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ABSTRACT Four methods for weighting aligned biologi-
cal sequences have recently appeared that differ mathemati-
cally, philosophically, and in their results. Thus, while there is
consensus about the need to weight sequences, the method to
use is contentious. A geometric analysis based on a continuous
sequence space is presented that provides a common frame-
work in which to compare the methods. It is concluded that
there are two ‘‘best’’ methods. When the sequences are known
to be phylogenetically related and a tree can be generated
without introducing excessive stress into the data, the method
of Altschul et al. [Altschul, S. F., Carroll, R. J. & Lipman,
D. J. (1989) J. Mol. Biol. 207, 647-653] is appropriate. When
the sequences are not known to be phylogenetically related or
a tree cannot be produced without unduly distorting the
distances between the sequences, a modification of the method
of Sibbald and Argos [Sibbald, P. R. & Argos, P. (1990) J.
Mol. Biol. 216, 813-818] is preferable.

Correlated observations can complicate analysis of biological
data sets (1, 2). When independence cannot be assumed, it is
erroneous to proceed as if all the data were equally informa-
tive. In the problem of multiple sequence alignment this is
important because alignments frequently contain very similar
(even duplicated) sequences; these can bias the construction
of the alignment itself (3—5) or make some trends (merely due
to nonrandom sampling) appear strong. Equally deleterious is
the ‘‘swamping’’ of interesting but rare data. This is a
problem in any analysis of multiply aligned DNA or amino
acid sequences; searches of data bases with multiple align-
ments (6) are sensitive to the frequency with which aligned
sequences occur. Similar problems arise in predicting protein
secondary structure from multiple alignments (7). Scores
averaged over alignment columns are vulnerable to over- or
under-representation of certain sequences. A correction may
also be applied when phylogenetic relatedness or structural
constraint restricts the range of diversity within a subset of
sequences. A remedy is to assign weights to the sequences in
an alignment before calculating any average value; this is
termed sequence weighting.

Increased sequence data and fast multiple-alignment pro-
grams (e.g., refs. 8—12) have aggravated the problem. It might
be argued that a profile created by an expert with reasonable,
representative sequences would eliminate any need for
weighting. Such an approach is not objective and loses
information, and as data sets grow, automation is essential.
Consequently, there has been interest in methods to weight
aligned sequences (10, 13-15).

Most discrepancies between the methods stem from diver-
gent definitions of the problem and lack of agreement con-
cerning ‘‘correct” behavior. The methods often provide
different results and are based on different reasoning, but all
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claim to be solving approximately the same problem. In each
method a weight for each sequence in the alignment is
derived, greater weights indicating greater importance. The
Altschul, Carroll, and Lipman (1989) (ACL) method (14)
differs by down-weighting distant sequences as contributing
less information to the point of interest, whereas the other
methods up-weight outliers as contributing more information
about the diversity of the data set. Inaccuracies in some
methods have come to light. Because errors tend to propa-
gate (e.g., alignments are typically used to calculate hydro-
pathy or similar indices and influence work based on them),
we compare the methods and describe known failings.

Continuous Sequence Space

Attributing weights to aligned sequences is a one-dimensional
and thus crude scaling. Sophisticated relationships sought by
evolutionary trees (1, 16, 17), statistical geometry (18), or
multidimensional scaling (19, 20) are simplified drastically.
Discrete sequence space (18) can be thought of as the set of
all possible sequences of a given length. In a simple version,
one of two letters—e.g., R and Y—is allowed at every
position of a sequence. For length L = 2 all sequences can be
visualized as corners of a square (Fig. 1a). With increased L
the sequence space can be visualized as a hyper-cube of
dimension L (imagine a triangle representing three letters).

We define a profile as a matrix where columns contain the
distribution vectors of letters in corresponding alignment
columns (ref. 10; this is slightly different use of the word
“profile” than in ref. 6). If a three-sequence alignment
column reads R R Y, this is represented as % R and % Y.
Independent of the number of aligned sequences, profiles
have as many rows as there are letters in the alphabet. Profile
positions are distribution vectors falling (excepting com-
pletely conserved positions) into the ‘‘empty space’’ between
corners (Fig. 1b) and, therefore, cannot be represented in
discrete sequence space.

