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Disentangling Random Motion and Flow in a Complex Medium
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ABSTRACT We describe a technique for deconvolving the stochastic motion of particles from large-scale fluid flow in a dy-
namic environment such as that found in living cells. The method leverages the separation of timescales to subtract out the
persistent component of motion from single-particle trajectories. The mean-squared displacement of the resulting trajectories
is rescaled so as to enable robust extraction of the diffusion coefficient and subdiffusive scaling exponent of the stochastic
motion. We demonstrate the applicability of the method for characterizing both diffusive and fractional Brownian motion overlaid
by flow and analytically calculate the accuracy of the method in different parameter regimes. This technique is employed to
analyze the motion of lysosomes in motile neutrophil-like cells, showing that the cytoplasm of these cells behaves as a viscous
fluid at the timescales examined.
INTRODUCTION
Single-particle tracking has become a widespread method
for studying the microrheology of complex fluids, including
mucus (1), activegels (2), and the interior of living cells (3,4).
In the latter case, the motion of tracer particles provides
valuable information about material properties and active
fluctuations in the cytoplasm, as well as how these properties
vary with cytoskeletal structure (5), metabolic activity (6,7),
differentiation state (8), and metastatic potential (9).

A common approach to analyzing particle trajectories is to
calculate the mean-squared displacement (MSD) of the parti-
cles over different time intervals, averaged over time and
ensemble of particles. The shape of the MSD curve depends
on the material properties of the medium and the time corre-
lation of forces acting upon the particles. For particles sub-
jected to thermal forces in a purely viscous medium, the
MSD scales linearly with time as MSD � t. In a viscoelastic
medium, thermally driven particles exhibit fractional Brow-
nian motion with subdiffusive scaling, MSD � ta, where
a< 1 (10). In the presence of persistent forces or flows in
the medium, the MSD exhibits a superdiffusive component,
with a ballistic scaling ðMSD � t2Þ for constant flows. For
long times, strong flows, or large (slowly diffusing) particles,
the ballistic motion dominates over the thermal motion of the
particle, obscuring the high-frequency component that carries
information about the material properties of the medium.

In the context of a complex dynamic environment, such as
the interior of a living cell, the stochasticmotion of particles is
determined by a combination of thermal and actively gener-
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ated forces as well as the frictional resistance of the medium.
Although the relative contribution and time variation of the
active forces remains a matter of debate (6,11,12), it is
acknowledged that studying passive particle motion in a
cell yields valuable insight regarding the intracellular phys-
ical environment. To quantify such stochastic motion, how-
ever, it is necessary first to disentangle it from the bulk,
slowly varying flows that can occur in many cell types.

In this work, we present a technique for analyzing the
high-frequency stochastic motion of particles under thermal
(or similarly correlated) forces in the presence of spatially
heterogeneous underlying flow of the medium. Our method,
termed BNEW (Brownian noise extracted with wavelets),
relies on wavelet analysis (13) to subtract out slowly varying
components of the motion from individual particle trajec-
tories. Appropriate rescaling of the remaining data allows
for accurate extraction of a diffusion coefficient and
scaling exponent, a, even in the presence of significant
and complex flow.

As an example application, we study the stochastic
motion of lysosomes within the cytoplasm of motile HL60
neutrophil-like cells. Although previous single-particle
tracking studies have demonstrated a viscous cytoplasm in
some stationary cell types (8,14) and a viscoelastic one in
others (15–17), the microscopic material properties within
such rapidly moving cells remain uncharacterized. HL60
cells crawl on a two-dimensional surface, with significant
changes in shape engendering internal flow and deformation
of the cytoplasmic contents. This flow of the cytoplasmic
medium precludes use of the usual approach to extracting
microrheological information from single-particle tracks,
but makes this system an ideal candidate for the BNEW
method. We use this technique to demonstrate that organelle
motion in HL60 cells is consistent with motion through a
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viscous cytoplasm, with an effective viscosity ~50 times that
of water, over the timescales examined (>50 ms).
MATERIALS AND METHODS

Culturing of HL60 cells

Neutrophil-like HL60 cells were maintained in RPMI media (22400, Invi-

trogen, Carlsbad, CA), supplemented with 10% fetal bovine serum (FBS)

(Gemini, Elizabeth, NJ) and antibiotic-antimycotic drugs (15240, Gibco,

Grand Island, NY). The cultured cells were incubated at 37�C in 5% CO2

and passaged once every 2–3 days to a density of 2� 105 cells/mL. To

differentiate the HL60 cells, cells were diluted in RPMI full media contain-

ing 1.3% dimethylsulfoxide (61097, Acros, Morris Plains, NJ) with an

initial density of 2� 105 cells/mL. For all experiments, only cells differen-

tiated for 5–6 days were used.
Lysosome labeling in HL60 cells

Before the agarose gel preparation step for the two-dimensional (2D) cell

migration assay, about 105 differentiated HL60 cells were spun down at

500� g for 5–10 min and resuspended in 1 mL of L-15 media (21083-

027, Gibco). Stock 1m M LysoTracker Deep Red (L12492, Molecular

Probes, Eugene, OR) was diluted 1:10 to 100 mM in dimethylsulfoxide,

and 1 mL of this 1:10 labeling solution was added to the L-15 cell suspen-

sion to reach a final concentration of 100 nM. The label-containing cell sus-

pension was then incubated at 37�C for 30 min before being repelleted at

500� g for 5–10 min and resuspended in 1 mL of L-15 in preparation

for being used in the under-agarose assay.
Under-agarose 2D cell migration assay

In this assay, differentiated HL60 cells were confined to migrate in a quasi-

2D environment between an agarose pad and a fibronectin-coated coverslip.

To cast the agarose pad, we first prepared a 2% low-melting-point agarose

solution (16520, Invitrogen) by dissolving the agarose powder in heated

L-15media, and the solutionwas kept in a 37�Cwaterbath until use (solution

A).We then prepared a 2� stock solution of L-15media (21083-027, Gibco)

with 20% FBS (solution B). f-MLP (F3506, Sigma-Aldrich, St. Louis, MO)

was added as a chemoattractant to solution B at a final concentration of 2 nM

to induce chemokinesis. SolutionsA andBwere thenmixed at a 1:1 ratio and

pipetted immediately to amold to cast the agarose pad. The agarosewas kept

at room temperature for at least 20 min to solidify. For regular time-lapse

imaging, we used agarose pads with a minimal thickness of ~2 mm.

The LysoTracker-labeled cell suspension was spun down at 500� g for

5–10 min, and then concentrated to a final volume of 10 mL by removing the

supernatant (cell concentration ¼ 104 cells/mL). The concentrated cell

solution was then added to the center of a coverslip that was precoated

with 10 mg/mL fibronectin (F2006, Sigma-Aldrich). The solidified agarose

pad was overlaid above the 10 mL cell solution. The gel-covered coverslip

was transferred to a microscope adaptor and then used for time-lapse imag-

ing. Typically, the agarose pad would start compressing the cells within

20 min. After the cells were fully confined under the pad, the apparent

cell area would increase, and the brightness of the phase halo around the

cell would decrease in phase-contrast images. Imaging was initiated only

after the cells were fully confined under this definition. The ambient tem-

perature was maintained at 37�C with a temperature-controlled chamber

(Haisen Tech, Guangdong, China).
Fixation of LysoTracker-labeled HL60 cells

LysoTracker-labeled HL60 cells undergoing 2D chemokinesis were fixed

and used as a control for localization error calculations (Section S10 in
the Supporting Material). Differentiated HL60 cells were labeled with

LysoTracker and prepared for the under-agarose 2D migration assay. After

the cells were fully confined, cell migration was allowed to continue under

agarose for 5 min before 1 mL of cytoskeleton buffer (CSK: 100 mM

HEPES, pH 7.0, 138 mM KCl, 3 mM MgCl2, 2 mM EGTA, and 320 mM

sucrose), containing 3.7% formaldehyde and 0.05% glutaraldehyde, was

added directly on top of the agarose pad, followed by a fixation period of

20 min. The CSK buffer was then aspirated and replaced with 1� phos-

phate-buffered saline, and the cells were imaged under the same settings

as the under-agarose 2D cell migration assay.
Microscopy

Tocapture intracellular lysosomemotionwith high spatiotemporal resolution,

time-lapse images were acquired using a Nikon Eclipse Ti epifluorescent mi-

croscope with a 100� oil-immersion objective and a 5.5 megapixel high-

speed, high-sensitivity sCMOS camera, the Andor Zyla 5.5 (Andor, Belfast,

United Kingdom). Acquisition rate was set to 20 frames/s (exposure time ¼
50 ms) with a region of interest of 1392 � 1040 pixels. A temperature and

humidity control unit (Haisen Tech) was installed with the microscope to

maintain a constant temperature of 37�C during the entire imaging session.

Periodic overlaying of the phase-contrast and fluorescent channels in

some of the image stacks (see, e.g., Fig. 4 a) was achieved by programming

an Arduino Uno microcontroller board (Arduino, Somerville, MA) as hard-

ware interface between the Andor Zyla camera and the T-Cube LED driver

(Thorlabs, Newton, NJ), which controlled the transmitted LED light source.

During the imaging of fluorescently labeled lysosomes, the Arduino board

would track the number of exposures made and turn on the LED light

source for a specific duration after a predetermined number of exposures.

Both the LED-on duration and the interval between consecutive LED-on

sessions were programmable from the Arduino board.

