averaging
over a large set of trajectories, with fitted parameters extracted from the pooled set. These noise
terms are taken from the diagonal of the covariance matrix of the fitted parameters, calculated as
described below.

Under the linearization assumption, the covariance matrix of fitted parameters from performing
a non-linear least-square fit to Eq. 12 is given by[11],

E = (Z′Z)−1Z′MZ(Z′Z)−1, (S23)

where M is the covariance matrix of the individual data points used in the fit and Z is the matrix
of partial derivatives of the fitted function with respect to the fit parameters. Namely,

Zm,α = 4D0(∆t̂m)α0 log
(
∆t̂m

)
, (S24)

Zm,D̂ = 4(∆t̂m)α0

Zm,ε̂ = 4ε0

where the index m runs over all individual data points used for fitting, including all combinations
of wavelet span n and time interval k for the rescaled adjusted MSD.

Calculating the covariance of the individual data points is complicated by the fact that each
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FIG. S6: Bias and root mean square error in the estimated value of the localization error εfit. (a)
Bias (dashed curves) and error (solid curves) plotted as a function of maximal wavelet span nmax, for
D̃ = 3, γ̃ = 1, shown for drift correlation time τ̃ = 100 (blue) and τ̃ = 500 (red). (b) Root mean square
error as a function of the dimensionless diffusion constant D̃ and drift magnitude, γ̃, assuming a persistece
time of τ̃ = 100. (c) Bias and error as a function of the compound parameter τ̃ /γ̃2. SG-3 wavelets were
used throughout and errors are calculated assuming 400 tracks of length 200 timesteps each.

adjusted MSD includes an average over many tracks and many time windows from each individual
track. For simplicity, we assume in our error estimates that the individual particle tracks are
completely independent from each other. Time averaging in the MSD calculation, however, can
involve many non-independent intervals, and the co-dependence of these intervals must be taken
into account when calculating data point covariance. We focus on the time average only, noting
that the elements of the covariance matrix simply scale inversely with the number of tracks in the
ensemble average, assuming individual tracks are independent of each other. For a track composed
of N + 1 sequential positions ~p0, . . . , ~pN , the adjusted mean scaled displacement (for a span n and
time separation k) is given by

MSD(n)
k = 1

Nk

N−nmax−k∑
l=nmax

η
(n,k)
l , (S25)

η
(n,k)
l =

∣∣∣~p(n)
l+k − ~p

(n)
l

∣∣∣2
=

∣∣∣∣∣∣∆
k+n−2∑
i=−n

c
(n,k)
i (~ul+i + ~vl+i) +

k+n−1∑
i=−n

ĉ
(n,k)
i ξl+i

∣∣∣∣∣∣
2

Nk = N − k − 2nmax + 1

where the first and last nmax data points are dropped for all the different wavelet spans n ≤ nmax
used in the BNEW analysis to avoid edge effects. The covariance matrix elements for the rescaled
MSD are then,

Mm1,m2 =
cov

(
MSD(m1),MSD(m2)

)
B(m1)B(m2)

=
∑
l1,l2 cov

(
η

(m1)
l1 , η

(m2)
l2

)
B(m1)B(m2)Nk1Nk2

(S26)
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FIG. S7: Root mean square error in fit parameters (a) αfit, (b) Dfit, (c) εfit, as a functin of dimensionless
magnitude (γ̃) and correlation time τ̃ of the drift velocity. All calculations use SG-3 wavelets with spans
2 ≤ n ≤ 17, assuming 400 tracks of length 200 timesteps each. Dashed black lines mark a constant value
of τ̃ /γ̃2.

where, again, the m indices refer to pairs of wavelet spans n and time separations k. Noting that
the average 〈ηl1ηl2〉 depends only on the difference between the indices (q = l1− l2), and assuming
diffusive stochastic motion (〈~vi · ~vj〉 = 0 for i 6= j), it can be shown that

cov
(
η

(m1)
l , η

(m2)
l+q

)
=(γ∆)4H(u)

m1,m2(q) + (2D∆)2H(v)
m1,m2(q) + ε4H(ξ)

m1,m2(q) + 4γ2D∆3F (u)
m1,m2(q)F (v)

m1,m2(q)
+2γ2ε2∆2F (u)

m1,m2(q)F (ξ)
m1,m2(q) + 4Dε2∆F (v)

m1,m2(q)F (ξ)
m1,m2(q),

(S27)

where the H and F matrices that couple drift velocity, diffusion, and localization error across time
steps are defined below. The fourth-order covariance of the drift velocity is