Discrete sequence space can be extended to a continuous
sequence space. We term the elements generalized se-
quences. A generalized sequence is a matrix with as many
rows as letters in the alphabet, where the sum over each
column is 1. The profile of an alignment is a generalized
sequence corresponding to this alignment, but while profiles
are generated from alignments in a very specific way, gen-
eralized sequences may be generated by other means (vide
infra).

In discrete sequence space, the Hamming distance (for two
sequences of equal length) counts the mismatches between
characters. On biological sequences a similarity or dissimi-
larity matrix on the letters of the alphabet (e.g., the amino

Abbreviations: Methods are indicated as follows: ACL, Altschul,
Carroll, and Lipman (1989); SS, Sander and Schneider (1991); VA,
Vingron and Argos (1989); VOR, Sibbald and Argos (1990)
‘“Voronoi’’; mVOR, ‘‘modified Voronoi.”
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Fic.1. Discrete and continuous sequence space. (a) The discrete
space of sequences of length 2 over the alphabet R,Y. (b)) A
generalized sequence in its location in continuous sequence space.
pos, Position.

acids) is used and defines the (dis)similarity between two
sequences as the sum of the positional (dis)similarity values.
The difference between a similarity and a dissimilarity lies in
its interpretation. A similarity matrix attributes high values to
‘“‘desirable”” pairs of letters, which in a dissimilarity matrix
would receive a low value—e.g., 0. There is no need to limit
our discussion to either similarities or dissimilarities, and we
write ‘‘(dis)similarity’’ to indicate this fact. Euclidian dis-
tances on two generalized sequences have been used (4) but
with profiles derived mostly from alignments, it has become
customary (6, 10) to use the average (dis)similarity between
the sequences involved instead. Note the differences be-
tween average dissimilarity and distance: an average dissim-
ilarity between two identical alignments need not be 0 (even
if the main diagonal of the matrix is all 0s).

We define (dis)similarity for generalized sequences such
that all discrete cases correspond to a normal (dis)similarity
measure. Consider two positions (columns) p and g of two
generalized sequences of equal length. Given a matrix M+ on
the letters we define the (dis)similarity dadp, g) of the two
distribution vectors p and g as the inner product p-Mg =
2;;pigimii. When M is symmetric, this equals g-Mp. To
compare two generalized sequences these positional inner
products are summed over the sequences. When two posi-
tions correspond each to a single letter (unit vectors when
translated into profiles), the inner product reduces to the
corresponding entry of M. Therefore, when applied to a
generalized sequence describing a conventional one, posi-
tional values are summed over the whole sequence, and the
general (dis)similarity measure reduces to the normal one to
compare two sequences. The gap may be treated as an
additional letter in the alphabet.

Let the alignment be s and count the different letters in
position i by summing unit vectors, each having a 1 for one
sequence: 2ie;,, where k goes from 1 to the number of
sequences N. The resulting vector has the number of occur-
rences of the first letter in alignment column i in its first
component etc. The profile column p(s;) is therefore

N
p(s) = 1N 2 ey, m

Geometrically, p(s;) describes the center of gravity (4) of
sequences at position i.

Special symbols are as follows: N, number of sequences; L, length
of sequences = length of alignment; s, alphabet; ||, size of
alphabet; s = (si)ik, alignment, 1 <i=< L, 1 =< k < N s;, column
of alignment s; sx, kth sequence; p = (piix, 1 si=L,1 s k=|d|;
p(si), column i of profile p(s); es, a € 4, unit vector in {0, 1} with
1 at position of letter a; M = (my;); j, (dis)similarity matrix on s, 1
=i,j=|d|; D = (dy)i, (dis)similarity matrix on the set of sequences,
1=ij=N.
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Given an alignment, between any two sequences we cal-
culate a (dis)similarity and obtain an N X N matrix of
(dis)similarities D = (dj), 1 =i, j =< N. From the definition of
the (dis)similarity between generalized sequences as an inner
product, it is easy to see the (dis)similarity between any one
of the sequences, say Kk, and the profile of the alignment is
Just the average (dis)similarity between sequence k and the
others. This is also a consequence of the next case, the
weighted profile.