A stage micrometer was used to determine the conversion factor of 1

pixel (px) ¼ 0.13 mm.
Image processing

Approximate contours of individual cells were segmented from each image

using Otsu thresholding, with the thresholding level scaled down by a factor

of 0.3–0.5, as manually determined for each image stack to achieve

accurate segmentation based on background fluorescence. Segmentation

was carried out every 20 frames (1 s intervals), with spline interpolation

of the cell contour for the intervening images. For several of the videos,

intermittent phase-contrast images were taken every 200 frames (10 s inter-

vals) to obtain a more accurate approximation of the cell contour (see Fig. 4,

a and b). Phase images were segmented using the directional gradient vec-

tor flow algorithm (18), with manual adjustment near the lamellipod region.

Within the segmented regions (dilated by 50 px on all sides), individual

lysosomes were identified by standard particle tracking algorithms as

described by Crocker and Grier (19). Publicly available code (20) was

used to apply a bandpass filter (with cutoffs at 1 px and 8 px (1 mm)), iden-

tify local maxima, and pick out centroids of intensity peaks. Identified fea-

tures were filtered to retain only those with an eccentricity<0.3, a maximal

intensity in the top 10% of the image values, an intensity per pixel above

30% of the maximal image intensity, and a total intensity above the 80th

percentile (for squared regions of size 8 � 8 px).

Linking of features into particle trajectories was carried out using the

same software package (20). To further remove artifacts, only trajectories

of at least 40 time steps were retained for further analysis. A maximal

step size of 6 px (0.77 mm) was imposed, and trajectories were split at all

missed frames. Only those cells with at least 100 particle trajectories

were used for the BNEW analysis. Of 120 imaged cells, 93 cells satisfied

this criterion and were included in the analysis.

Trajectories were thresholded to remove the most rapidly moving parti-

cles (generally corresponding to regions of unusually high flow), using a
Biophysical Journal 110(3) 700–709



702 Koslover et al.
wavelet-based method previously described for identifying actively trans-

ported organelles (21). Smoothed local velocities were defined using

third-order Savitsky-Golay wavelets with a span of n ¼ 20 (see Section

S2). For each cell, the threshold for locally smoothed velocity magnitude

was set at twice the standard deviation for all particles within that cell.

Trajectories were broken up whenever a particle exceeded the smoothed

velocity threshold, with on average 8% of the total trajectory length for

each cell falling above the threshold.

The cell frame of reference (see Fig. 4, c and d) was found by cross-

correlating rectangular regions surrounding each cell between every 10th

frame of the fluorescent images (time intervals of 0.5 s).
RESULTS

Extracting Brownianmotionwith wavelet analysis

We describe the BNEW technique for analyzing particle tra-
jectories composed of stochastic Brownian (or fractional
Brownian) motion overlaid on slowly varying drift. This
method relies on leveraging the separation of velocity corre-
lation timescales to characterize the scaling and diffusion
coefficient associated with the high-frequency stochastic
FIGURE 1 Schematic of the BNEW method for decoupling high-frequency s

Particles undergoing diffusive Brownian motion (red, a ¼ 1;D ¼ 5) and subdiffu

the presence of a flow field (black arrows), with localization error e ¼ 1. Exampl

each). (b) The MSD for simulated particles. Superlinear scaling is a result of th

diffusive (red) and subdiffusive (green) motion. (c and d) Decomposition of the p

component, p!ðnÞ
k (d). Two high-frequency trajectories are shown for diffusive (re

done using Haar wavelets with span n ¼ 12. (e) Adjusted MSD obtained with BN

show the analytical solution (Eq. 9). (f) Rescaled adjusted MSD, as defined in E

with the given fit parameters. To see this figure in color, go online.
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component of the motion. Standard methods for dedrifting
particle trajectories rely on averages of many particles, all
assumed to be undergoing the same drift (22). The BNEW
method makes no such assumption, since it relies on correct-
ing for the flow in each individual trajectory before re-
compiling the data to quantify the collective statistics of
the stochastic motion. This method is thus ideal for the
analysis of stochastic motion in the presence of complex,
spatially inhomogeneous flows (e.g., Fig. 1 a).

Specifically, we consider the motion of particles with 2D
trajectories given by

~pk �~p0 ¼ D
Xk�1

i¼ 0

ð~ui þ~viÞ þ~xk �~x0; (1)

where~pk is the position of the particle at time step k, D is the
size of the time step,~ui is the drift velocity at time step i,~vi is
the velocity associated with Brownian motion, and xk is the
localization error. We begin by assuming that the stochastic
tochastic motion from flow, as applied to simulated particle trajectories. (a)

sive, fractional Brownian motion (green, a ¼ 0:5;D ¼ 5) were simulated in

e trajectories are shown (from 400 total trajectories of length 200 time steps

e underlying flow. Dashed lines indicate the MSD with no drift present for

article trajectories into the smoothed component (c) and the high-frequency

d andmagenta) and subdiffusive (green and yellow) motion. Smoothing was

EWanalysis for tracks with diffusive stochastic motion. Dashed black lines

q. 11, plotted on linear axes. Black lines indicate power-law fits to the data,
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velocities, ~vi, are characteristic of diffusive Brownian mo-
tion and are thus independent and normally distributed,
with mean 0 and variance 2DD in each dimension. Simi-
larly, the localization errors, xk, are assumed to be indepen-
dently normally distributed with mean 0 and variance e2 in
each dimension. In the absence of drift, the MSD of the par-
ticle trajectories is given by�j~pk �~p0 j 2

� ¼ 4Dta þ 4e2; (2)

with the scaling exponent a ¼ 1 under the assumption of
uncorrelated stochastic velocities.

On timescales over which it remains approximately con-
stant, the drift velocity, ~u, will contribute a ballistic term
(~t2) to the total MSD. If the magnitude of the drift is large
enough, this term will dominate over diffusion, making it
impractical to characterize the diffusive component of the
motion by the usual linear fitting of the MSD curve
(Fig. 1 b). The goal of the method described here is to obtain
an estimate of the scaling, a, the diffusion coefficient, D,
and the localization error, e, from such trajectories, by cor-
recting for the drift velocity,~u.

A common signal-processing technique for extracting
approximate velocities from noisy data is that of wavelet
analysis (13,21). This procedure involves taking a sliding
window over each trajectory and using a linear combination
of data points within that window to approximate the veloc-
ity of the particle:

~vwi ¼
Xn

j¼�n

wj~piþj; (3)

where 2nþ 1 is the window size. A number of different
wavelet shapes, fwjg, can be used for this purpose, and
the procedure is equivalent to smoothing the data or
applying a low-pass filter.

To provide a meaningful local velocity estimate, the
wavelet coefficients must satisfy the constraintsXn

j¼�n

wj ¼ 0 and
Xn

j¼�n

jwj ¼ 1: (4)

The commonly used Haar wavelet for velocity approxima-
tion (Section S1) and the Savitsky-Golay wavelets often
used for data smoothing and differentiation (Section S2)
all share these properties. Different wavelet shapes smooth
the data to a different extent for a given span and involve
more or less sharp cutoffs between the low-frequency pass-
band and the high-frequency stopband when viewed as low-
pass filters (23).

To characterize the high-frequency stochastic motion of
the particle, we subtract out the smoothed curve resulting
from the wavelet analysis and focus on the adjusted tracks,
½~pðnÞk ¼~pk �

Pk�1
i¼0~v

w
i �, that remain (Fig. 1, c and d). If the
drift velocity remains approximately constant over the
span of the wavelet, then the contribution of the drift to
the particle motion is effectively removed by this procedure.

Any wavelet that satisfies the constraints in Eq. 4 can be
equivalently defined by a set of coefficients associated with
trajectory steps between consecutive time points ð~si ¼
~piþ1 �~piÞ. That is, we can find coefficients bwj such that,
for any trajectory, the velocity approximation at point i is
given by

~vwi ¼
Xn

j¼�n

wj~piþj ¼
Xn�1

j¼�n

bwj~siþj: (5)

Specifically, the coefficients bwj ¼ �Pj
l¼�nwl satisfy

this property. Furthermore, the second constraint in Eq. 4
ensures that

Pn�1
j¼�nbwj ¼ 1.

The adjusted trajectories after subtracting out the
smoothedmotion from thewavelet analysis are then given by

~p
ðnÞ
k �~p

ðnÞ
0 ¼

Xk�1

i¼ 0

�
~si �~vwi

�
¼ Pk�1

i¼ 0

"
~si �

Xn�1

j¼�n

bwj~siþj

#
¼

Xkþn�2

i¼�n

bci~si
¼ D

Pkþn�2

i¼�n

bcið~ui þ~viÞ þ
Xkþn�1

i¼�n

ci~xi;

(6)

where

bci ¼ hi �
X

j¼maxð�n;i�kþ1Þ

minðn�1;iÞ bwj; (7)

�
1 for 0%i < k
hi ¼ 0 otherwise
;

ci ¼
8<: �bci; for i ¼ �nbci�1 � bci; for� n< i%k þ n� 2bci�1; for i ¼ k þ n� 1

:

(8)

As a sum of independent, normally distributed random
variables, the adjusted trajectory points are also normally
distributed. If we assume that the drift velocity is constant
ð~ui ¼~uÞ, then the mean of ~p

ðnÞ
k �~p

ðnÞ
k vanishes due to the

constraints on the wavelet coefficients (Eq. 4). The MSD
of the adjusted trajectories is given by

MSD
ðnÞ
k ¼

D���~pðnÞk �~p
ðnÞ
0

��� 2E ¼ 4DDA
ðnÞ
k þ 4e2B

ðnÞ
k ; (9)

where the average is over both time and ensemble of parti-
cles and the functions

A
ðnÞ
k ¼

Xkþn�2

i¼�n

bc2i ; B
ðnÞ
k ¼ 1

2

Xkþn�1

i¼�n

c2i (10)
Biophysical Journal 110(3) 700–709
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are fully determined by the shape and span of the wavelet
used. For the commonly employed Haar wavelet (13), these
functions are calculated in closed form (Section S1). More
complicated wavelet shapes can be handled by performing
the summations in Eqs. 7, 8, and 10 numerically (imple-
mented in the Supporting Material). The adjusted MSD
(Eq. 9) is plotted together with simulated data in Fig. 1 e.
The MSD

ðnÞ
k increases for short times, but flattens out for

times >2n, since the smoothed track cannot deviate far
from the original data.

