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Computational Tool
SpringSaLaD: A Spatial, Particle-Based Biochemical Simulation Platform
with Excluded Volume
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ABSTRACT We introduce Springs, Sites, and Langevin Dynamics (SpringSaLaD), a comprehensive software platform for
spatial, stochastic, particle-based modeling of biochemical systems. SpringSaLaD models biomolecules in a coarse-grained
manner as a group of linked spherical sites with excluded volume. This mesoscopic approach bridges the gap between highly
detailed molecular dynamics simulations and the various methods used to study network kinetics and diffusion at the cellular
level. SpringSaLaD is a standalone tool that supports model building, simulation, visualization, and data analysis, all through
a user-friendly graphical user interface that should make it more accessible than tools built into more comprehensive molecular
dynamics infrastructures. Importantly, for bimolecular reactions we derive an exact expression relating the macroscopic on-rate
to the various microscopic parameters with the inclusion of excluded volume; this makes SpringSaLaDmore accurate than other
tools, which rely on approximate relationships between these parameters.
INTRODUCTION
Computational modeling has become indispensable for
elucidating the properties of complex biochemical net-
works. In a traditional modeling approach the modeler de-
fines the various chemical species of interest and the
reaction kinetics between them, which defines a closed
network of reactions that can be simulated in a number of
ways. If the copy number of the individual species is low,
the kinetics should be simulated by solving the chemical
master equation for the stochastic population probabilities.
If the number of molecules is large enough and the system
is well mixed, then deterministic simulations can be per-
formed by numerically solving ordinary differential equa-
tions (ODEs). Copasi (copasi.org) is a popular example of
a simulator for ODEs and stochastic network models (1).
Spatial dynamics within an explicit geometry can be
modeled by adding diffusion terms to the reaction equations
and solving the resulting partial differential equations.
MCell (mcell.org (2)) and Smoldyn (smoldyn.org (3)) are
popular software platforms for modeling discrete Brownian
motion and stochastic reactions. Virtual Cell (vcell.org) is a
comprehensive software environment for modeling and
simulating reaction networks and membrane transport either
stochastically or deterministically, with the option of ac-
counting for diffusion in realistic cellular geometries (4,5).
But there are two problems with these commonly used tools
for computational systems biology: they cannot readily
handle models with combinatorial complexity, and, for
spatial models, they do not accurately model the excluded
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volume and spatial extent of interacting molecules or
clusters.

A combinatorially complex system makes it difficult or
impossible for the modeler to specify a reaction network
without additional computational tools. For example, a re-
ceptor with 10 phosphorylation sites can exist in 210 ¼
1028 states, with an even larger number of reactions needed
to describe the transitions between these states. In general,
the size of the reaction network grows exponentially with
the number of potential protein modifications or binding
sites, and this phenomenon is termed ‘‘combinatorial
complexity’’. Tools such as BioNetGen (6,7) automatically
generate reaction networks from a small number of defined
rules, but the exponential increase in network size ulti-
mately limits the practical simulation of such large net-
works. In a recent study (8), we estimated that it would
take a 2.54 GHz Intel Xeon processor 290 years to generate
the reaction network for simple model of the synaptic ki-
nase CaMKII. Even if network generation completed in a
reasonable amount of time, we would not have the compu-
tational resources required to simulate such a large system
of differential equations or store the results of such
calculations.

Some particle-based methods circumvent the problems of
combinatorial complexity by avoiding the process of
enumerating all species and reactions (9–12). Instead, these
methods (also known as agent-based or network-free simu-
lators) use reaction rules to probabilistically spawn the
states of individual molecules during the simulation, and
therefore only need to consider the potential reactions for
species (i.e., states) that are actually present in the system.
These methods are implemented in several openly acces-
sible software tools (11,13,14).
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A major limitation of most spatial simulators is that they
treat all molecules, even large multicomponent complexes,
as point particles. Various approaches exist to model the ef-
fects of excluded volume, such as adding density-dependent
terms in reaction-diffusion equations (15,16) or by defining
a reaction that moves nearby particles apart (as implemented
in Smoldyn), but in general such methods are unable to
model important properties that depend on the spatial extent
and composition of the complex, such as the effects of
spatial orientation and the reduced diffusion of larger com-
plexes. One biologically important example of such a sys-
tem is ligand-induced membrane receptor clustering, as
illustrated in Fig. 1, which shows a system of trivalent recep-
tors clustered by interacting with bivalent ligands. Such in-
teractions lead to the formation of molecular clusters that
increase local concentration of biomolecules, potentially
triggering signaling events. We have included such com-
plexes in a class of biophysical structures called pleomor-
phic ensembles (PEs) (12,17,18), because these complexes
are often plastic, with dynamic and variable composition.
Accurate modeling of PEs requires tools that account for
their extended spatial structure and excluded volume, as
these properties underlie essential features of PEs, such as
reduced access to open binding sites on the interior of the
cluster or rebinding of newly dissociated monomers.
Furthermore, because the sizes and compositions of pleo-
morphic ensembles are open-ended (i.e., sampling an infin-
ite number of states), a particle-based algorithm is required.
For these reasons, pleomorphic ensembles cannot be
FIGURE 1 Receptor clustering example. Ligand-induced clustering of

membrane receptors is one example of a system with combinatorial

complexity where spatial organization and excluded volume can strongly

modify system dynamics and equilibrium organization. Bivalent ligands

are shown in blue, trivalent receptors are shown in red, and the cyan line

represents the membrane. To see this figure in color, go online.
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modeled by computational tools such as MCELL, Smoldyn,
or Virtual Cell.