For N sequences, assume a vector w = (wy, . . . , wy) of
weights normalized to sum to 1. Define the weighted profile
pw(s) for a set of aligned sequences as the generalized
sequence with the following columns:

Puis) = Ek‘, wies, - 2]

This weighted profile differs from the simple profile because
it is a weighted average of single sequences. Let M be a
(dis)similarity matrix on the letters of the alphabet. To limit
the depth of the indices we write m(a, b) instead of m,;. The
(dis)similarity between sequences kand /, dy, equals 3;—; . .
m(Si, si). The (dis)similarity between a sequence k and a
weighted profile turns out to be the weighted average of the
individual (dis)similarities:

N, N L L
,_21 widy = 21 w ,_21 msix, si) = 2 e, "M lﬁ er:,)
- o i=1

1= . =1

L
= 21 es, Mpu(s) = dsi, pu(s)). 3]

This means the matrix D applied to the weight vector w
coincides with the vector of (dis)similarities between the
sequences and the w-weighted profile:

Dw = {d[sy, p(s)}k=1...N.

Weighting: A Comparison of the Methods in the
Common Framework

One objective of sequence weighting is to prevent several
similar sequences outweighing a few ‘‘atypical’’ ones. Vin-
gron and Argos (1989) (VA) (10) simply observed atypical
sequences in an alignment differ from the others at many
positions and proposed a (normalized) count of the mis-
matches between one sequence and all others as the weight
of that sequence: an ‘‘outsider’’ receives higher weight. In
terms of generalized sequences, the average count of all
mismatches between a sequence and an alignment is just the
average dissimilarity between that sequence and the others—
i.e., the dissimilarity between a sequence in an alignment and
the alignment profile. Thus, the weights are the dissimilarities
of the sequences from their center of gravity. The compact
description derived above allows a summary of the N equa-
tions wy = Zidu, k=1... N, as

w=D(1,1,...,1)=D1,

where 1is an abbreviation for the vector containing all 1s, and
D denotes the matrix of dissimilarities dj;.

Sander and Schneider (1991) (SS) (15) argued that under
those weights a new profile and new distances should be
calculated. They proposed a self-consistent set of weights
placing the centroid such that the dissimilarities from the
sequences to the centroid equal (up to a factor) the weights
determining the centroid. Using matrix notation, they de-
mand that



Biochemistry: Vingron and Sibbald

Aw = Dw,

This specifies an eigenvector w with eigenvalue A. A simple
numerical method for finding an eigenvector by repeated
application of the matrix to a starting vector can be used. For
a matrix A the process

wh  4p&-D

converges to eigenvector w with the largest eigenvalue.
Because distance matrix D has all entries = 0, a theorem due
to Perron and Frobenius on nonnegative matrices (21) guar-
antees good behavior of this method, excepting degenerate
cases where the iteration oscillates. For distance matrices a
remedy is to add the identity matrix to A, permitting the
iteration to converge to the eigenvector (22).

The VA method increases the weight of a sequence far
from the (unweighted) profile and moves the centroid away
from nearby sequences and toward distant ones. The objec-
tive may be interpreted so as to make the dissimilarities
between all sequences and centroid equal to some value, e.g.,
1.

[d(sk, Puw(8)]k=1..n=Dw=1. 4]

If D is invertible, the weights can be calculated as w = D11
(w is then normalized). This is very similar to the description
of the ACL method (14), which uses a variance—covariance
matrix A and calculates weights as w = A~11.

The ““Voronoi’’ Sibbald and Argos (1990) (VOR) method
(13) takes into account distances to the other sequences but
not the centroid. To each sequence its Voronoi-cell is attrib-
uted—i.e., the set of points closest to this one sequence. The
more isolated a sequence is, the greater is its volume. This
volume is calculated by a Monte—~Carlo algorithm building
random sequences from amino acids occurring at each align-
ment position. If such a random sequence is closest to n
sequences, the weight of each of the n sequences is incre-
mented by 1/n. Although conceived for cases where n
sequences are identical, it applies in other cases. This can
lead to ‘‘incorrect’’ weights: consider the example alignment
below. Intuitively AA and BB must receive equal weight
(1/2), and the two copies of AA share this 1/2 such that the
relative weights are 1:1:2 (“‘correctness’’ is discussed below).
However, applying the sampling scheme described above
one obtains the following result:

Generated random sequences

AA AB BA BB Sum
AA |12 1/3 1/3 0 7/6
AA [1/2 1/3 1/3 0 7/6
BB 0 1/3 1/3 1 10/6

The discrepancy is due to one-half (namely, AB and BA) of
all randomly generated sequences being equidistant to two
different others (AA, BB). For longer sequences the likeli-
hood for this event is negligible and of little practical rele-
vance. A minor modification solves the problem: instead of
generating discrete random sequences one can choose ran-
dom generalized sequences to estimate the volume of the
Voronoi cells in continuous sequence space. To ensure
randomly generated sequences, uniformly distributed in se-
quence space we generate each column by normalizing a set
of independent, exponentially distributed random numbers
(ref. 23, problem 1.2.6). Even in contrived cases like the
given one, there is 0 probability of a generalized sequence
being equidistant from two distinct ones. The above se-
quences are then assigned the correct weights (Table 1). This
method is called ‘‘modified Voronoi”’ (mVOR).
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Table 1. Comparison of the weighting methods on four simple,
contrived examples

Alignment  True VA ACL VOR

mVOR SS

A 0.500 0.500 0.500 0.501 0.496 0.500
B 0.500 0.500 0.500 0.499 0504  0.500
A 0.250 0.250 0.250 0.251 0.248  0.290
A 0.250 0.250 0.250 0.251 0.248  0.290
B 0.500 0.500 0.500 0.498 0.504 0.410
AA 0.25 0.25 0.25 0291  0.25 0.290
AA 0.25 0.25 0.25 0291  0.25 0.290
BB 0.5 0.5 0.5 0.418  0.50 0.410
AA 0.1667 0.1875 0.1667 0.1842 0.1640 0.1910
AA 0.1667 0.1875 0.1667 0.1842 0.1640 0.1910
BB 0.1667 0.1875 0.1667 0.1854 0.1702 0.1910
BB 0.1667 0.1875 0.1667 0.1854 0.1702 0.1910

cC 0.3333  0.25 0.3333  0.2607 0.3315 0.2361

A half line space separates each alignment. The true weights are
based on the criteria given in the text. Due to the Monte Carlo
algorithm used to implement the modified ‘‘Voronoi’’ (mVOR)
method, the results differ slightly from the true values.

Weights and Phylogeny

The ACL method resembles least-squares estimation of a
mean from biased samples (generally a weighted average of
sample values). A normal average suffices for independent
values with equal variance. Correlated samples are more
problematic. Two data points with a high covariance con-
tribute less information concerning the mean than do uncor-
related ones and should receive less weight. Measurements
with a high variance are less reliable and should be down-
weighted. When sample correlation is summarized in a vari-
ance-covariance matrix A the weight vector for the weighted
average is proportional to A ~11 (24). The ACL scheme (14)
follows an idea of Felsenstein (2, 29). Imagine electrical
current flows from the root of the tree down the edges and out
the leaves. If the edge lengths are proportional to their
electrical resistances, current flowing out each leaf equals the
leaf weight. Leaves far from the root receive low weights due
to greater resistance along that path. When a leaf is dupli-
cated, half as much current flows through each copy. This is
the justification for dividing weights when a sequence occurs
more than once (and inverting the degenerate matrix is
impossible).

For sequences, the ACL method uses a substitute for the
variance—covariance matrix. A rooted evolutionary tree is
obtained from the given distance matrix. The root is the point
of interest: longer branches are less reliable estimators.
Branch length from the root to the leaf is the variance of that
species. Further, two branches sharing a long common
branch (proportional to the covariance) from the root carry
much the same information. A species receives lower weight
when far from the root or when it has ‘‘close neighbors’’ in
the tree. The formalism is exactly the one described for
correlated measurements: for a variance—covariance matrix
A the weight-vector is a multiple of A~11. This is formally
analogous to the weighting method of the last section that
positioned the centroid at equal distances from the se-
quences.

Recall the definitions of ultrametric and additive trees (17).
Briefly, ultrametric means rooted with all leaves (=species)
equidistant from the root. Additive trees may have leaves at
different levels, and the root must be found by an indepen-
dent method. When a distance matrix D allows for exact
representation as an ultrametric tree T, then the weights
calculated via inversion of the variance-covariance matrix A
of the tree T are the same as obtained by inversion of the
original matrix D. To see this, consider how the variance~
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covariance matrix A is derived from the tree T. A tree with
height 4 has main diagonal values h. The distance from the
root to a branchpoint for sequences i and j will be h —
4/>—i.e., the matrix entry (i, j). Because d;; = 0, the matrix
A can be written as A = [k — 4/2];; = (h);; — ¥2D. Applying
this to weight vector w = D11, we obtain a vector all
elements of which are A-Zw; — Y2 = h — V; this shows that
w is also a correct weight vector for A.