Although the span, n, of the wavelet has a large effect on
the adjusted MSD curves, these curves can be rescaled using
Eq. 9 to give dMSD

ðnÞ
k ¼ 4DDbtk þ 4e2; (11)

where dMSD
ðnÞ
k ¼ MSD

ðnÞ
k =B

ðnÞ
k and btk ¼ A

ðnÞ
k =B

ðnÞ
k is a re-
scaled dimensionless time. This transformation results in
curves from all different wavelet spans collapsing onto a
single universal line (Fig. 1 f). The diffusion coefficient
and localization error can then be obtained by a linear
regression of the data processed with several different
wavelet spans ð2%n%nmaxÞ. To avoid edge effects, the first
and last nmax data points of each track are excluded from the
calculation of the rescaled adjusted MSD.

We note that one of the fundamental strengths of the
BNEW method is that each particle trajectory is analyzed
independently, with the underlying flow approximated sepa-
rately for each particle. In principle, this method can thus
be applied for quantifying the high-frequency motion of
individual particles. In practice, however, subtracting out
the smoothed particle motion necessarily discards data on
long-time particle behavior. The regression results are
then much more sensitive to the noise inherent in finite
sampling. Thus, obtaining an accurate characterization of
the particle motion requires either recording very long
trajectories or performing an ensemble average over many
trajectories (as is the case for all results shown here). This
ensemble average, however, can be performed over particles
embedded in a spatially heterogeneous flow.
Characterizing subdiffusive motion

We next turn our attention to the case where the stochastic
motion is subdiffusive. Subdiffusion can arise in a number
of situations, including confinement, transient binding
events, or motion in a viscoelastic medium (24). Here, we
focus on the latter case, which has been shown to be appli-
cable to the bacterial (4) and eukaryotic (16,17,25) cyto-
plasm, as well as the eukaryotic nucleoplasm (26). Particles
in a viscoelastic medium undergo fractional Brownian mo-
tion,with negativevelocity correlations that decay as a power
law in time ½h~vðtÞ$~vðt þ tÞi ¼ 2Daða� 1Þjt j a�2� (10).
The MSD associated with such motion is given by
MSD ¼ 4Dta, and we refer to the scaling exponent, a, as
Biophysical Journal 110(3) 700–709
the viscoelastic scaling throughout this work. The limiting
case of a/1 recovers classical diffusive motion.

We show that the BNEW method can also be applied to
trajectories with fractional Brownian motion overlaid on
an approximately constant drift (Section S3). In this case,
the rescaled dMSD

ðnÞ
k collapses on an approximate power-

law curve for all wavelet spans and for time separations,
k, that are small relative to span n (Fig. 1 d). We fit the
rescaled MSD as a function of rescaled time, bt, to the
power law: dMSD

ðnÞ
k ¼ 4bDDabt ak þ 4be2bD ¼ D f ðaÞbe2 ¼ e2 þ DDagðaÞ2;

(12)

where a; bD; and be are the fitted parameters. The functions
f(a) and g(a) depend on the wavelet shape, as well as the
range of time separations, k, used for fitting (Section S3).
By fitting to this functional form, we can extract the charac-
teristic exponent a of the fractional Brownian motion,
as well as the effective diffusion coefficient, D, and
localization error, e. The BNEW method thus permits a
characterization of the underlying medium as viscous or
viscoelastic while correcting for the presence of flow.
Validation with nonconstant drift

The BNEWmethod provides an accurate characterization of
stochastic motion in the case where the drift velocity is
approximately constant over the time span of the wavelet.
Before applying it to real data, however, it is important to
validate this approach in the presence of time-varying drift.
For concreteness, we consider the case where the drift ve-
locity, ~ui, can be described as a 2D persistent random
walk, characterized by correlation time t and magnitude g

(Section S4). Such a random walk has an exponentially de-
caying velocity correlation; more complicated motion with
several characteristic correlation times may be approxi-
mated as a sum over multiple persistent random walks (Sec-
tion S9). We calculate the accuracy of the parameters afit,
D fit, and e fit, as obtained by fitting the rescaled MSD curve
to a power law (Section S5). In particular, we consider the
relative bias in the parameters, defined as hcfit � ci=c and

the root mean-squared error, defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðcfit � cÞ2i

q
=c,

where c is each of the fitted parameters. Here, we focus
on the case of purely diffusive stochastic motion ða ¼ 1Þ.

To simplify the parameter space, we nondimensionalize
all time units by the time step, D, and all length units by
the localization error, e, leaving three dimensionless param-
eters: drift magnitude, eg ¼ gD=e, drift correlation time,et ¼ t=D, and diffusion coefficient, eD ¼ DD=e2. The time-
varying drift velocity is not fully removed by the BNEW
procedure and leads to a bias in the estimation of a and D
(Fig. 2, a and b). This effect is more pronounced when using



FIGURE 2 Errors in characterizing high-frequency stochastic motion with the BNEW method. (a) Bias and total error in the fitted scaling parameter, afit,

as a function of maximal wavelet span. Dashed curves give the relative bias, ½hafit � ai=a�, and solid curves the relative error ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðafit � aÞ2i

q
=a�, calculated

as described in Section S5, for drift correlation times of 100 time steps (blue) and 500 time steps (red). Curves shown are calculated for eg ¼ 1; eD ¼ 3. (b)

Corresponding curves for bias and error in Dfit. (c and d) Dependence of relative error in afit and Dfit on dimensionless drift magnitude, eg, and diffusion

constant, eD. All values are calculated with et ¼ 100 and nmax ¼ 17. Dashed black lines mark a constant value of eD=eg2. (e and f) Relative bias (dashed curves)

and error (solid curves) plotted as a function of the compound parameter, et eD=eg2. Persistence-time values of 10%et%5000 were used for each curve. SG-3

wavelets were used throughout, and error calculations are done for 400 tracks of length 200 time points each, assuming diffusive stochastic motion ða ¼ 1Þ.
Analogous calculations for the fitted localization error ðefitÞ are shown in Fig. S6. To see this figure in color, go online.
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larger wavelet spans (n), so that the drift velocity deviates
significantly over the span of the wavelet. Restricting to
shorter spans, however, limits the range of rescaled times,btk , used in the analysis and thus leads to increased sampling
error in the fitted parameters. The balance between these ef-
fects results in an optimal value of maximum span, nmax, to
be used for the fits (Fig. 2, a and b). We note that the optimal
span depends on the shape of the wavelet, with wavelets that
perform more aggressive smoothing yielding a higher value
of nmax. We select the wavelet shape (SG-3, the third-order
Savitzky-Golay filter) used for all subsequent analyses
based on minimizing the overall error in the fitted scaling
parameter, afit (Section S6). In the case where the drift ve-
locity decorrelates much more slowly than the frame rate,
a wide range of nmax will give consistent results for the esti-
mated parameters characterizing the high-frequency sto-
chastic motion.

The bias and error in the fit parameters depend on the
relative magnitude of the stochastic motion and the drift ve-
locity (Fig. 2, c and d), as well as the persistence time of the
drift. When the persistence time is long ðet > 10Þ, the MSD
due to drift over one time step can be expanded into a term
associated with constant drift ðeg2Þ and a first-order correc-
tion ðeg2=etÞ. The former term is effectively removed by the
BNEW procedure. The relative bias in the fit parameters is
then dependent on the displacement due to diffusion relative
to the remaining displacement from drift. That is, the bias is
determined by the compound parameter et eD=eg2 (Fig. 2, e
and f). To decrease bias below 10% for all fitted parameters,
it is sufficient to have eDet=eg2 > 40. When the bias is small,
the overall error in the fit parameters is dominated by
sampling error that depends entirely on the magnitude of
diffusion relative to the localization error ðeDÞ, as well as
the number of tracks sampled.

We further compare the performance of the BNEW
method with the traditional approach of fitting the short-
time portion of the total MSD curve, where the ballistic
contribution from the drift velocity is least pronounced.
For a wide range of parameters, BNEW outperforms the
standard approach, yielding significantly less bias and error
in the fitted parameters (Fig. 3). These calculations validate
the ability of our methodology to accurately characterize
stochastic motion in situations where there is sufficient drift
velocity to dominate the overall MSD.

In the case where the stochastic component of the trajec-
tories corresponds to fractional Brownian motion ða< 1Þ,
Biophysical Journal 110(3) 700–709



FIGURE 3 Comparison of error in fit parameters for high-frequency sto-

chastic motion, using the BNEW method (solid lines) and ordinary MSD

curves (dashed lines), as a function of drift magnitude, eg, for a constant

diffusion coefficient eD ¼ 3 (left panel) and as a function of diffusion coef-

ficient, eD, for a constant eg ¼ 1 (right panel). Drift is assumed to have a

dimensionless correlation time of et ¼ 100. Errors shown are for 400 tracks

of length 200 time steps. BNEW analysis was done using SG-3 wavelets

with spans of 2%n%17. Errors for plain MSD curves were obtained

from fits to 1%k%3, the smallest number of points for fitting a power

law. This fitting range minimizes error in the presence of drift (see Section

S7). To see this figure in color, go online.
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time-varying drift leads to a larger bias in the parameter esti-
mation, and the BNEW method is applicable for a more
limited range of parameters (Section S8). Nonetheless, it re-
mains a substantially more accurate means of characterizing
the stochastic motion than the traditional alternative of
fitting ordinary MSD curves (Fig. S11).