In principle, PEs could be modeled with molecular dy-
namics (MD) simulations, but the large sizes of these sys-
tems, which consist of tens to hundreds of proteins, make
such simulations computationally impractical. These sys-
tems are best modeled using a mesoscopic, coarse-grained
approach, where individual proteins are modeled as a single
site or a collection of linked sites. In recent years a number
of programs have become available for such mesoscopic
modeling, most notably SRSim (19) and ReaDDyMM
(20,21). However, these and other programs of this class
require a level of computational expertise that makes them
inaccessible to the typical biologist. Moreover, all available
programs implement bimolecular reactions by relating
macroscopic on-rates to the microscopic parameters using
formulae that are only approximate in the presence of
excluded volume, or which were derived assuming well-
mixed conditions that are invalid for the typical systems
studied.

Here we introduce a standalone modeling and simulation
package, SpringSaLaD, which implements spatial, particle-
based models with excluded volume and accurate biochem-
ical reactions, including the treatment of allostery. Notably,
we derive and implement an exact formula to relate bimolec-
ular macroscopic on-rates to the various microscopic param-
eters. The platform offers a simple but powerful user interface
and allows for the simulation of receptor clustering and other
multistate pleomorphic ensembles. It will run in a reasonable
time on any modern personal computer (hours to a few days,
depending on the number of molecules simulated). The soft-
ware is written in Java and is freely available as a standalone
.jar file for Windows, Mac, or Linux at www.ccam.uchc.edu/
resources/ccam_software.html#SpringSaLaD. The simula-
tion code is bundled as an independent .jar file, and may be
used on the command line to, for example, run hundreds of
simultaneous simulations on a Linux cluster. A User’s Guide
and Tutorial are included in the downloadable zip file, and are
also available in the Supporting Material. Source code is
freely available on Github at pjmichalski/SpringSaLaD
(GUI components) andpjmichalski/LangevinNoVis01 (simu-
lation components).
MATERIALS AND METHODS

Please see the Supporting Material.
RESULTS

Molecule description

Springs, Sites, and Langevin Dynamics (SpringSaLaD) de-
scribes the molecules in the system as a set of distinct spher-
ical sites connected by links, which are modeled with stiff
springs. The sites may represent different domains within
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the macromolecule, and may be selected as binding sites for
potential reactions with other binding sites. Many biological
molecules of interest can be described in such a manner, and
two of these are shown in Fig. 2: the hemoglobin tetramer
and a GFP-tagged a-tubulin. Models that seek to describe
finer details, such as the motion of individual amino acids,
are more appropriately simulated with MD, while models
with less detail will run faster with simulators that assume
molecules to be infinitesimal points.

We will use a model of protein kinase A (PKA) to illus-
trate the three steps involved in molecule construction.
These steps and the GUI for molecule construction are
shown in Fig. 3. Firstly, we define the types of sites in the
molecule. For example, PKA contains two types of sites:
regulatory and catalytic domains. Each type can have asso-
ciated with it an arbitrary number of internal states with
their own associated set of biochemical reactions (reactions
are described below). For example, the regulatory domain
could have three states describing the number of bound
cAMP molecules (0, 1, or 2), and the catalytic domain could
have an inactive and active state reflecting its kinase activity.
Each type also has an associated physical size, diffusion
constant, and color (for visualization purposes).

Secondly, sites are added to the molecule, and each site is
assigned one of the previously defined types. To construct
PKA we would add four sites, assigning two of them to be
regulatory domains and two to be catalytic domains. Physi-
cally, sites are modeled as impenetrable spheres to accu-
rately capture excluded volume effects.

Thirdly, links are added to connect the sites to each other.
Each site can be linked to an arbitrary number of other sites
in either two or three dimensions. The only requirement is
that sites cannot overlap. Links are stiff and thus define an
intersite distance, but are free to rotate around the sites.
For example, a triangular molecule with three sites will
not maintain its geometry in the simulation with only two
links, but will if a third bond is added to enforce a distance
between the two outer sites. Links are only used to control
a

b

the distance between sites and do not occupy physical space,
and both sites and other links are free to pass through a link.
Excluded volume is only enforced by sites.

To specify membrane-bound molecules, a special anchor
designation is assigned to a site, which restricts it to two-
dimensional diffusion within the membrane; the anchor
site can then be linked to sites that diffuse in the adjacent
volume, effectively restricting those sites to be part of a
membrane-bound molecule.

SpringSaLaD provides several convenience methods for
constructing large linear polymers, and other convenience
methods for constructing large arrays of linked receptors.
Molecules must be defined as intracellular, extracellular,
or membrane-bound. These and other details can be found
in the User’s Guide and Tutorial, which are available in
the Supporting Material.
Geometry

SpringSaLaD currently only supports a rectangular geome-
try with reflecting boundary conditions. The rectangular ge-
ometry is partitioned into an extracellular space, a planar
membrane, and an intracellular space. The size of the mem-
brane and the depths of the intra- and extracellular spaces
are user-defined. Future versions of SpringSaLaD will sup-
port a wider variety of geometries.
Particle motion: diffusion and constraints due to
binding

Particle motion is influenced by two classes of forces:
random forces that lead to diffusional motion, and interpar-
ticle forces that impose the constraints from intra- and inter-
molecular bonds. These forces are incorporated in the
overdamped Langevin equation (22),

z v
. ¼ F

.

rand þ F
.

bonds; (1)
FIGURE 2 Examples of coarse-grained models.

Two examples of proteins that can be readily decom-

posed into nanometer-sized domains appropriate for

coarse-grained modeling with SpringSaLaD. (a) The

hemoglobin tetramer can be coarse-grained into four

independent biochemical sites. (b) Any globular

GFP-tagged protein can be represented as two con-

nected sites. Here we show GFP-tagged a-tubulin.