H(u)
m1,m2(q) = 1

γ4

∑
i1,j1,i2,j2

c
(m1)
i1 c

(m1)
j1 c

(m2)
i2 c

(m2)
j2 cov (~ui1 · ~uj1 , ~ui2+q · ~uj2+q) (S28)

whose matrix elements can be calculated using Eq. S15, S16, S17. The corresponding covariance
matrices Hv, Hξ for the diffusive velocities and localization errors, respectively, can be simplified
to

H(v)
m1,m2(q) = 4

∑
i∈T

[
c

(m1)
i c

(m2)
i−q

]2
+ 8

∑
i,j∈T ;j>i

c
(m1)
i c

(m1)
j c

(m2)
i−q c

(m2)
j−q

H(ξ)
m1,m2(q) = 4

∑
i∈T

[
ĉ

(m1)
i ĉ

(m2)
i−q

]2
+ 8

∑
i,j∈T ;j>i

ĉ
(m1)
i ĉ

(m1)
j ĉ

(m2)
i−q ĉ

(m2)
j−q

where the range of indices in the summations is T =
[max(−n1,−n2 + q),min(n1 + k1 − 1, n2 + k2 − 1 + q)] and c

(n,k)
n+k−1 = 0 by convention. In

the above, we make use of the fact that both the diffusive velocities and the localization errors
in each dimension are independent and normally distributed with mean 0, and that the fourth
moment of a normal distribution is three times the variance.

Due to the independence between different components of the particle motion (drift, diffusion,
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and localization error), the cross-covariance terms can be factored into individual second-order
correlations. For instance,

cov (~ui1 · ~vj1 , ~ui2+q · ~vj2+q) = 1
2 〈~ui1 · ~ui2+q〉 〈~vi1 · ~vi2+q〉 , (S29)

where the factor of 1/2 arises from the two independent dimensions of the diffusive velocity. We
therefore define the following quantities to complete the covariance calculation in Eq. S27:

F (u)
m1,m2(q) = 1

γ2

∑
i1,i2

c
(m1)
i1 c

(m2)
i2 〈~ui1 · ~ui2+q〉

=
∑
i1,i2

c
(m1)
i1 c

(m2)
i2 e(−|i2+q−i1|∆/τ) (S30)

F (v)
m1,m2(q) = 2

∑
i∈T

c
(m1)
i c

(m2)
i−q (S31)

F (ξ)
m1,m2(q) = 2

∑
i∈T

ĉ
(m1)
i ĉ

(m2)
i−q (S32)

The indices in Eq. S30 are taken from the range −n1 ≤ i1 ≤ n1 + k1 − 2,−n2 ≤ i2 ≤ n2 + k2 − 2.
After computing the matrices H(u),H(v),H(ξ),F(u),F(v),F(ξ), the covariance matrix M for the
time-averaged, rescaled MSD can be calculated with the aid of Eq. S27 via

Mm1,m2 = 1
B(m1)B(m2)Nk1Nk2

[
min (Nk1 ,Nk2) cov

(
η

(m1)
l , η

(m2)
l

)
+

+
Nk2−1∑
q=1

min (Nk1 ,Nk2 − q) cov
(
η

(m1)
l , η

(m2)
l+q

)
+
Nk1−1∑
q=1

min (Nk2 ,Nk1 − q) cov
(
η

(m2)
l , η

(m1)
l+q

)
(S33)

We note that while the individual H(u)(q) matrices are time-consuming to compute for any given
value of the drift velocity correlation time τ , this computation need be done only once to find the
covariance as a function of the remaining parameters (γ,D, ε).

The bias and error in the fitted scaling exponent αfit and diffusion coefficient Dfit are shown in
Fig. 2. The corresponding results for the fitted localization error εfit are plotted in Fig. S6. We
note that the bias in the estimated localization error is determined primarily by the mean square
displacement due to the time-varying component of the drift velocity that does not get corrected
by the BNEW analysis. Thus, for cases with long correlation time (τ̃ > 10) and relatively small
drift, this bias is a function of the compound parameter τ̃ /γ̃2 (Fig. S6c). When the effect of drift
velocity is small, the overall error in εfit is determined by the sampling error, which increases with
increasing D̃ (increasing magnitude of diffusion relative to localization error).