A MATLAB software implementation of the BNEW
method is provided in the Supporting Material.
Application to organelle movement in motile cells

As a biologically relevant example, we apply the BNEW
method to analyze the trajectories of lysosomes in motile
neutrophil-like HL60 cells. These organelles form a conve-
nient endogenous probe of intracellular mechanics because
they are punctate, numerous, and well dispersed throughout
the cell. By analyzing the high-frequency component of the
lysosome motion, we demonstrate that the cytoplasm of
these cells behaves primarily as a viscous fluid over the
timescales examined, with organelles undergoing apparent
diffusion in the cytoplasm.

HL60 cells were placed in a 2D environment, confined
under an agarose pad (27), in a uniform concentration of
chemoattractant (see Materials and Methods). Under such
conditions, these cells exhibit undirected but relatively
persistent motility, with concomitant fluctuations in cell
shape as they crawl (Fig. 4 b). Lysosomes within the cells
were fluorescently labeled (Fig. 4 a), and the migrating cells
were imaged with a time step of D ¼ 0:05 s.

The motion of the lysosomes is dominated by the overall
migration of the cell, as well as the intracellular flows and
cell shape deformation (Fig.4, b and c). This effect compli-
cates the microrheological analysis of such tracks, making it
impractical to characterize the viscosity or viscoelasticity of
Biophysical Journal 110(3) 700–709
the intracellular medium using theMSD alone, even after cor-
recting forwhole-cell rigid bodymotion (Fig. 4d).TheBNEW
method, however, makes it possible to extractmaterial proper-
ties based on the high-frequency stochastic component of the
motion,while filteringout the slowlyvaryingflow.Trajectories
for all particles within each cell are pooled together to obtain
sufficient statistics, due to the limited length of individual tra-
jectories (mean length 118 time steps).

The rescaled, corrected mean squared displacement,dMSD
ðnÞ
k , for particles in several representative cells is shown

in Fig. 4 e. We use a maximal wavelet span of nmax ¼ 17 for
the BNEWanalysis, a value selected based on a characteriza-
tion of the population average drift velocities for particles in
all cells pooled together (Section S9). The linear scaling of
the dMSD

ðnÞ
k is consistent with diffusive motion of particles

in a purely viscous medium.
We repeated the BNEW analysis for a population of 93

HL60 cells. After applying BNEW analysis to each cell,
we calculated the distribution of the estimated scaling
parameter ðafitÞ, diffusion coefficient ðDfitÞ, and localization
error ðefitÞ among the population of cells (Fig. 5). Because
we do not know a priori whether the stochastic motion of
the particles in individual cells is diffusive or subdiffusive,
we limit the time separations used in the fits to
kmax ¼ 0:74 to avoid bias in the fitted scaling coefficient,
a, for the subdiffusive case (Section S3). This conservative
approach results in more noisy estimates, which may be
partially responsible for the broad distribution of results
over the entire population of cells.

The diffusion coefficient for lysosomes averaged among
all cells has a value of <Dfit> ¼ 0.018 mm2/s, with a popu-
lation standard deviation of 0.014 mm2/s. This value is
consistent with previous microrheological measurements
of the diffusion coefficient within chemotaxing PMN cells
(28). In general, lysosome size varies widely, with a typical
diameter of about 0.5 mm (29). Using the Stokes-Einstein
equation for the diffusion coefficient of a sphere (30),
ðD ¼ kT=ð6pRhÞÞ, gives an effective viscosity of h z 50
cP, or ~50 times that of water. We note, however, that this
approximation assumes thermally driven particle motion,
and that the actual viscosity may be significantly higher
given a higher effective temperature due to actively gener-
ated forces (6,31).

The population averaged localization error was calculated
as <efit> ¼ 0.015 mm, consistent with control measure-
ments in a fixed cell (Section S10). We note that the fitted
parameters from running BNEW analysis on the full set of
tracks from all cells pooled together (Fig. 5 a) are close to
the average of individual cell measurements, confirming
the robustness of the analysis.

The scaling exponent of the high-frequency component of
motion extracted with the BNEW method is peaked around
afit ¼ 1:02, indicating that the average motion of lysosomes
in the cytoplasm of most HL60 cells is consistent with diffu-
sion in a purely viscous medium. However, the breadth of



FIGURE 4 Analysis of lysosome trajectories in an HL60 cell. (a) Example cell with lysotracker labeling, imaged in consecutive frames with phase contrast

in addition to fluorescence (left) and with fluorescence only (right). (b) Migrating cell shape over time. (c) Example lysosome trajectories in the lab frame of

reference and in the cell frame of reference. (d) Mean-squared displacement for all tracked lysosomes in the example cell, in the lab frame (blue) and the cell

frame (green). The mean-squared change in interparticle distances is shown in red. Dashed lines indicate scaling as a guide to the eye. (e) Rescaled, adjusted

MSD after BNEW analysis for the example cell (red), and for other representative cells (blue, green, and cyan). Wavelet smoothing was done with SG-3

wavelets for spans of 2%n%17. Black lines indicate power-law fits to Eq. 12 with the given scaling coefficients, afit. To see this figure in color, go online.
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the distribution for afit, as well as Dfit, is far wider than
would be expected based on simulated trajectory results,
implying that the biological variability of individual cells
is responsible for the broad range of values. Of particular in-
terest are those cells with low values of afit, implying a
potentially distinct cytoplasmic environment that leads to
subdiffusive motion. Identifying the biophysical root of
the difference in particle behavior within such cells, as
compared to the majority of HL60 cells, is a promising
avenue for further research. In this case, the BNEW method
serves as a metric for identifying unusual cell subpopula-
tions meriting further study.
DISCUSSION

The BNEW method enables the characterization of high-
frequency motion from single-particle trajectories that are
confounded by the presence of flow in the underlying me-
dium. Because approximations of the flow velocity are sub-
tracted out from individual tracks, no assumptions are
imposed on the spatial structure of the flow. This method
yields accurate approximations of the viscoelastic scaling
modulus and the diffusion coefficient, provided the flow ve-
locity varies slowly compared to the frame rate (see Fig. 2, e
and f, for accuracy criteria).

Characterizing the stochastic component requires
focusing on the short-time, high-frequency regime. For sin-
gle-particle tracking experiments, the minimal timescale of
observation is limited in practice to the millisecond regime,
both by the camera frame rate and the spatial resolution in
locating particles. Although other techniques, such as fluo-
rescence correlation spectroscopy (32) and dynamic light
scattering (33), are available for probing shorter timescales,
they require significantly more complex experimental setup
and are necessarily restricted to averages over the behavior
of many particles. The BNEW method, on the other hand,
requires only video microscopy of labeled particles, and is
applicable to the analysis of individual long particle trajec-
tories, provided sufficient data can be obtained through time
averaging.

Prior studies aimed at analyzing short- versus long-time-
scale behavior in the trajectories of whole moving cells
have made use of the Fourier-transformed velocity autocor-
relation function to isolate different components of the
Biophysical Journal 110(3) 700–709



FIGURE 5 Statistics from BNEW analysis of

lysosome motion in a population of 93 HL60 cells,

with an average of 391 tracks each and an average

track length of 118 time steps. SG-3 wavelets with

spans of 2%n%17 and time separations of

1%k%P0:74nR were used for the BNEW analysis.

(a) Rescaled MSD from BNEW analysis of all

tracks pooled together. The black line shows a po-

wer-law fit with the given parameters. (b) Histo-

gram of scaling coefficients ðafitÞ for pooled

lysosome tracks from each individual cell. The

population average ðhafitiÞ and standard deviation

ðsafit
Þ are as shown. (c) Histogram of diffusion

coefficients ðDfitÞ from individual cells. (d) Histo-

gram of fitted localization errors ðefitÞ from individ-

ual cells. Cases with efit ¼ 0 were excluded from

the ensemble average and standard deviation calcu-

lations for the localization error. To see this figure

in color, go online.
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motion (34). In principle, this technique could be extended
to particles moving through a viscoelastic medium by tak-
ing the discrete Fourier transform of the known velocity
correlation function for such motion (35). The BNEW
method, however, provides a related but more general
approach, using wavelet analysis instead of Fourier trans-
forms to perform the high-pass filtering of particle trajec-
tories. In fact, the Fourier transform of a signal can be
formulated as a particular wavelet shape with span equal
to the full length of the signal. Wavelet analysis, however,
is more naturally amenable to studying behaviors that are
localized in time, and is thus the preferred choice for
analyzing complex nonstationary signals (36). Further-
more, the limited span of the wavelets used makes it
possible to combine data from trajectories of different
lengths and to perform the analytic error analysis shown
in Fig. 2.

The BNEW method enables characterization of material
properties in nonquiescent media. Potential applications
include not only the cytoplasm of moving cells, but also
mucus and other biofluids in the presence of flow. The
BNEW technique can also be used to correct for stage drift
and flow effects in situations where only a small number of
particles are visualized simultaneously, limiting the effi-
ciency of standard dedrifting methods (22). In principle,
the method described here can be extended to correct for
persistent flow in other metrics used to analyze particle tra-
jectories, such as the velocity autocorrelation function.
Extension to two-particle or multiparticle correlative
tracking data is also possible, although this would require
additional assumptions about the spatial structure of the un-
derlying flow.
Biophysical Journal 110(3) 700–709
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Supplementary Material
E. F. Koslover, C. K. Chan, and J. A. Theriot

S1. HAAR WAVELET

The Haar wavelet is commonly used to approximate velocities over different time-scales from
noisy trajectories. For instance, it has been employed in single particle tracking studies to distin-
guish actively transported vesicles from those diffusing passively in the cytoplasm[1]. This wavelet
is defined by the coefficients,

wj = 1
n(n+ 1)


1 for 0 < j ≤ n

−1 for − n ≤ j < 0
0 for j = 0.