Discussion and Conclusions

To evaluate the methods there are two stances: either that
there are no globally objective criteria and a method can be
judged only in terms of its efficacy for a particular task or that
criteria exist that are self-evident and that should be satisfied.
We adopt the second stance because it avoids the tautology
inherent in the first and such objective criteria exist. A similar
axiomatic approach was applied to clustering methods (26).
Define two or more sequences ‘‘symmetrical with respect to
a distance matrix”’ if exchanging those sequences does not
alter the distance matrix. Symmetrical sequences include,
but are not limited to, identical sequences. We believe the
following criteria should be met by a weighting method:

C1: Symmetrical sequences should receive equal weights.

C2: If the alignment contains n identical sequences, each
with weight x, then removal of all but one should result
in the one remaining having weight nx.

C3: Similar sequences should be down-weighted relative
to more isolated sequences.

C4: The method should use no unnecessary assumptions
and not unnecessarily discard any information (‘‘Oc-
cam’s razor’’).

Additional biological information may alter these criteria.
Specifically criterion C2 may be relaxed if the number of
representatives of a sequence adds to its importance.

Examples

In Table 1 ‘‘alignments’” 2, 3, and 4 contain duplicate
sequences. ACL method cannot be applied directly because
the matrix does not invert. Therefore, duplicates were re-
moved before calculation, and resulting weights were divided
by the number of duplicates as per criterion C2. SS method
oscillates in examples 2 and 3, but modifying the iteration
results in the correct eigenvector. For these simple cases
there are obvious additive tree representations of the data on
which the ACL method was based. In these examples the
mVOR and ACL methods conform to the criteria. The SS
method results in larger weights for duplicated sequences, a
behavior corresponding to a relaxed version of criterion C2.

Fig. 2 (27) illustrates a hazard in requiring a tree for the

agcta

tgcaa acctg aggta  agcta

FI1G. 2. Model tree redrawn from ref. 27; note the back mutation.
Edge distances are the actual number of substitutions (top) and those
estimated by Li (27) from the observed sequences (bottom). With one
exception, the observed distances between the leaves can be ob-
tained from the tree (e.g., from acctg to tgcaa is four substitutions).
In the case of aggta to tgcaa, the observed distance is 3, whereas the
actual distance (number of substitutions that actually occurred) is
five. This is due to the back mutation. In this case the root is known
exactly, and the tree is not ultrametric.

Proc. Natl. Acad. Sci. USA 90 (1993)

Table 2. Results obtained for the case in Fig. 2

ACL ACL
Aligiment VA VOR mVOR SS actual  calc.

AGCTA 0.1667 0.1321 0.1225 0.1792 0.2857 0.7380
AGGTA 0.2333 0.2791 0.2488 0.2447 0.0 0.0
ACCTG 0.3 0.2995 0.3115 0.2880 0.2857 0.0
TGCAA 03 0.2891 0.3171 0.2880 0.4286 0.2620

This is a hypothetical alignment of four 20-nt sequences whose
various positions are shown and is taken from Li (27). There is more
than one way to produce a tree relating all the sequences. In this table
the methods that use only observed distance data provide similar
results. The results for the ACL approach use two different trees: (i)
atree based on the actual number of substitutions that occurred (Fig.
2), information not normally accessible to the researcher, and (i) a
tree based on distances as calculated (calc.) by using the method of
Li (ref. 27, see figure 2 of that paper).

weighting scheme. The back mutation creates particular
problems in tree construction (and back mutations occur in
real organisms). Two sets of distances can be assigned to the
edges on the tree: ones that reflect the process of evolution
and ones calculated from the leaves alone. Tree-independent
methods all give similar results, but the ACL method gives
results strongly influenced by the method of tree construction
(Table 2).

If the data fit a tree well, the ACL method gives results
similar to the other methods. This situation is illustrated for
10 5S RNA sequences, a tree for which is shown in Fig. 3.
Sequence data, alignment, the tree, and reconstructed an-
cestral sequences assigned to the internal nodes are taken
from ref. 28. We used the internal sequences to construct an
additive distance matrix and derived a variance—covariance
matrix for the ACL method. We also constructed an ultra-
metric tree approximating the distances between the se-
quences by using the program KiTscH (29). The tree (Fig. 3)
topology given by ref. 28 matches that from KITscH. Branch
lengths are shown for the ultrametric and additive tree, but
only the ultrametric tree is roughly to scale. There is good
agreement between the methods (Table 3). ACL (ultrametric
tree) gives equal weights to adjacent species (e.g., 9 and 10).
In the additive tree 10 is farther away than 9 from their
common ancestor, and 10 receives a lower weight (ACL).
The distance-based methods all perceive 10 to be more
important than 9. This is due to different philosophies.