The images on the left are modified from the original

images available at (a) http://zeiss-campus.magnet.

fsu.edu/articles/probes/fpintroduction.html, and (b)

http://upload.wikimedia.org/wikipedia/commons/3/

3d/1GZX_Haemoglobin.png. To see this figure in

color, go online.
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FIGURE 3 PKA model. (Top) A description of PKA in terms of SpringSaLaD model components. PKA is composed of two regulatory sites and two cat-

alytic sites. The state of a regulatory site is defined by the number of bound cAMP molecules, while the catalytic subunit can be in either an inactive or an

active state. (Bottom) The SpringSaLaD molecule editor GUI, as used to construct the PKA molecule described on the top. To see this figure in color, go

online.
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where z is the coefficient of viscous friction, v
.

is the parti-
cle velocity, and F

.

rand and F
.

bonds represent the random
forces and the total force of bonds. The random forces are
guaranteed to recapitulate the desired diffusion, provided
they are chosen from normal distribution with variance

�
F
.

randðtÞ$F
.

randðt0Þ
� ¼ 2ndDz

2 dðt � t0Þ; (2)

where D is the desired diffusion coefficient, nd is the dimen-
sion of the system (here nd ¼ 3), and the delta-function sim-
Biophysical Journal 110(3) 523–529
ply states that the random force is uncorrelated in time. The
bonds are modeled as stiff springs,

F
.

bonds ¼
X
i

ki ðri � r0;iÞ bri; (3)

where the sum runs over all bonds, ki is a spring constant, bri
is the unit vector pointing from the particle to the neighbor
with which it shares a bond, ri is the current interparticle dis-
tance, and r0;i is the equilibrium bond distance. The exact
value of the spring constant is not important, provided the
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spring is stiff enough to keep sites near the expected dis-
tances but not so stiff that accurate motion requires unrea-
sonably small time steps. In practice, only the ratio k=z is
required, and in SpringSaLaD this ratio is the same for all
bonds and links, namely, k=z ¼ 108 s�1; this allows us to
use time steps of ~1–100 ns for biologically relevant diffu-
sion constants.
Reactions

Zeroth-order

SpringSaLaD supports particle creation reactions, which
may be used to buffer the concentration of a species. Given
a macroscopic creation rate, kcreate, with units mM/s, a single
molecule is added to the system at each time step with prob-
ability kcreateVdt, where V is either the intra- or extracellular
volume depending on the location of the molecule. A mole-
cule is added by testing random positions in the system until
a position is found that does not overlap with other particles.
Note that this mechanism will fail in extremely dense sys-
tems. In such a system a simple, constant-rate zeroth order
reaction is not consistent with physical constraints, and is
not an appropriate modeling construct.

First-order

SpringSaLaD supports three general types of first-order re-
actions, all of which are described by a reaction rate, r,
with units s�1, and which occur at each time step with prob-
ability rdt. These are:

1) Bond dissociation reactions: when a dissociation reac-
tion occurs, the bond is simply removed from the system.

2) Internal state transitions: these describe the transitions
between the internal states of each site, as defined by
the type of that site. The probability of these transitions
can depend on the identities of binding partners or the
states of other sites in the same molecule. The former de-
pendency would be used, for example, to prevent a tran-
sition from an unphosphorylated to a phosphorylated
state unless the site is bound to a kinase. The latter de-
pendency can be used to model allosteric interactions.

3) Decay reactions: these are used to remove molecules
from the system.
Second-order

SpringSaLaD supports binding reactions between two sites.
A bond is modeled by the creation of a new link between the
reacting sites. The link is modeled identically to the links
that hold molecules together, except it has an associated
off-rate controlling molecular dissociation. Particle-based
simulations often use the Smoluchowski approach (23) to
model bimolecular reactions, but such an approach is
incompatible with excluded volume. Instead, we modified
the approach described in Erban and Chapman (24) to ac-
count for excluded volume. Each site is associated with
two radii: the physical radius, ri (i ¼ 1,2), which is defined
in molecule construction and enforces excluded volume,
and a slightly larger reaction radius, Ri. Two reactive sites
undergo a binding reaction with probability l dt per time
step when their reaction radii overlap. The reaction rate l

is related to the macroscopic on-rate, kon, with units of
mM�1 s�1, through

kon ¼ 4pRDf

1� R

a
f

; (4)

where

f ¼ 1�
�r0
R

� r0 sinh

�
R� r

r0

�
þ r cosh

�
R� r

r0

�

r sinh

�
R� r

r0

�
þ r0 cosh

�
R� r

r0

� (5)

and r0 ¼
ffiffiffiffiffiffiffiffiffi
D=l

p
, D ¼ D1 þ D2, r ¼ r1 þ r2, R ¼ R1 þ R2,

and a is the dissociation radius.
The derivation of this equation and additional discussion

of bimolecular reactions can be found in the Supporting
Material.
Data analysis

SpringSaLaD comes packaged with an interactive three-
dimensional viewer to visualize simulation results. The
viewer is implemented in Java3D and provides methods
for saving images and generating movies in a variety of for-
mats. (Currently, the viewer will only work onWindows and
Linux machines. The viewer is disabled on Macs because of
an incompatibility between Java3D and the latest versions
of Java on Macs.) Two example videos (Movies S1 and
S2) that show clustering in the Nck-nephrin-Nwasp system
are available in the Supporting Material. The program keeps
track of a variety of observables, such as the number and
types of bound particles or the number of sites in a particular
state, and automatically displays this data in a convenient
tabular format. Stochastic simulations require many runs
to compute average properties. SpringSaLaD provides the
option to launch runs in sequence or in parallel, depending
on the user’s computational resources, and automatically
computes averages and standard deviations of the observ-
ables in the data tables. Instructions for the viewer and
data analysis are provided in the User’s Guide and Tutorial.
Algorithm implementation verification

We constructed simple models of analytically tractable sys-
tems to verify the accuracy and implementation of all simu-
lation algorithms. These included various tests of diffusion
and all implemented reactions. As an example, we modeled
Biophysical Journal 110(3) 523–529
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a system consisting of a single species undergoing a creation
and decay reaction. In this case SpringSaLaD reproduces
the full population distribution predicted by the time-depen-
dent solution to the chemical master equation. In the Sup-
porting Material, we provide a discussion of all the tests,
the models used, and the simulation results.
DISCUSSION

The software presented here fills an important gap in the
spectrum of publicly available biochemical simulation
platforms, allowing the simulation of systems that exhibit
combinatorial complexity, are too large for MD simulations,
and are influenced by spatial effects. Many important bio-
logical systems fall into this category, such as chromatin dy-
namics in the confines of a crowded nucleus, signaling in the
dense and diverse postsynaptic density of dendritic spines,
signaling in the narrow foot processes of kidney podocytes,
and the large variety of structures, such as receptor clusters,
cell adhesion complexes, or mRNA granules, which we
have described as PE (17). The primary conceptual require-
ment is that molecules must be described in a coarse-grained
manner as a linked collection of biochemically distinct sites,
with radii of a few nanometers. Modeling at a finer scale re-
quires MD simulations, while coarser models can be simu-
lated more efficiently with other methods. The description
in terms of linked sites automatically captures emergent
properties of a dynamic system, such as the reduced diffu-
sion coefficient of larger clusters because of the disordered
individual motions of its components.