For less persistent drift (1 < τ < 10), the bias in the scaling exponent drops back down as
the persistent random walk itself approaches diffusive behavior over the timespan of the wavelet
(Fig. S7a). As the persistence time becomes small relative to the time step (τ . 1) the drift
velocity as treated here (with displacement over each discrete step given by ∆~ui) approaches a
chain of freely jointed steps. The average fitted diffusion coefficient then approaches the sum of
the true diffusion and the effective diffusion arising from the drift (D̃0 ≈ D̃ + γ̃2/4). The relative
bias in Dfit goes to γ2/4D for small τ̃ (Fig. S7b).



12

FIG. S8: Selecting optimal wavelet shape based on error estimates. (a) Fractional error in fitted exponent
for the case of pure fractional Brownian motion, for different wavelet shapes, analogous to Fig. S2c. Fits
are done for wavelet spans 2 ≤ n ≤ 17 and 1 ≤ k ≤ bkmaxnc. (b) Overall root mean squared error in the
fitted scaling parameter for different wavelet shapes, as a function of maximal allowed wavelet span nmax.
The range of time separations k used for the fitting is selected based on panel (a). Errors are calculated
assuming 400 trajectories of length 200 steps each.

S6. SELECTION OF WAVELET SHAPE

To select among a number of possible wavelet forms for use in BNEW analysis, we compare
the estimated total error in the viscoelastic scaling αfit for a specific set of parameters relevant to
the experimental data discussed in the Results section. The wavelet forms considered (plotted in
Fig.S1) include the simplest sliding mean wavelet (characterized by constant step weights ŵi =
1/(2n)), the Haar wavelet (Supplemental Section S1), and different order Savitzky-Golay wavelets
(SG-1, SG-3, SG-5, defined in Supplemental Section S2). The error in the fitted parameters
depends additionally on the choice of kmax, which sets how many time separations are considered
for each wavelet span (1 ≤ k ≤ bkmaxnc). While increasing kmax up to kmax = 1 will generally
decrease the total error, it can also lead to over-estimating the scaling coefficient α in the case of
subdiffusive stochastic motion, as discussed in Section S3. When fitting experimental data, we do
not know a priori whether the particles are moving in a viscous or a viscoelastic medium, and thus
want to avoid this source of bias in the α estimates. Consequently, while we use kmax = 1 for the
sliding mean, Haar, and SG-1 wavelets, we set kmax = 0.74 for the SG-3 wavelet, and kmax = 0.5
for the SG-5 wavelet, so that in the absence of drift, the scaling can be accurately characterized
by αfit (see Fig.S8a and S2c). As plotted in Fig. S8b, the SG-3 wavelet gives the lowest error in
the scaling estimate at an appropriately selected nmax. These 3rd-order Savitzky-Golay wavelets
are used throughout this work, unless otherwise specified. We note that increasing the degree of
the polynomial fit in the SG wavelets also increases the optimal nmax as the less aggressive data
smoothing more effectively subtracts out a time-varying drift. Selection of the appropriate nmax is
discussed in Section S9.

S7. ERRORS FROM FITTING ORDINARY MSD CURVES

In order to compare the performance of the BNEW method to the traditional approach of fitting
uncorrected mean squared displacement curves, we calculate the error in the fit parameters for the
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FIG. S9: Root mean squared error (Sα) in the fitted scaling parameter using ordinary MSD curves,
without BNEW analysis. Time points 1 ≤ k ≤ kmax are used for fitting. (a) For dimensionless diffusion
constant D̃ = 3, plotted for several values of drift velocity magnitude γ̃. Starred points indicate optimal
value of kmax for each drift velocity. (b) For diffusion constant D̃ = 10 with the same values of drift
velocity. Errors are calculated assuming 400 trajectories with 200 timepoints each.

latter approach in the presence of drift velocities that behave as a persistent random walk. These
errors can be obtained by applying the analysis in Section S5 with the “null” wavelet defined by
wi = 0. The corresponding scaling functions are Ak = k,Bk = 1, so that in the absence of drift,
the rescaled MSD takes the form of the traditional mean-squared displacement,

M̂SDk = 4Dk + 4ε2. (S34)