(S1)

FIG. S1: Coefficients for different wavelet shapes, shown for span n = 20. (a) wi coefficients for the
trajectory positions. (b) ŵi coefficients for the trajectory steps. Wavelet shapes shown are the sliding
mean wavelet (black), Haar wavelet (yellow), and 1st, 3rd, and 5th order Savitzky-Golay wavelets (blue,
green, and red, respectively).
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The simple form of the Haar wavelet enables direct calculation of the summations in Eq. 10 to
yield a closed form solution for the rescaling functions,

A
(n)
k,Haar =



1
60n2(n+ 1)2

[
3k5 − k4(10n+ 5) + k3(40n2 + 40n− 5)− k2(80n3 + 120n2 + 30n− 5)

+k(60n4 + 120n3 + 80n2 + 20n+ 2)
]

for k ≤ n

1
60n2(n+ 1)2

[
−k5 + k4(10n+ 5)− k3(40n2 + 40n+ 5) + k2(80n3 + 120n2 + 30n− 5)

−k(80n4 + 160n3 + 60n2 − 20n− 6) + (44n5 + 110n4 + 80n3 + 10n2 − 4n)
]

for n < k < 2n

(2n+ 1)(3n2 + 3n+ 4)
30n(n+ 1) for k ≥ 2n

(S2)

B
(n)
k,Haar =



1
n2(n+ 1)2

[
−k3 + k2(2n+ 1)− 4kn(n+ 1) + 2n(n+ 1)(n2 + n+ 1)

]
for k ≤ n

1
3n2(n+ 1)2

[
k3 − 3k2(2n+ 1) + 2k(6n2 + 6n+ 1) + 2n3(3n+ 4)− 12n2(n+ 1)− 2n

]
for n < k < 2n

6n2 − 2n+ 2
3n(n+ 1) for k ≥ 2n

S2. SAVITZKY-GOLAY WAVELETS

The BNEW method relies on the drift velocity varying slowly in time, so that it can be effectively
subtracted out by applying a wavelet that calculates a local estimate of the velocity across a window
of span n. In the case where the drift velocity is not constant in time, one can estimate it more
effectively by performing a less aggressive smoothing of the data. This can be done by either
decreasing the span n, or by using a non-linear local approximation for the velocity. In either case,
decreasing the smoothing also results in a more noisy estimate for the local velocity.

A common data smoothing technique uses the Savitzky-Golay filter[2], which involves fitting
a local polynomial to each window of the data series. Higher-order polynomial fits provide less
aggressive smoothing of the data. In practice, the Savitzky-Golay filter is applied by convolving
each window of the data with a set of weights based on the least-square regression to the polynomial
of a given degree[3]. Consequently, this smoothing technique can be formulated as a wavelet, with
the particular set of weights wi defined below.

To find the best-fit polynomial of degree d to data points pi in a window −n ≤ i ≤ n, we
can perform ordinary least-squares regression. The coefficients a0, . . . , ad of such a polynomial are
given by

~a = (ATA)−1AT~p (S3)
where A is a (2n + 1) × (d + 1) matrix with Ai,j = ij,−n ≤ i ≤ n, 0 ≤ j ≤ d . The local first
derivative (velocity) approximation at the center of the window is given by a1/∆, where ∆ is the
time step. The weights for each of the data points used to compute this approximation are simply
the second (j = 1) row of the matrix (ATA)−1AT . That is, the Savitzky-Golay wavelet is defined
by

~w = (0, 1, 0, . . . , 0) · (ATA)−1AT . (S4)
We note that since the best fit polynomial to a trajectory with constant velocity pi = yi + z has
a1 = y, then the required constraints on the wavelet shape (Eq. 4) are satisfied. It can be shown[3]
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that the Savitzky-Golay filter for calculating first derivatives is identical for degree d and d + 1
where d is an odd integer. We thus limit our discussion to filters of odd degree. The wavelet
associated with the degree d Savitzky-Golay filter will be abbreviated as SG-d. The shape of such
wavelets in terms of both the weights wi associated with the positions and the equivalent weights ŵi
associated with the trajectory steps are plotted in Fig. S1. Unless otherwise noted, SG-3 wavelets
are used throughout this work, for reasons discussed in Supplemental Section S6.

S3. BNEW ANALYSIS FOR FRACTIONAL BROWNIAN MOTION

We now analyze the behavior of the BNEW method when applied to particle trajectories where
the stochastic component of the motion corresponds to fractional Brownian motion[4]. Discrete
increments from a fractional Brownian motion process ~p(t) at time steps of size ∆ are referred to
as discrete fractional Brownian noise, and defined by

~vi = ~p [(i+ 1)∆]− ~p [i∆]
∆ . (S5)

The ~vi are identically normally distributed, with mean 0, variance 4D∆, and covariance function
(for k ≥ 1) [5, 6]

〈~vi · ~vi+k〉 = 2D∆α−2 (|k + 1|α − 2|k|α + |k − 1|α) , (S6)
This model is appropriate for thermal motion in a viscoelastic material. Note that throughout
this work we assume that the stochastic motion occurs independently in each of two dimensions,
though this approach can be easily extended to thre-dimensional trajectories. Sampling of discrete
fractional Brownian noise for purposes of simulation was carried out using the circulant embedding
approach for generating stationary processes[5].

When BNEW analysis is applied to a trajectory consisting of constant drift, fractional Brownian
motion, and localization error, the adjusted MSD is derived from Eq. 6, 10 as

MSD
(n)
k =

〈
|~p(n)
k − ~p

(n)
0 |2

〉
=4D∆αA

(n)
k + 4ε2B(n)

k

+4D∆α
k+n−2∑
i=−n

k+n−2−i∑
j=1

c
(n,k)
i c

(n,k)
i+j ((j + 1)α − 2(j)α + (j − 1)α) ,

(S7)

where c(n,k)
i refers to the coefficients in Eq. 8 associated with a particular combination of wavelet

span n and time separation k.
Rescaling the adjusted MSD by B(n)

k as for diffusive motion gives

M̂SD
(n)
k = 4D∆αÃ

(n)
k + 4ε2, (S8)

where Ã(n)
k is plotted as a function of the rescaled time t̂k = A

(n)
k /B

(n)
k in Fig. S2a,b, for both the

Haar wavelet and the 3rd order Savitzky-Golay wavelet. The function Ã
(n)
k depends on α and on

the shape of the wavelet used, but not on the parameters D, ε.
We note that the results for different wavelet spans n collapse approximately onto a power-law

curve, with downward “hooks” at larger values of k. So long as the maximal k values are relatively
small compared to the span n, then Ã

(n)
k can be approximately fit by the functional form,

Ã
(n)
k = f(α)t̂αk + g(α)2 (S9)
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FIG. S2: BNEW analysis applied to trajectories consisting purely of fractional Brownian motion (no
localization error or drift). (a) Function Ã

(n)
k plotted against the rescaled time, for α = 0.5 and α = 0.7.

Haar wavelet spans 2 ≤ n ≤ 17 are included. Black lines correspond to the functional form in Eq. S9.
Inset shows same data plotted on log-log axes. (b) Same results plotted using 3rd order Savitzky-Golay
(SG-3) wavelets for the wavelet analysis. (c) Fractional bias in fitted scaling exponent αfit, as a function
of maximal k value used in the fits, for Haar wavelets (solid lines) and SG-3 wavelets (dashed lines). (d)
Function values f(α) (blue) and g(α) (red), for Haar wavelets (solid line) and SG-3 wavelets (dashed
line), obtained by fitting Ã(n)

k to Eq. S9 for 2 ≤ n ≤ 17, 1 ≤ k ≤ bkmaxnc
.

We are interested primarily in extracting an accurate estimate of the viscoelastic scaling parameter
α from such fits, in order to determine whether the particle motion is consistent with a viscous
or a viscoelastic environment. Using wavelet spans 2 ≤ n ≤ 17 for the fits, we plot the error in
the parameter αfit depending on the maximal k values used in the fit. Specifically only values of k
such that 1 ≤ k ≤ bkmaxnc are used for each span n. When fitting data from a limited number of
trajectories, larger values of kmax would retain more information from the data, allowing for a less
noisy fit. However, at higher values of kmax, the downward “hooks” in the rescaled curves lead to
incorrect estimations of the scaling parameter. We thus use the maximal value that allows for an
accurate estimation of αfit (see Fig. S2c). Namely, kmax = 0.74 is used for all data analysis using
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FIG. S3: Result of BNEW analysis with
3rd-order Savitzky-Golay wavelets on the
same simulated trajectory dataset de-
scribed in Fig. 1. Time separations 1 ≤
k ≤ b0.74nc are shown for each wavelet
span n. Fitted curves are shown in black,
and the estimated values from the fits are
listed for both the diffusive and the subd-
iffusive case.

3rd order Savitzky-Golay wavelets, while kmax = 1 is used for analysis with Haar wavelets (e.g.
Fig. 1).

The functions f(α) and g(α) are necessary for determining the effective diffusion coefficient (D)
and localization error (ε), respectively. In particular the rescaled adjusted MSD is fit to,

M̂SD
(n)
k = 4D̂∆αt̂αk + 4ε̂2, (S10)

and the parameters D and ε are then extracted by

Dfit = D̂fit

f(αfit)
, (S11)

εfit =
√
ε̂2fit −Dfit∆αfitg(αfit)2. (S12)

In the limit of diffusive motion (α = 1), we have f(1) = 1, g(1) = 0, recovering Eq. 11. The
functions f and g are determined numerically, by fitting Ã(n)

k as a function of t̂k for 2 ≤ n ≤ 17
for a range of α values (Fig. S2d).

The validity of this procedure for extracting estimates of α,D, ε to characterize the stochastic
component of the motion is demonstrated for simulated trajectories in Fig. 1, using the Haar
wavelet form. Analysis of the same trajectories with a 3rd order Savitzky-Golay wavelet is shown
in Fig. S3.