There are three significant but unavoidable drawbacks to
our approach. Firstly, there is the increased computational
cost associated with tracking the hundreds of individual
sites. The simulation runs time scales linearly in the number
of particles (for a fixed concentration), which puts practical
limits on the number of molecules in the system. Secondly,
the simulation must use time steps of 10 ns to accurately
enforce excluded volume and prevent overextending the
springs holding sites together. This is orders-of-magnitude
smaller than the 100 ms time steps typical in Smoldyn and
the 1 ms to 1 s time steps common in ODE or partial differ-
ential equation simulations. On the other hand, it is many or-
ders-of-magnitude larger than the femtosecond time steps
used in MD simulations. We find that simulations following
up to 1000 particles over the course of 1–10 s will run in
1–5 days. We have several improvements planned, such as
a port to Cþþ and parallelization of individual simulations,
which will allow simulation of larger systems.

Thirdly, there is the practical difficulty in relating some
microscopic parameters required in the model to macro-
scopic parameters measured in the lab. For example, Spring-
SaLaD requires the user to define a diffusion constant for
each site in a molecule, whereas the experimentally acces-
sible parameter is the diffusion coefficient of the molecule
as a whole. In some cases, such as linear polymers or spher-
Biophysical Journal 110(3) 523–529
ical globules, the two parameters can be related, but for an
arbitrary geometry there is no exact formula to relate the
macroscopic and microscopic diffusion coefficients, and
the modeler may have to try several microscopic values to
find one that is appropriate. A similar difficulty arises
when defining the on-rate of a bimolecular reaction. If the
reactive site is buried in a relatively inaccessible pocket of
a large molecule, then the true microscopic on-rate may
be many orders-of-magnitude larger than the macroscopic
value. Again, no exact relation exists for an arbitrary geom-
etry, and a parameter scan may be required to find a suitable
value. These limitations are not unique to SpringSaLaD, but
are faced in any coarse-grained modeling approach.

To our knowledge, the one truly new feature described
here is the Smoluchowski-like algorithm used to model
bimolecular interactions with excluded volume. Although
Eq. 4 is derived with standard methods, we are not aware
of its previous publication, and it is not used in any other
biochemical simulation platform. SpringSaLaD packages
these methods together with standard treatments of first-or-
der reactions, allosteric state transitions, and Langevin dy-
namics within a convenient, user-friendly interface, which
will make these methods available to a broader community
of biochemical modelers. In the next year we plan to inte-
grate SpringSaLaD with the Virtual Cell modeling and
simulation platform (4,5,25,26), where it will be offered
as an additional tool to complement the wide variety of
modeling methods supported by VCell.
SUPPORTING MATERIAL

Supporting Materials and Methods, Supporting Results, twelve figures, one

table, SpringSaLaD User’s Guide and Tutorial, and two movies are avail-

able at http://www.biophysj.org/biophysj/supplemental/S0006-3495(15)

04810-9.
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SpringSaLaD: a spatial, particle-based biochemical simulation platform with excluded volume 

P. J. Michalski and L. M. Loew 

SUPPORTING MATERIAL 

SUPPLEMENTARY SECTION I:  Validation Simulations 

Here we present the results of simulations used to validate various components of SpringSaLaD. 

Diffusion 

The Langevin dynamics algorithms underlying SpringSaLaD are guaranteed to reproduce diffusive motion with 

the given diffusion constant.  We verified this with a model consisting of a single molecule species,  , 

composed of one inert site, with diameter 1 nm and diffusion constant          .  We calculated the 

mean-squared-displacement as a function of time and compared it to the expected short- and long-time 

behavior.   

At short times we expect              where   is the dimensionality of the system.  To verify this 

behavior, we simulated 2000    molecules diffusing in a cube of side length 2001 nm, which is effectively 2000 

nm after accounting for the radius of A.   The occupied volume fraction,  , is 

  
              

       
               

which allows us to ignore excluded volume effects and treat this as a system of non-interacting particles.  

Short time behavior is expected for   
  

   
      , and we simulated diffusion for 10 µs, well-within the 

short-time regime.   In Fig. 1 we plot the msd as a function of time, and use a linear fit to determine the 

“measured” diffusion constant, which gives                       , which is within 0.1% of the expected 

value. 

At long times we expect to observe confined diffusion.  In 1D, the long-time behavior is given by  

 
        

  

 
 
    

  
     

    

  
    (1) 

where   is the length of the system. To verify this behavior, we simulated 200 A molecules diffusing in a cube 

of side length 101 nm for 6 ms.  The occupied volume fraction is             , so we can treat this as a 

system of non-interacting particles.  Figure 2 shows a plot of the msd along the x-coordinate as a function of 

time, along with a best fit to equation (1).  The fit gives                      , which is within 2% of the 

expected value. 

SpringSaLaD can also be used to investigate the effects of crowding on diffusional motion.  For 2- and 3-

dimensional motion crowding simply renormalizes the diffusion constant, but in 1D crowding also changes the 

scaling exponent such that at high densities            .  We investigated if SpringSaLaD could reproduce 

this behavior by using a model consisting of 200 membrane-embedded molecules with a diameter of 4 nm and 

         .  The system has a width of 4.5 nm, which effectively restricts motion to one dimension.  The 



length was varied from 80000 nm to 1000 nm to study system densities from 0.01, where we expect free 

diffusion, to 0.8, where we hoped to see crowding behavior.  The system was simulated for      .  