The drift velocity results in biased estimation of the parameters for stochastic motion, and the bias
becomes more pronounced if a larger range of time separations k is used for the fit. For non-trivial
magnitudes of the drift, the smallest mean squared error in the estimated parameters is achieved
by taking the lowest possible kmax = 3 (Fig. S9). This is the value used for the comparison to
BNEW analysis in Fig. 3. It is interesting to note that even in the absence of persistent drift
(γ = 0), the optimal range of k when fitting ordinary MSD curves is quite small: kmax = 6 for
tracks of length 200 timepoints, with D̃ = 3, and even smaller values for higher dimensionless
diffusion constant D̃. This effect has been pointed out previously based on similar calculations of
the error associated with performing regressions on mean squared displacement curves.[12]

S8. BNEW ANALYSIS OF FRACTIONAL BROWNIAN MOTION WITH
TIME-VARYING DRIFT

In the case where the stochastic component of the particle trajectories corresponds to fractional
Brownian motion, the BNEW method is more sensitive to time varying drift than in the purely
diffusive case. Intuitively, this is to be expected, since fractional Brownian motion results in smaller
overall displacement of the particle relative to the drift, thus making this component of the motion
more difficult to isolate for a given set of parameters γ̃, τ̃ , D̃. The bias in the estimated parameter
values can be calculated by fitting the power-law curve to the analytical equation for rescaled
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FIG. S10: Relative bias in fitted parameters from BNEW analysis of trajectories composed of fractional
Brownian motion, localization error, and persistent random drift (with correlation time τ̃ = 100 and
magnitude γ̃). (a) Bias in scaling exponent α; (b) bias in diffusion coefficient D; (c) bias in localization
error ε. Dimensionless units are used throughout. SG-3 wavelets with spans 2 ≤ n ≤ 17 and time
separations 1 ≤ k ≤ b0.74nc are used for the fits.

FIG. S11: Relative bias in fitted parameters from BNEW analysis (solid lines) as compared to fitting
ordinary MSD curves (dashed lines), for trajectories composed of fractional Brownian motion (with scaling
α = 0.5), localization error, and persistent random drift (with correlation time τ̃ = 100 and magnitude
γ̃). (a) Plotted versus drift magnitude; (b) plotted versus diffusion coefficient. Dimensionless units are
used throughout. SG-3 wavelets with spans 2 ≤ n ≤ 17 and time separations 1 ≤ k ≤ b0.74nc are used
for the fits.

MSD,
M̂SD

(n)
k = 4D∆Ã(n)

k + 4ε2 + 1
B

(n)
k

∑
c

(n,k)
i c

(n,k)
j 〈~ui · ~uj〉 , (S35)

where Ã is defined by Eq. S7, S8. The power-law fits are done as a function of t(n)
k .

The bias in the fitted coefficients is plotted as a function of the scaling exponent α for the
fractional Brownian motion in Fig. S10. We note that for smaller values of α, the magnitude
of drift velocity (γ̃) at which the BNEW analysis can give accurate estimates is more limited.
Nonetheless, the accuracy of this method remains significantly better than fitting ordinary MSD
curves for small magnitude drift (Fig. S11). We note that the advantage of the BNEW method
in this case is particularly striking when determining the scaling coefficient αfit, which can be
estimated to within 50% for γ̃ < 1 (when D̃ = 3, τ̃ = 100). A fit of the ordinary MSD curve would
require γ̃ < 0.3 for the same level of accuracy.
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FIG. S12: Velocity autocorrelation function Cv (blue) for pooled tracks from 93 HL60 cells. Single
exponential fit is shown in black and double exponential in red.

S9. SELECTION OF nmax FOR ANALYZING LYSOSOME MOTION

To determine the appropriate wavelet spans for the BNEW analysis of lysosome motion in
neutrophils, it is necessary to first calculate an approximation of the drift velocity magnitude and
correlation over time. We pool together lysosome tracks from all 93 cells and calculate the velocity
autocorrelation function, defined as

Cv(t) = 1
∆2 〈[~p(t

′ + ∆)− ~p(t′)] · [~p(t′ + t+ ∆)− ~p(t′ + t)]〉 (S36)

where the average is done over all tracks and all time points t′. The velocity autocorrelation
contains components from the drift velocity, the stochastic motion and the localization error.
However, if we assume that the stochastic particle motion is diffusive, then this should contribute
only to the t = 0 correlation timepoint and if the localization error is uncorrelated in time, then it
should contribute to the t = 0 and t = ∆ timepoints only. We thus consider the autocorrelation
function for t ≥ 2∆ only to focus specifically on the drift velocity.