S4. STATISTICS OF A PERSISTENT RANDOM WALK

To explore the effect of time-varying drift on the BNEW analysis method, we focus on a concrete
model for the drift velocity as a continuous-time persistent random walk. This model has been used
to describe the animal behavior[7], locomotion of motile cells[8], and paths of semiflexible polymers
(where it is termed the worm-like chain)[9, 10]. It is appropriate for situations where there is a
single characteristic timescale of persistence for the dynamical process. More complicated dynamics
with multiple timescales can generally be expressed as sums of multiple persistent random walks.

One realization of a persistent random walk is motion with a constant speed (γ) along an
orientation that varies diffusively in time with decorrelation time τ . In this section we derive some
useful results regarding multi-point velocity correlations in this model. The propagator for the
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persistent random walk in two dimensions satisfies

∂G(θ|θ0; t)
∂t

= 1
τ

∂2G(θ|θ0; t)
∂θ2 , (S13)

where G(θ|θ0; t) is the distribution of orientations for the velocity vector ~u at time t, given an
orientation along θ0 at time 0. This propagator can be expressed as

∂G(θ|θ0; t) = 1
2π

∞∑
m=−∞

gm(t)eim(θ−θ0) (S14)

gm(t) = e−m
2t/τ .

The velocity autocorrelation function is,

〈~u(t)~u(0)〉 =γ2
∫ 2π

0
dθ
∫ 2π

0
dθ0 cos(θ − θ0)G(θ|θ0; t)

=γ
2

2 [g1(t) + g−1(t)] = γ2e−t/τ
(S15)

At times shorter than the correlation time τ , the persistent random walk behaves like a ballistic
motion with speed γ, while at longer times, the velocity orientation decorrelates and the motion
appears diffusive with effective diffusion coefficient γ2τ . As a model for drift velocity, this formalism
is convenient because it interpolates between constant drift (τ →∞) and rapidly time varying drift
τ → 0. In cases where the correlation time becomes comparable to the time step of the observed
particle motion (τ ≤ ∆), this drift velocity can no longer be distinguished from the diffusive
component of the particle trajectories and BNEW analysis will not be accurate. In Fig. 2, we
explore the bias and error introduced into the BNEW analysis in cases where the correlation time
is finite but still much larger than the time step ∆.

In order to calculate errors in the fit parameters obtained with the BNEW method, we require
also the fourth-order correlations in the particle velocities. For the persistent random walk, these
correlations are given by,

〈
u

(x)
i0 u

(x)
i1 u

(x)
i2 u

(x)
i3

〉
=
(
γ

2π

)4 ∫ ∫ ∫ ∫
dθ0dθ1dθ2dθ3 cos θ0 cos θ1 cos θ2 cos θ3

×G(θ3|θ2, t3)G(θ2|θ1, t2)G(θ1|θ0, t1)

=
(
γ

2

)4
[2g1(t1)g2(t2)g1(t3) + 4g1(t1)g0(t2)g1(t3)]

=γ
4

4 e
−(t1+t3)/τ

[1
2e
−4t2/τ + 1

]
,

(S16)

where tj = (ij − ij−1)∆ and the indices are ordered as i0 ≤ i1 ≤ i2 ≤ i3. Similarly, we have

〈
u

(x)
i0 u

(x)
i1 u

(y)
i2 u

(y)
i3

〉
= γ4

4 e
−(t1+t3)/τ

[
−1

2e
−4t2/τ + 1

]
〈
u

(x)
i0 u

(y)
i1 u

(x)
i2 u

(y)
i3

〉
=
〈
u

(x)
i0 u

(y)
i1 u

(y)
i2 u

(x)
i3

〉
= γ4

8 e
−(t1+4t2+t3)/τ ,

(S17)

and other combinations of the x, y dimensions can be obtained by symmetry.
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FIG. S4: Analytically calculated values of the
rescaled adjusted MSD for trajectories consist-
ing of persistent random walk drift with param-
eters τ = 40, γ = 1, diffusive random motion
(α = 1, D = 1), and localization error (ε = 1),
sampled at time intervals of size ∆ = 1. SG-
3 wavelets were used for the BNEW analysis,
with spans between n = 4 and n = 40 (colored
from blue to red). Black line corresponds to
the power-law fit, showing the bias away from
a linear function.

S5. ERROR ANALYSIS IN THE PRESENCE OF TIME-VARYING DRIFT

In this section, we calculate the bias and error in the fitted coefficients αfit, Dfit, εfit, when the
drift-velocity ~u varies in time as a persistent random walk (defined in Supplemental Section S4).
Throughout this section, we restrict to the case with diffusive stochastic motion (α = 1). The
rescaled, adjusted MSD after BNEW analysis using wavelets of span n is

M̂SD
(n)
k = 4D∆t(n)

k + 4ε2 + 1
B

(n)
k

∑
c

(n,k)
i c

(n,k)
j 〈~ui · ~uj〉 , (S18)

where t(n)
k = A

(n)
k /B

(n)
k , as defined by Eq. 10, and the drift correlation function is given by Eq. S15,

with t = |i− j|∆. The presence of the time-varying drift velocity causes the rescaled MSD curves
for different wavelet spans to deviate from a universal line, increasing super-linearly and curling
upwards at higher k values (Fig. S4). We find the bias in the fitted coefficients by fitting the power
law Eq. 12 to the analytically calculated values of M̂SD

(n)
k for 2 ≤ n ≤ nmax, 1 ≤ k ≤ b0.74nc.

The parameter values from these fits are denoted α0, D̂0, ε̂0.
In estimating the bias and the mean squared error of the fit parameters (described below),

we linearize the fit function (Eq. 12) in terms of the parameters α, D̂, ε̂ in the neighborhood of
α0, D̂0, ε̂0. That is, we take

g(t(n)
k , ~χ) ≈ g(t(n)

k , ~χ0) + Z(~χ− ~χ0), Zi,j = ∂g(ti, ~χ)
∂χj

. (S19)

Here, ~χ = (α, D̂, ε) is a vector of parameter estimates and Z is the matrix of partial derivatives of
the fitted function g with respect to the parameters. This approximation is valid in the case where
a large number of particle tracks are sampled, so that the measured MSD does not deviate far
from the analytically calculated value (Eq. S18). In this case, the bias, defined as 〈~χfit − ~χ〉 can be
approximated as ~χ0− ~χ. The approximation breaks down in the case of limited sampling or when
ε approaches 0, at which point additional bias inherent to the nonlinear regression can arise. To
retain tractable error approximations, however, we focus on the linearizeable case. A comparison
of bias and error estimates from simulated data as compared to our analytical approximations
is shown in Fig. S5, for parameter values relevant to experimental data on lysosome motion in
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FIG. S5: Comparison of bias (dashed lines) and root mean squared error (solid lines) in fitted parameters
(αfit, Dfit, εfit) as a function of dimensionless drift magnitude γ̃. Blue curves are from simulated data; red
curves are from approximate analytical calculations. Errors are calculated for 200 trajectories of length
200 timepoints, with dimensionless parameters α = 1, D̃ = 3, τ̃ = 100, using SG-3 wavelets with spans
2 ≤ n ≤ 17. Simulated values were averaged over 100 datasets.

.

HL60 cells (see Results section). We note that due to the presence of time-varying drift and the
assumption of diffusive stochastic motion, we have α0 ≥ α = 1, so that we take Dfit = D̂fit, and
εfit = ε̂fit when calculating the bias and error.

We calculate an estimation of the total mean squared error (S2) in the fitted parameters as,

S2
α = (α0 − α)2 +

〈
(αfit − α0)2

〉
(S20)

S2
D = (D0 −D)2 +

〈
(Dfit −D0)2

〉
(S21)

S2
ε = (ε0 − ε)2 +

〈
(εfit − ε0)2

〉
, (S22)

where the first term arises from the bias due to deviation of the rescaled MSD from a universal line
and the second term arises from noise in the sampled values. The brackets 〈. . .〉 indicate averaging
over a large set of trajectories, with fitted parameters extracted from the pooled set. These noise
terms are taken from the diagonal of the covariance matrix of the fitted parameters, calculated as
described below.

Under the linearization assumption, the covariance matrix of fitted parameters from performing
a non-linear least-square fit to Eq. 12 is given by[11],

E = (Z′Z)−1Z′MZ(Z′Z)−1, (S23)

where M is the covariance matrix of the individual data points used in the fit and Z is the matrix
of partial derivatives of the fitted function with respect to the fit parameters. Namely,

Zm,α = 4D0(∆t̂m)α0 log
(
∆t̂m

)
, (S24)

Zm,D̂ = 4(∆t̂m)α0

Zm,ε̂ = 4ε0

where the index m runs over all individual data points used for fitting, including all combinations
of wavelet span n and time interval k for the rescaled adjusted MSD.