Figure 3 shows a plot of the msd as a function of time for each of the simulated systems.  As the system 

density increases the msd is reduced, and at large densities the relationship no longer appears to be linear.  

We quantified the effects of crowding by fitting            for each curve, and Fig. 4 shows a plot of the 

exponent,  , as a function of system density.  At low densities    , as expected, and   decreases as the 

density increases.  At a density of 0.7 we found       , and at a density of 0.8 we found       , both of 

which are in good agreement with the theoretical result.  

Creation/Decay Reactions 

SpringSaLaD supports zeroeth-order particle creation reactions defined by a rate constant    , with units 

      , and particle decay reactions defined by a rate constant   , with units    .  These reactions were 

verified using a system with the same composition as that used to verify diffusion (single site molecule  , 

diameter 1 nm,            ).   If we let       be the probability of finding m  molecules at time  , then 

the chemical master equation is 

                                    (2) 
 

where   has units of     and is given by            , where   is the volume of the system in    , and the 

factor of 602 comes from Avogadro’s constant and unit conversion factors.  The macroscopic quantity of 

interest is the average number of particles at time t,  

 
               

 

   

   (3) 

 

Equation (2) can be solved exactly for certain limiting cases. 

1) If      then the equation describes a Poisson process.  Assuming the system begins with no particles, 

           , then the complete solution is 

 
       

     
 

  
         (4) 

 

              (5) 
 

We ran 500 simulations with               in a cube of side length 2000 nm, giving            .  

Simulations were run for 10 ms.  Figure 5(a) shows the average number of particles as a function of time 

compared to the prediction of Eq. (5), and the results are seen to be in excellent agreement.  As a more 

stringent test, Fig. 5(b) shows the full distribution at 10 ms compared to the predicted distribution of Eq. (4).  

The distributions are statistically equivalent. 



2) If      then the equation describes a simple decay process.  Assuming the system begins with M particles 

at time t=0, then the complete solution is 

        
 
 
                         (6) 

 

                 (7) 
 

We ran 500 simulations with            in a cube of side length 2000 nm.  Simulations were run for 100 

ms.  Figure 6(a) shows the average number of particles as a function of time compared to the prediction of Eq. 

(6), and the results are seen to be in excellent agreement.  As a more stringent test, Fig. 6(b) shows the full 

distribution at 10 ms compared to the predicted distribution of Eq. (7).  The distributions are statistically 

equivalent. 

3) If both creation and decay processes are allowed, then we can solve for the stationary distribution and the 

time-dependent average.  Assuming the system begins with no particles, we obtain 

 
    

  

  
       (8) 

 

                    (9) 
 

where        .  We ran 500 simulations with                                           , giving 

        , in a cube of side length 2000 nm.  Simulations were run for 50 ms, and equilibrium was achieved 

at approximately 15 ms.  Figure 7(a) shows the average number of particles as a function of time compared to 

the prediction of Eq. (9), and the results are seen to be in excellent agreement.  As a more stringent test, Fig. 

7(b) shows the full equilibrium distribution (averaged over the distributions at 20, 30, 40, and 50 ms) 

compared to the expected distribution from Eq. (8).  The distributions are statistically equivalent. 

Bimolecular Reactions 

SpringSaLaD supports bimolecular association/dissociation reactions which are defined by an on rate,    , 

with units        , and an off rate,     , with units    .   

Single Species Combination 

Consider a molecular species,  , which can dimerize to form a complex, C.  Mass conservation implies 

               , which shows that the system is completely characterized by the concentration of A.  Let 

  denote the total number of free A molecules at time t, and assume there are   total molecules of   in the 

system.  If we let   be the total number of   molecules, then   
 

 
     .  The chemical master equation 

is 



 
     

 

 
                         

  
        

 
                            

(10) 

 

where    is Avogadro’s constant.  It is straightforward to show that the average number of particles obeys 

      

  
              

    
   

              (11) 

We try to recover the deterministic limit by letting      
 

   
 ,  

   

   
 , and assuming zero variance, 

         , and find 

   

  
                    

      
 

   
   (12) 

which only agrees with the classical result when    .   

The steady-state solutions to the master equation are 

 

    
 
   
   

 
   

     
 

           

      
   
  

 
   

 
  

                   (13) 

 

   
 
 
   

 
   

     

       

      
 
  

 
   

 
  

                   (14) 

where   
       

    
 is a dimensionless parameter and             is the Kummer confluent hypergeometric 

function. 

The complete time dependent solution can be obtained in the deterministic limit.  If we define      

        , where             is the equilibrium dissociation constant, then we find 

 
       

 

 
  

                                  

                                  
   (15) 

where          . 

We modeled A as a molecule with a single site of radius 1 nm and          , which could undergo a 

dimerization reaction with                and            .  The simulation volume was a cube with side 

length 500 nm (              giving        .  The stochastic result only differs from the classical 

deterministic result when    , and thus we expect the average concentrations to follow the deterministic 

results. The simulations consisted of 150 initially free A molecules (          , and simulations were run 

for 400 ms.  Figure 8(a) shows the average number of particles as a function of time compared to the 

prediction of Eq. (15),  and Fig. 8(b) shows the full equilibrium distribution (averaged over the distributions at 

100, 150, 200, 250, 300, 350, and 400 ms) compared to the expected distribution from Eq. (14).  The 

observations match the expected values, except the average number of particles is larger than expected at 

short time scales.  This is a consequence of the fact that the on-rate can be calculated to match the initial time 



course or the equilibrium values, but not both, and we choose to match the on-rate to the equilibrium value.  

A further discussion of this issue can be found in Supplementary Section II. 