This autocorrelation is not well fit by a single exponential, but can be approximately fit to
a double exponential decay (Fig. S12). We use this approximate functional form to select the
optimal maximal wavelet span nmax to use in the BNEW analysis. Specifically, we approximate
the drift as the composition of two independent persistent random walks with correlation times
τ1 = 1.1 sec and τ2 = 25 sec and magnitudes γ1 = 0.49µm/s and γ2 = 0.58µm/s, respectively.
The error in the fitted parameters can then be calculated using a generalization of Eq. S27,

cov
(
η

(m1)
l , η

(m2)
l+q

)
=(γ1∆)4H(u,1)

m1,m2 + (γ2∆)4H(u,2)
m1,m2 + (2D∆)2H(v)

m1,m2 + ε2H(ξ)
m1,m2

+2∆2
[
γ2

1F
(u,1)
m1,m2 + γ2

2F
(u,2)
m1,m2

] [
2D∆F (v)

m1,m2 + ε2F (ξ)
m1,m2

]
+4Dε2∆F (v)

m1,m2F
(ξ)
m1,m2 + 2γ2

1γ
2
2∆4F (u,1)

m1,m2F
(u,2)
m1,m2 ,

(S37)

where H(u,1),H(u,2) refer to the fourth order correlation matrices (Eq. S28) and F(u,1),F(u,2) to the
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FIG. S13: Analytically approximated errors in estimated fit parameters with the BNEW method, assum-
ing drift velocity composed of two independent persistent random walks with dimensionless correlation
times τ̃1, τ̃2 and magnitudes γ̃1, γ̃2, respectively. Stochastic motion is assumed diffusive with dimensionless
diffusion constant D̃. Time units are non-dimensionalized by the time step ∆ = 0.05s and length units by
the localization error ε = 0.015µm. The drift velocity parameters are selected based on the pooled velocity
autocorrelation function for all cells (Fig. S12), and the diffusion constant and localization error based
on BNEW analysis results with SG-3 wavelets of span 2 ≤ n ≤ 17 and time separations 1 ≤ k ≤ b0.74nc
(Fig. 5). Bias and error in D̃fit are shown as fractions of D̃. Bias and error in αfit, ε̃fit are shown in
dimensionless units. Error calculations are done for a total of 391 tracks of length 118 time points each.

second order correlation matrices (Eq. S30), based on τ1 and τ2, respectively.
The analytically calculated errors in the fitted parameters for this approximate double-

exponential drift velocity are plotted in Fig. S13 as a function of the maximal wavelet span nmax.
For this analysis, we assume 391 tracks of length 118 time points each, the mean values for the
population of HL60 cells.

We find that the minimum error in estimating the viscoelastic scaling α occurs for nmax = 17,
which we use for the analysis of the experimental data. The dimensionless values of the diffusion
coefficient (D̃ ≈ 3.5) and drift velocities (γ̃1 ≈ 1, γ̃2 ≈ 1.4) used to select the optimal nmax were
taken from the BNEW analysis statistics of the population of HL60 cells (Fig. 5). The choice of
wavelet span used for the analysis is thus self-consistent with the parameters obtained from the
analysis itself.

S10. QUANTIFYING LOCALIZATION ERROR WITH A FIXED CELL

We obtain an independent measurement of the localization error inherent in our imag-
ing protocol by tracking labeled lysosome particles in several HL60 cells fixed with formalde-
hyde/glutaraldehyde (see Experimental Methods). The mean squared displacement of the particles
is approximately constant with time for short times (Fig. S14a), and the distribution of individual
step sizes is shown in Fig. S14b. The localization error is estimated from the root mean squared
displacement over a single time step,

ε =
√〈
|~p(∆)− ~p(0)|2

〉
/4 ≈ 0.014µm (S38)
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FIG. S14: Particle trajectory analysis for fixed cells (statistics from 11 cells total). (a) Mean squared
displacement of lysosomes in fixed HL60 cells (blue) and a live cell (red, cell shown in Fig. 4). Linear
scaling indicated with black line. (b) Histogram of step sizes for lysosome displacement in fixed cells,
along a single dimension, over one time step (∆ = 0.05s).
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