Calculating the covariance of the individual data points is complicated by the fact that each
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FIG. S6: Bias and root mean square error in the estimated value of the localization error εfit. (a)
Bias (dashed curves) and error (solid curves) plotted as a function of maximal wavelet span nmax, for
D̃ = 3, γ̃ = 1, shown for drift correlation time τ̃ = 100 (blue) and τ̃ = 500 (red). (b) Root mean square
error as a function of the dimensionless diffusion constant D̃ and drift magnitude, γ̃, assuming a persistece
time of τ̃ = 100. (c) Bias and error as a function of the compound parameter τ̃ /γ̃2. SG-3 wavelets were
used throughout and errors are calculated assuming 400 tracks of length 200 timesteps each.

adjusted MSD includes an average over many tracks and many time windows from each individual
track. For simplicity, we assume in our error estimates that the individual particle tracks are
completely independent from each other. Time averaging in the MSD calculation, however, can
involve many non-independent intervals, and the co-dependence of these intervals must be taken
into account when calculating data point covariance. We focus on the time average only, noting
that the elements of the covariance matrix simply scale inversely with the number of tracks in the
ensemble average, assuming individual tracks are independent of each other. For a track composed
of N + 1 sequential positions ~p0, . . . , ~pN , the adjusted mean scaled displacement (for a span n and
time separation k) is given by

MSD(n)
k = 1

Nk

N−nmax−k∑
l=nmax

η
(n,k)
l , (S25)

η
(n,k)
l =

∣∣∣~p(n)
l+k − ~p

(n)
l

∣∣∣2
=

∣∣∣∣∣∣∆
k+n−2∑
i=−n

c
(n,k)
i (~ul+i + ~vl+i) +

k+n−1∑
i=−n

ĉ
(n,k)
i ξl+i

∣∣∣∣∣∣
2

Nk = N − k − 2nmax + 1

where the first and last nmax data points are dropped for all the different wavelet spans n ≤ nmax
used in the BNEW analysis to avoid edge effects. The covariance matrix elements for the rescaled
MSD are then,

Mm1,m2 =
cov

(
MSD(m1),MSD(m2)

)
B(m1)B(m2)

=
∑
l1,l2 cov

(
η

(m1)
l1 , η

(m2)
l2

)
B(m1)B(m2)Nk1Nk2

(S26)
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FIG. S7: Root mean square error in fit parameters (a) αfit, (b) Dfit, (c) εfit, as a functin of dimensionless
magnitude (γ̃) and correlation time τ̃ of the drift velocity. All calculations use SG-3 wavelets with spans
2 ≤ n ≤ 17, assuming 400 tracks of length 200 timesteps each. Dashed black lines mark a constant value
of τ̃ /γ̃2.

where, again, the m indices refer to pairs of wavelet spans n and time separations k. Noting that
the average 〈ηl1ηl2〉 depends only on the difference between the indices (q = l1− l2), and assuming
diffusive stochastic motion (〈~vi · ~vj〉 = 0 for i 6= j), it can be shown that

cov
(
η

(m1)
l , η

(m2)
l+q

)
=(γ∆)4H(u)

m1,m2(q) + (2D∆)2H(v)
m1,m2(q) + ε4H(ξ)

m1,m2(q) + 4γ2D∆3F (u)
m1,m2(q)F (v)

m1,m2(q)
+2γ2ε2∆2F (u)

m1,m2(q)F (ξ)
m1,m2(q) + 4Dε2∆F (v)

m1,m2(q)F (ξ)
m1,m2(q),

(S27)

where the H and F matrices that couple drift velocity, diffusion, and localization error across time
steps are defined below. The fourth-order covariance of the drift velocity is

H(u)
m1,m2(q) = 1

γ4

∑
i1,j1,i2,j2

c
(m1)
i1 c

(m1)
j1 c

(m2)
i2 c

(m2)
j2 cov (~ui1 · ~uj1 , ~ui2+q · ~uj2+q) (S28)

whose matrix elements can be calculated using Eq. S15, S16, S17. The corresponding covariance
matrices Hv, Hξ for the diffusive velocities and localization errors, respectively, can be simplified
to

H(v)
m1,m2(q) = 4

∑
i∈T

[
c

(m1)
i c

(m2)
i−q

]2
+ 8

∑
i,j∈T ;j>i

c
(m1)
i c

(m1)
j c

(m2)
i−q c

(m2)
j−q

H(ξ)
m1,m2(q) = 4

∑
i∈T

[
ĉ

(m1)
i ĉ

(m2)
i−q

]2
+ 8

∑
i,j∈T ;j>i

ĉ
(m1)
i ĉ

(m1)
j ĉ

(m2)
i−q ĉ

(m2)
j−q

where the range of indices in the summations is T =
[max(−n1,−n2 + q),min(n1 + k1 − 1, n2 + k2 − 1 + q)] and c

(n,k)
n+k−1 = 0 by convention. In

the above, we make use of the fact that both the diffusive velocities and the localization errors
in each dimension are independent and normally distributed with mean 0, and that the fourth
moment of a normal distribution is three times the variance.

Due to the independence between different components of the particle motion (drift, diffusion,
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and localization error), the cross-covariance terms can be factored into individual second-order
correlations. For instance,

cov (~ui1 · ~vj1 , ~ui2+q · ~vj2+q) = 1
2 〈~ui1 · ~ui2+q〉 〈~vi1 · ~vi2+q〉 , (S29)

where the factor of 1/2 arises from the two independent dimensions of the diffusive velocity. We
therefore define the following quantities to complete the covariance calculation in Eq. S27:

F (u)
m1,m2(q) = 1

γ2

∑
i1,i2

c
(m1)
i1 c

(m2)
i2 〈~ui1 · ~ui2+q〉

=
∑
i1,i2

c
(m1)
i1 c

(m2)
i2 e(−|i2+q−i1|∆/τ) (S30)

F (v)
m1,m2(q) = 2

∑
i∈T

c
(m1)
i c

(m2)
i−q (S31)

F (ξ)
m1,m2(q) = 2

∑
i∈T

ĉ
(m1)
i ĉ

(m2)
i−q (S32)

The indices in Eq. S30 are taken from the range −n1 ≤ i1 ≤ n1 + k1 − 2,−n2 ≤ i2 ≤ n2 + k2 − 2.
After computing the matrices H(u),H(v),H(ξ),F(u),F(v),F(ξ), the covariance matrix M for the
time-averaged, rescaled MSD can be calculated with the aid of Eq. S27 via

Mm1,m2 = 1
B(m1)B(m2)Nk1Nk2

[
min (Nk1 ,Nk2) cov

(
η

(m1)
l , η

(m2)
l

)
+

+
Nk2−1∑
q=1

min (Nk1 ,Nk2 − q) cov
(
η

(m1)
l , η

(m2)
l+q

)
+
Nk1−1∑
q=1

min (Nk2 ,Nk1 − q) cov
(
η

(m2)
l , η

(m1)
l+q

)
(S33)

We note that while the individual H(u)(q) matrices are time-consuming to compute for any given
value of the drift velocity correlation time τ , this computation need be done only once to find the
covariance as a function of the remaining parameters (γ,D, ε).

The bias and error in the fitted scaling exponent αfit and diffusion coefficient Dfit are shown in
Fig. 2. The corresponding results for the fitted localization error εfit are plotted in Fig. S6. We
note that the bias in the estimated localization error is determined primarily by the mean square
displacement due to the time-varying component of the drift velocity that does not get corrected
by the BNEW analysis. Thus, for cases with long correlation time (τ̃ > 10) and relatively small
drift, this bias is a function of the compound parameter τ̃ /γ̃2 (Fig. S6c). When the effect of drift
velocity is small, the overall error in εfit is determined by the sampling error, which increases with
increasing D̃ (increasing magnitude of diffusion relative to localization error).

For less persistent drift (1 < τ < 10), the bias in the scaling exponent drops back down as
the persistent random walk itself approaches diffusive behavior over the timespan of the wavelet
(Fig. S7a). As the persistence time becomes small relative to the time step (τ . 1) the drift
velocity as treated here (with displacement over each discrete step given by ∆~ui) approaches a
chain of freely jointed steps. The average fitted diffusion coefficient then approaches the sum of
the true diffusion and the effective diffusion arising from the drift (D̃0 ≈ D̃ + γ̃2/4). The relative
bias in Dfit goes to γ2/4D for small τ̃ (Fig. S7b).
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FIG. S8: Selecting optimal wavelet shape based on error estimates. (a) Fractional error in fitted exponent
for the case of pure fractional Brownian motion, for different wavelet shapes, analogous to Fig. S2c. Fits
are done for wavelet spans 2 ≤ n ≤ 17 and 1 ≤ k ≤ bkmaxnc. (b) Overall root mean squared error in the
fitted scaling parameter for different wavelet shapes, as a function of maximal allowed wavelet span nmax.
The range of time separations k used for the fitting is selected based on panel (a). Errors are calculated
assuming 400 trajectories of length 200 steps each.

S6. SELECTION OF WAVELET SHAPE

To select among a number of possible wavelet forms for use in BNEW analysis, we compare
the estimated total error in the viscoelastic scaling αfit for a specific set of parameters relevant to
the experimental data discussed in the Results section. The wavelet forms considered (plotted in
Fig.S1) include the simplest sliding mean wavelet (characterized by constant step weights ŵi =
1/(2n)), the Haar wavelet (Supplemental Section S1), and different order Savitzky-Golay wavelets
(SG-1, SG-3, SG-5, defined in Supplemental Section S2). The error in the fitted parameters
depends additionally on the choice of kmax, which sets how many time separations are considered
for each wavelet span (1 ≤ k ≤ bkmaxnc). While increasing kmax up to kmax = 1 will generally
decrease the total error, it can also lead to over-estimating the scaling coefficient α in the case of
subdiffusive stochastic motion, as discussed in Section S3. When fitting experimental data, we do
not know a priori whether the particles are moving in a viscous or a viscoelastic medium, and thus
want to avoid this source of bias in the α estimates. Consequently, while we use kmax = 1 for the
sliding mean, Haar, and SG-1 wavelets, we set kmax = 0.74 for the SG-3 wavelet, and kmax = 0.5
for the SG-5 wavelet, so that in the absence of drift, the scaling can be accurately characterized
by αfit (see Fig.S8a and S2c). As plotted in Fig. S8b, the SG-3 wavelet gives the lowest error in
the scaling estimate at an appropriately selected nmax. These 3rd-order Savitzky-Golay wavelets
are used throughout this work, unless otherwise specified. We note that increasing the degree of
the polynomial fit in the SG wavelets also increases the optimal nmax as the less aggressive data
smoothing more effectively subtracts out a time-varying drift. Selection of the appropriate nmax is
discussed in Section S9.