Two Species Combination 

We now consider the situation where two species,  and  , dimerize to form a complex,  .  Mass conservation 

implies                and               .  Letting                               then we 

must have                           and we see that only one of these species can be taken as an 

independent variable.  To simplify the analysis we assume     , giving                    .  Let  be 

the number of A molecules, and let           be the initial numbers of   and  , respectively.  Then the 

chemical master equation is  

                                   

  
        

 
                                      

(16) 

and the average number of particles obeys 

     

  
              

   
   

                    (17) 

The same relations used to go from Eq. (11) to Eq. (12) now give 

   

  
                 

              (18) 

The steady state solutions to the master equation are 

 
     

  

 
 

        

          

  

                    
                      (19) 

 
    

  
         

 
          

         

                      
                         (20) 

 

where              .  

The complete time dependent solution can be obtained in the deterministic limit.  Define             , 

then 

 
     

     
 

 
 

 
  

                   

                   
  (21) 

 

where               and    
       

 

 
 

 

 
 

     

 
 .  

We modeled both   and   as molecules with a single site of radius 1 nm and          , which could 

undergo a dimerization reaction with                and            .  The simulation volume was a 

cube with side length 500 nm (              giving        .  The stochastic result only differs from the 

classical deterministic result when    , and thus we expect the average concentrations to follow the 

deterministic results. The simulations consisted of 75 initially free   molecules (          ) and 150 

initially free   molecules (          , and simulations were run for 400 ms.  Figure 9(a) shows the average 



number of particles as a function of time compared to the prediction of Eq. (21),  and Fig. 9(b) shows the full 

equilibrium distribution (averaged over the distributions at 100, 150, 200, 250, 300, 350, and 400 ms) 

compared to the expected distribution from Eq. (19).  The observations match the expected values, except the 

average number of particles is larger than expected at short time scales, as discussed above. 

Transition Reactions 

SpringSaLaD supports transition reactions between states for each site, characterized by a single rate constant 

  with units       A transition reaction could be used to model the phosphorylation of a site (conversion 

between an “unphosphorylated” and “phosphorylated” state), the activation of an enzyme (conversion 

between “off” and “on” state), or many other types of reactions.  These reactions may be restricted such that 

they only occur under certain conditions, and SpringSaLaD currently supports four such conditions. 

1) No condition. Transition can always occur. 

2) Free.  Transition can only occur if the site is not bound by another site.  This is useful if binding tends to 

lock a molecule in a particular state and thus prevent the transition. 

3) Bound.  Transition can only occur if the site is bound by specific site.  A phosphorylation reaction would 

use this condition to ensure phosphorylation only occurs when the site is bound by the kinase. 

4) Allosteric.  Transition can only occur if a specific site in the same molecule is in a particular state. 

Allosteric Activation 

We test our implementation of conditions (1) and (4) using a simple model of allosteric activation of an 

enzyme.  Consider an enzyme with two sites: an allosteric site,  , which can be either “off” or “on”, and an 

enzymatic site,  , which can also be either “off” or “on.”  We assume the allosteric site can spontaneously 

turn on, and the enzymatic site can only turn on once the allosteric site is activated.  We assume all molecules 

begin as         , and assume there are no back reactions, which keeps this model simple and analytically 

tractable.  The full reaction diagram is thus 

        
  
        

  
         

and we will assume      to simplify the discussion.   

Let   be the number of         ,   be the number of        , and         be the number of        

(only         are independent variables), where   is the total number of molecules in the system.  The 

chemical master equation for the joint probability distribution is 

                                                      (22) 

with solution 

 
         

  

            
                           (23) 

where 

 
            (24) 



 
     

  
     

               (25) 

 
     

  
     

          
  

     
           (26) 

The individual probability distributions may be obtained by summing over the joint probability distribution, for 

example,               
   
     gives the probability distribution for         .   We obtain 

 
        

 
 
                                    (27) 

 
        

 
 
                                    (28) 

 
        

 
 
                                   (29) 

 

with average values 

 
                         (30) 

 
                         (31) 

 
                       (32) 

 

We simulated 200 molecules in a cubic container with side length 500 nm for a total of simulation time of 5 

ms.  The reaction rates were                           , and we ran 500 independent simulations.   

Figures 10(a) and 10(c) plot the time dependence of the average values of                    , respectively, 

and compares them to the predictions of Eqs. (30) and (32).  The results are in excellent agreement with the 

expected values.  Figures 10(b) and 10(d) show the full probability distributions at 1.5 ms and compare them 

to the predicted distributions from Eqs. (27) and (29).  The distributions are statistically equivalent.   

Enzymatic Activation 

We test our implementation of conditions (2) and (3) with a simple model of ligand-mediated enzymatic 

activation.  Consider a system with two species, a ligand which can be either inactive or active, and an enzyme 

which can be either off or on.  Denote the ligand by    , for k=”inact” or “act”, and denote the enzyme by    , 

where j=”off” or “on”.  Assume that the ligand can convert between its active and inactive states when it is not 

bound to the enzyme, and assume that the enzyme can turn on only when bound by the ligand.  To simplify 

the system, assume that the ligand cannot dissociate from the active enzyme.  Then the complete set of 

reactions is as follows: 

1) Two reactions describing ligand activation and deactivation.  We assume that the ligand can only switch 

states when it is free (unbound). 



       
       
          

    
         
              

2) Two reactions describing E activation and deactivation.  We assume that E can only switch states while it is 

bound by ligand. 

         
       
               

        
         
                 

3) Two reactions (association and dissociation) describing ligand binding and unbinding.  We assume that 

binding is reversible when E is off, but dissociation is prevented when E is on.   

         
           
                 

It is unlikely that analytic solutions exist for this system.  Thus, we implemented this model in Virtual Cell as a 

non-spatial stochastic simulation.  The VCell solvers have been well-validated and we take this result as the 

“expected” solution.  The VCell model is publicly available as “Enzymatic-Activation” under username 

“pjmichal.”  The model parameters are listed in Table S1. 