” 12.1(15)

16.1 (24) 6.7(11) 9.6(16)

Fi1G. 3. A tree based on an alignment of 10 5S RNA sequences
(28). Distances on the edges of the tree are ultrametric (first number)
and additive (second number) approximations, respectively. See text
for details. The numbers at the leaf positions correspond to orga-
nisms as follows: 1, Auricularia auricula-judae; 2, Auricularia edulis;
3, Bacillus brevis; 4, Bacillus firmus; 5, Equisitum arvense; 6, Cycad
revoluta; 7, Caenorhabditis elegans; 8, Gallus gallus;9, Jungerman-
nia subulata chloroplast; 10, Dryopteris acuminata chloroplast.
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Table 3. Results obtained for the SS RNA alignment

described in Fig. 3

Proc. Natl. Acad. Sci. USA 90 (1993) 8781

sequences be weighted to best estimate a particular point?’’
The VOR and mVOR methods answer the question ‘‘How
should the sequences be weighted to best estimate the
diversity of the group of sequences?’’ Therefore, the mVOR

ACL
Sequence VA VOR mVOR SS ultra  additive
1 0.0962 0.0840 0.0900 0.0977 0.0627 0.0575
2 0.0925 0.0763 0.0798 0.0942 0.0627 0.0411
3 0.1061 0.1155 0.1142 0.1045 0.1307 0.1330
4 0.1007 0.1019 0.1033 0.0997 0.1307 0.1710
5 0.0958 0.0932 0.0915 0.0968 0.0919 0.0850
6 0.0977 0.0980 0.0974 0.0988 0.0919 0.0850
7 0.0914 0.0864 0.0917 0.0929 0.0958 0.0998
8 0.0934 0.0999 0.0959 0.0950 0.0958 0.0888
9 0.1106 0.1121 0.1123 0.1076 0.1186 0.1520
10 0.1156 0.1328 0.1238 0.1122 0.1186 0.0870

Sequence numbers are the same as in Fig. 3.

The methods based solely on the (dis)similarity matrix
between the sequences fulfill criterion C1. mVOR fulfills the
weaker criterion of assigning equal weights to copies of
identical sequences. Current data suggest that mVOR also
fulfills C1 for symmetric sequences. ACL and mVOR obey
criterion C2. SS method tends to give slightly higher weights
to duplicated sequences than C2 would suggest (possibly
desirable). Methods VA and VOR are inconsistent regarding
C2 (Table 1). Criterion C3 appears satisfied by all the
methods. Regarding criterion C4, there are considerable
differences. The examples show that the assumption that the
data can be related by a tree and that the researcher can
produce an appropriate tree can be risky. However, a tree
facilitates addition of accessory information.

One advantage of the ACL method (14) is a particular point
in a tree can be chosen as root, and leaves can be weighted
relative to that point. One can weight a point in a subtree of
rodents within a larger tree of mammals while taking into
account the mammal sequences. A similar effect can be
obtained with the distance methods by using only the rodent
sequences, but the mammal information is not exploited. This
effect violates criterion C4: it discards potentially useful
information, but it is unclear how significant this is.

Of the methods not requiring a phylogeny, the mVOR
method scores best. It is more often correct than the other
distance methods of Table 1. A shortcoming is that the
algorithm is stochastic. An analytic formulation of the
Voronoi weights is an open problem. The mVOR method is
especially appropriate where convergence is a reasonable
hypothesis, the phylogeny is dubious, or the data fit a tree
poorly. The VOR method weights sequences such that di-
versity is estimated. Rare outlying sequences are up-
weighted to represent a large part of the space ‘‘on their
own.”’ Altschul et al. (14) down-weight sequences far from
the root because they convey less information about the root.
The ACL method answers the question ‘“‘How should the

method and ACL method are the best available, although for
different problems.

We thank Andreas Dress for helpful comments. M.V. was sup-
ported by National Science Foundation Grants DMS 90-05833 and
DMS 87-20208 and National Institutes of Health Grant GM-36230.
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