S7. ERRORS FROM FITTING ORDINARY MSD CURVES

In order to compare the performance of the BNEW method to the traditional approach of fitting
uncorrected mean squared displacement curves, we calculate the error in the fit parameters for the
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FIG. S9: Root mean squared error (Sα) in the fitted scaling parameter using ordinary MSD curves,
without BNEW analysis. Time points 1 ≤ k ≤ kmax are used for fitting. (a) For dimensionless diffusion
constant D̃ = 3, plotted for several values of drift velocity magnitude γ̃. Starred points indicate optimal
value of kmax for each drift velocity. (b) For diffusion constant D̃ = 10 with the same values of drift
velocity. Errors are calculated assuming 400 trajectories with 200 timepoints each.

latter approach in the presence of drift velocities that behave as a persistent random walk. These
errors can be obtained by applying the analysis in Section S5 with the “null” wavelet defined by
wi = 0. The corresponding scaling functions are Ak = k,Bk = 1, so that in the absence of drift,
the rescaled MSD takes the form of the traditional mean-squared displacement,

M̂SDk = 4Dk + 4ε2. (S34)

The drift velocity results in biased estimation of the parameters for stochastic motion, and the bias
becomes more pronounced if a larger range of time separations k is used for the fit. For non-trivial
magnitudes of the drift, the smallest mean squared error in the estimated parameters is achieved
by taking the lowest possible kmax = 3 (Fig. S9). This is the value used for the comparison to
BNEW analysis in Fig. 3. It is interesting to note that even in the absence of persistent drift
(γ = 0), the optimal range of k when fitting ordinary MSD curves is quite small: kmax = 6 for
tracks of length 200 timepoints, with D̃ = 3, and even smaller values for higher dimensionless
diffusion constant D̃. This effect has been pointed out previously based on similar calculations of
the error associated with performing regressions on mean squared displacement curves.[12]

S8. BNEW ANALYSIS OF FRACTIONAL BROWNIAN MOTION WITH
TIME-VARYING DRIFT

In the case where the stochastic component of the particle trajectories corresponds to fractional
Brownian motion, the BNEW method is more sensitive to time varying drift than in the purely
diffusive case. Intuitively, this is to be expected, since fractional Brownian motion results in smaller
overall displacement of the particle relative to the drift, thus making this component of the motion
more difficult to isolate for a given set of parameters γ̃, τ̃ , D̃. The bias in the estimated parameter
values can be calculated by fitting the power-law curve to the analytical equation for rescaled
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FIG. S10: Relative bias in fitted parameters from BNEW analysis of trajectories composed of fractional
Brownian motion, localization error, and persistent random drift (with correlation time τ̃ = 100 and
magnitude γ̃). (a) Bias in scaling exponent α; (b) bias in diffusion coefficient D; (c) bias in localization
error ε. Dimensionless units are used throughout. SG-3 wavelets with spans 2 ≤ n ≤ 17 and time
separations 1 ≤ k ≤ b0.74nc are used for the fits.

FIG. S11: Relative bias in fitted parameters from BNEW analysis (solid lines) as compared to fitting
ordinary MSD curves (dashed lines), for trajectories composed of fractional Brownian motion (with scaling
α = 0.5), localization error, and persistent random drift (with correlation time τ̃ = 100 and magnitude
γ̃). (a) Plotted versus drift magnitude; (b) plotted versus diffusion coefficient. Dimensionless units are
used throughout. SG-3 wavelets with spans 2 ≤ n ≤ 17 and time separations 1 ≤ k ≤ b0.74nc are used
for the fits.

MSD,
M̂SD

(n)
k = 4D∆Ã(n)

k + 4ε2 + 1
B

(n)
k

∑
c

(n,k)
i c

(n,k)
j 〈~ui · ~uj〉 , (S35)

where Ã is defined by Eq. S7, S8. The power-law fits are done as a function of t(n)
k .

The bias in the fitted coefficients is plotted as a function of the scaling exponent α for the
fractional Brownian motion in Fig. S10. We note that for smaller values of α, the magnitude
of drift velocity (γ̃) at which the BNEW analysis can give accurate estimates is more limited.
Nonetheless, the accuracy of this method remains significantly better than fitting ordinary MSD
curves for small magnitude drift (Fig. S11). We note that the advantage of the BNEW method
in this case is particularly striking when determining the scaling coefficient αfit, which can be
estimated to within 50% for γ̃ < 1 (when D̃ = 3, τ̃ = 100). A fit of the ordinary MSD curve would
require γ̃ < 0.3 for the same level of accuracy.
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FIG. S12: Velocity autocorrelation function Cv (blue) for pooled tracks from 93 HL60 cells. Single
exponential fit is shown in black and double exponential in red.

S9. SELECTION OF nmax FOR ANALYZING LYSOSOME MOTION

To determine the appropriate wavelet spans for the BNEW analysis of lysosome motion in
neutrophils, it is necessary to first calculate an approximation of the drift velocity magnitude and
correlation over time. We pool together lysosome tracks from all 93 cells and calculate the velocity
autocorrelation function, defined as

Cv(t) = 1
∆2 〈[~p(t

′ + ∆)− ~p(t′)] · [~p(t′ + t+ ∆)− ~p(t′ + t)]〉 (S36)

where the average is done over all tracks and all time points t′. The velocity autocorrelation
contains components from the drift velocity, the stochastic motion and the localization error.
However, if we assume that the stochastic particle motion is diffusive, then this should contribute
only to the t = 0 correlation timepoint and if the localization error is uncorrelated in time, then it
should contribute to the t = 0 and t = ∆ timepoints only. We thus consider the autocorrelation
function for t ≥ 2∆ only to focus specifically on the drift velocity.

This autocorrelation is not well fit by a single exponential, but can be approximately fit to
a double exponential decay (Fig. S12). We use this approximate functional form to select the
optimal maximal wavelet span nmax to use in the BNEW analysis. Specifically, we approximate
the drift as the composition of two independent persistent random walks with correlation times
τ1 = 1.1 sec and τ2 = 25 sec and magnitudes γ1 = 0.49µm/s and γ2 = 0.58µm/s, respectively.
The error in the fitted parameters can then be calculated using a generalization of Eq. S27,

cov
(
η

(m1)
l , η

(m2)
l+q

)
=(γ1∆)4H(u,1)

m1,m2 + (γ2∆)4H(u,2)
m1,m2 + (2D∆)2H(v)

m1,m2 + ε2H(ξ)
m1,m2

+2∆2
[
γ2

1F
(u,1)
m1,m2 + γ2

2F
(u,2)
m1,m2

] [
2D∆F (v)

m1,m2 + ε2F (ξ)
m1,m2

]
+4Dε2∆F (v)

m1,m2F
(ξ)
m1,m2 + 2γ2

1γ
2
2∆4F (u,1)

m1,m2F
(u,2)
m1,m2 ,

(S37)

where H(u,1),H(u,2) refer to the fourth order correlation matrices (Eq. S28) and F(u,1),F(u,2) to the



16

FIG. S13: Analytically approximated errors in estimated fit parameters with the BNEW method, assum-
ing drift velocity composed of two independent persistent random walks with dimensionless correlation
times τ̃1, τ̃2 and magnitudes γ̃1, γ̃2, respectively. Stochastic motion is assumed diffusive with dimensionless
diffusion constant D̃. Time units are non-dimensionalized by the time step ∆ = 0.05s and length units by
the localization error ε = 0.015µm. The drift velocity parameters are selected based on the pooled velocity
autocorrelation function for all cells (Fig. S12), and the diffusion constant and localization error based
on BNEW analysis results with SG-3 wavelets of span 2 ≤ n ≤ 17 and time separations 1 ≤ k ≤ b0.74nc
(Fig. 5). Bias and error in D̃fit are shown as fractions of D̃. Bias and error in αfit, ε̃fit are shown in
dimensionless units. Error calculations are done for a total of 391 tracks of length 118 time points each.

second order correlation matrices (Eq. S30), based on τ1 and τ2, respectively.
The analytically calculated errors in the fitted parameters for this approximate double-

exponential drift velocity are plotted in Fig. S13 as a function of the maximal wavelet span nmax.
For this analysis, we assume 391 tracks of length 118 time points each, the mean values for the
population of HL60 cells.

We find that the minimum error in estimating the viscoelastic scaling α occurs for nmax = 17,
which we use for the analysis of the experimental data. The dimensionless values of the diffusion
coefficient (D̃ ≈ 3.5) and drift velocities (γ̃1 ≈ 1, γ̃2 ≈ 1.4) used to select the optimal nmax were
taken from the BNEW analysis statistics of the population of HL60 cells (Fig. 5). The choice of
wavelet span used for the analysis is thus self-consistent with the parameters obtained from the
analysis itself.

S10. QUANTIFYING LOCALIZATION ERROR WITH A FIXED CELL

We obtain an independent measurement of the localization error inherent in our imag-
ing protocol by tracking labeled lysosome particles in several HL60 cells fixed with formalde-
hyde/glutaraldehyde (see Experimental Methods). The mean squared displacement of the particles
is approximately constant with time for short times (Fig. S14a), and the distribution of individual
step sizes is shown in Fig. S14b. The localization error is estimated from the root mean squared
displacement over a single time step,

ε =
√〈
|~p(∆)− ~p(0)|2

〉
/4 ≈ 0.014µm (S38)
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FIG. S14: Particle trajectory analysis for fixed cells (statistics from 11 cells total). (a) Mean squared
displacement of lysosomes in fixed HL60 cells (blue) and a live cell (red, cell shown in Fig. 4). Linear
scaling indicated with black line. (b) Histogram of step sizes for lysosome displacement in fixed cells,
along a single dimension, over one time step (∆ = 0.05s).
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