The simulation consisted of 60 ligand molecules initially in the inactive state, and 40 enzyme molecules initially 

in the off state.  The system consisted of a cube with side length 200 nm, and the total simulation time was 0.2 

seconds.  Averages were taken over 500 independent simulations.  Figures 11(a) and 11(c) plot the time 

dependence of      and    , respectively.  The results are in excellent agreement with the VCell simulations.  

Figures 11(b) and 11(d) show the full equilibrium probability distributions averaged over the distributions at 

40, 80, 120, 160, and 200 ms, along with the distribution calculated over 10,000 non-spatial stochastic VCell 

simulations.  The distributions are statistically equivalent. 

  



SUPPLEMENTARY SECTION II: Derivation of On-Rate Parameter 

Reversible vs Irreversible Reactions: Discussion of the Smoluchowski Model 

As we mentioned in Supplementary Section I, SpringSaLaD uses a relation between the macroscopic on-rate 

and the corresponding microscopic reaction rate which gives the expected equilibrium distribution but not the 

correct initial dynamics for a bimolecular reaction.  Surprisingly, it is impossible to choose a microscopic rate 

which will recapitulate both the initial dynamics and equilibrium distributions.  We will illustrate this result 

with the simple and well-known Smoluchowski model.   

The Smoluchowski model assumes two spherical molecules, A and B, react immediately upon collision to form 

a complex.   The aim of the model is to relate the reaction radii to the macroscopic on-rate.  Let species A (B) 

have radius         and diffusion constant        .   We assume   and   are dilute, and choose a coordinate 

system centered on a single   molecule.  Through straightforward rescaling we can consider an equivalent 

system where A is a point particle with diffusion constant         and B is a sphere of radius      

   fixed at the origin.  If we let      be the concentration of A molecules, then      satisfies the diffusion 

equation,           .  The surface of B is an absorbing boundary for A because the particles react 

immediately upon collision, and thus one boundary condition is         .  The conventional 

Smoluchowski model assumes that the concentration of   goes to a constant at infinity,          .  

With these boundary conditions the solution to the diffusion equation is 

              . 

The flux density of   at the surface of this single B molecule is       
  

  
 
   

       , and the total flux 

at a single   molecule is thus                 .  In the dilute limit each   molecule is assumed to be 

independent, and thus the total rate of destruction of   molecules is 

   
  

                

We divide through by the volume of the system to convert from numbers to concentrations, and we associate 

     to arrive at 

  

  
            

Comparison with the macroscopic rate equation,           shows that the macroscopic on-rate is given by 

          

which is the classical Smoluchowski result.  

Now consider the same system in equilibrium, where a dissociation reaction produces an   and   molecule 

from the complex.  Assume, for simplicity, that upon dissociation the newly separated   and   molecules are 

exactly a distance     apart.  The important observation is that for     the fluxes due to the forward and 

backward reactions must cancel in equilibrium, and thus                .  This condition must replace the 

boundary condition at infinity which was used above, and the new solution to the diffusion equation is 



     
   
   

   
 

 
   

Following the same steps as in the preceding paragraph to relate           , we find 

    
    

     
  

Thus, the reaction radius which reproduces the equilibrium (reversible) distribution is not the same as the 

reaction radius for the irreversible reaction considered in the preceding paragraph.  In fact, we find  

     
    

        
  

showing that the reversible reaction radius is always smaller than the irreversible reaction radius.  If      is 

used then the initial rate of reaction will be slower than expected from the macroscopic    , but the 

equilibrium distribution will be correct.  Conversely, if      is used then there will be more complex than 

expected in “equilibrium,” but the transient dynamics will be correct.   

The decision between the two radii must be made based on how the macroscopic on-rate was measured.  A 

review of the literature suggests that the on-rate is usually inferred by directly measuring      and   , and 

then using     
    

  
.  In this case the measured on-rate is an equilibrium rate, and it is correct to use       

SpringSaLaD relates the macroscopic on-rate to a first order reaction rate,  , instead of a reaction radius, but 

the same principle applies, namely, there is a different relationship between           for irreversible and 

reversible reactions.  SpringSaLaD uses the relationship which matches equilibrium, and this is the reason the 

transient dynamics show a lower reaction rate than might be expected, as shown in 8(a) and 9(a).  

Derivation of SpringSaLaD bimolecular on-rate 

SpringSaLaD enforces excluded volume, and to allow this feature each site must be characterized by two radii, 

as illustrated in Figure 12: 1) a physical radius,  , which represents the excluded volume, and 2) a reaction 

radius,    , which determines the maximum distance between two sites such that they can undergo a 

binding reaction.  Specifically, if the reaction radii of two binding partners overlap, then those sites can 

undergo a binding reaction with probability       , where   is a first-order reaction rate.  The goal here is to 

relate   to the macroscopic on-rate,    .   

We make the same transformations as in the Smoluchowski model, which allows us to consider   as a point 

particle with diffusion constant          and   as fixed at the origin with physical radius         

and reaction radius        .  The diffusion equation is  

  

  
                       

  

  
                   

with the following four boundary conditions:   



1)  A reflecting boundary at     to account for excluded volume,        
   

  . 

2) The equilibrium condition forces no flux beyond the dissociation distance, and thus          , and 

for simplicity we assume    .  (It is also possible to solve the system with      , but 

SpringSaLaD uses     and thus only the former solution is required.) 

3) Continuity of concentration at    ,              where        as    .   

4) Continuity of flux at              
  

        
  

. 

The general solution to the diffusion equation is 

     

 
 

 
  
 
     

   

  
  

  
 
     

   

  
             

   
  
 
            

   

  where   
      and the    are constants to be fit by the boundary conditions.   

Boundary conditions (1) and (2) can be used to eliminate    and   , giving 

     

 
 

 
  
 
      

   

  
  

 

  
     

   

  
                

   
  
 
   

 

 
             

   

Boundary condition (3) gives 

  
 
      

   

  
  

 

  
     

   

  
      

  
 
   

 

 
   

while boundary condition (4) gives 

             
   

  
  

 

  
     

   

  
  

 

  
      

   

  
  

 

  
     

   

  
     

These can be solved to eliminate    and   , and we finally arrive at 

     

 
 

   
 

   
        

   

  
        

   

  
                

     
  
  

   
 

 
             

   

where 

          
   

  
        

   

  
  

 

  
       

   

  
         

   

  
    

and  

          
   

  
        

   

  
   

 

  
    

 

 
        

   

  
         

   

  
    



We now proceed as in the Smoluchowski case:  calculate the total flux at the surface of  , write an expression 

for the rate of change of the concentration of  , and compare that to the macroscopic kinetic equation.  We 

find 

    
     

  
 
  

  

where 

     
  
 
 
       

   
  

        
   
  

 

      
   
  

         
   
  

 
  

We can check that this reduces to the Smoluchowski result and Erban-Chapman results in the appropriate 

limits.  The Smoluchowski model is recovered by letting    , in which case the particles react immediately 

upon collision of their reaction radii.  This corresponds to taking     , whereupon     and we find  

            
   

    
    

  
 
 

  

which is indeed the Smoluchowski result derived above.  The Erban-Chapman limit corresponds to letting 

   , which gives  

    
  
 
     

 

  
   

which is the expected result.   

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1: Validation of short-time diffusion.  A plot of MSD vs time for the system described in the text.  The 

plot shows the average and standard deviation from 100 simulations. 

 

 

Figure 2: Validation of long-time diffusion.  A plot of MSD vs time for the system described in the text.  The 

plot shows the average and standard deviation from 100 simulations. 

 



 

Figure 3:  Effects of crowding on 1D diffusion.  A plot of MSD vs time for the system described in the text as 

the density is varied, as indicated in the legend.  

 

Figure 4: Effects of crowding on the scaling exponent.  Each curve in Fig. 3 was fit to           , and here 

we plot   as a function of system density.  At low densities   matches the exponent for free diffusion, while at 

large densities   approaches the theoretical result for crowded diffusion. 

 



 

Figure 5: Validation of creation reactions.  (a) Average number of particles as a function of time for the system 

described in the text.  Average is taken over 500 independent simulations, error bars are standard deviation.  

The red line is the expected solution, Eq. (5).  (b) The full distribution at 10 ms calculated over 500 runs (black 

diamonds) and the expected distribution according to Eq. (4) (red squares).  The two distributions are 

statistically equivalent (                        

 

 

 

Figure 6: Validation of decay reactions.  (a) Average number of particles as a function of time for the system 

described in the text.  Average is taken over 500 independent simulations, error bars are standard deviations.  

The red line is the expected solution, Eq. (7).  (b) The full distribution at 5 ms calculated over 500 run (black 

diamonds) and the expected distribution according to Eq. (6) (red squares).  The two distributions are 

statistically equivalent                        

 



 

Figure 7: Validation of creation and decay reactions.  (a) Average number of particles as a function of time for 

the system described in the text.  Average is taken over 500 independent simulations, error bars are standard 

deviation.  The red line is the expected solution, Eq. (9).  (b) The full equilibrium distribution (black diamonds) 

compared to the expected distribution (red squares) from Eq. (8).  The plot shows the average and standard 

deviation of the full distributions at 20, 30, 40, and 50 ms.  The two distributions are statistically equivalent 

(                      

 

 

Figure 8: Validation of single species bimolecular reactions.  (a) Average number of particles as a function of 

time for the system described in the text. Average is taken over 500 independent simulations, error bars are 

standard deviation.  The red line is the expected solution, Eq. (15).  (b) The full equilibrium distribution (black 

squares) compared to the expected distribution (red squares) from Eq. (14).  The plot shows the average and 

standard deviation of the full distribution at 100, 150, 200, 250, 300, 350, and 400 ms.  The two distributions 

are statistically equivalent (                       

 



 

Figure 9: Validation of two species bimolecular reactions.  (a) Average number of A particles as a function of 

time for the system described in the text. Average is taken over 500 independent simulations, error bars are 

standard deviation.  The red line is the expected solution, Eq. (21).  (b) The full equilibrium distribution (black 

squares) compared to the expected distribution (red squares) from Eq. (19).  The plot shows the average and 

standard deviation of the full distribution at 100, 150, 200, 250, 300, 350, and 400 ms.  The two distributions 

are statistically equivalent (                      

 



Figure 10: Validation of allosteric transition reactions.  (a,c) Average number of          (a) and        (c) 

molecules as a function of time, for the system described in the text.  The average is taken over 500 

independent simulations, and the error bars are standard deviation.  The red lines are the predictions from 

Eqs. (30) and (32).  (b,d) The full distributions at 1.5 ms for          (b) and       (d) (black squares) compared 

to the expected distributions (red squares) from Eqs. (27) and (29).  Both observed distributions are 

statistically equivalent to their expected distributions (        :   
                   ,          

                   ). 

 

 

Figure 11: Validation of enzymatic activation reactions. (a,c) Average number of      (a) and     (c) molecules 

as a function of time, for the system described in the text.  The average is taken over 500 independent 

simulations, and the error bars are standard deviation.  The red lines are the results of deterministic VCell 

simulations.  (b,d) The full equilibrium distribution for      (b) and    (d) (black squares) compared to the 

expected distributions. The expected distributions represent the results of 10000 VCell non-spatial stochastic 

simulations. The observed distributions are the average over the distributions at 40, 80, 120, 160, and 200 ms.  

Both observed distributions are statistically equivalent to their expected distributions (    :   
         

         ,        
                  ). 

 



 

Figure 12: Schematic illustration of the relationship between the physical radius,  , and reaction radius,  , 

used in defining the bimolecular reaction rate  . 

 

 

  



Parameter Name Value 

                  

                  

                 

                  

               

             

 

Table S1:  Parameters used in the “Enzymatic Activation” model, which is used to validate the transition 

reactions.  Identical parameters were used in both the VCell and SpringSaLaD models.  
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