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S1. Truncated Poisson Architecture Model (tPAM)

The setup of tPAM unfolds as in tREX, but it assumes that the interaction counts are

independent and does not allowed for over-dispersion, as we elaborate below.

Let yij be the count (an entry in the contact matrix) that represents the interaction

intensity between loci i and j. For a set of n loci, their coordinates in the 3D space are

denoted by ω ≡ {~pi = (pxi , p
y
i , p

z
i ); i = 1, . . . , n}. We further use dij to denote the Euclidean

distance between loci i and j:

dij =
√

(pxi − pxj )2 + (pyi − p
y
j )

2 + (pzi − pzj)2.

For reconstruction of 3D structure, tPAM assumes that yij, being count data, follows the

truncated Poisson distribution with intensity parameter λij, which is modeled as follows:

log λij = β0 + β1 log dij + zTijγ, (1)

where dij is the Euclidean distance between i and j; zTij is a vector of covariates (e.g. frag-

ment length, GC content, and mappability score) to address systematic biases (acting as

normalization of the data); β0, β1, and γ are the coefficients (effect sizes) of the correspond-

ing factors.

This model differs from the tREX model proposed in this paper in the omission of the

random component Wij (equation (1) of main paper). Lacking this term has two major

drawbacks. First, in forming the likelihood of tPAM by multiplying the probabilities over

all (i, j) cells (but excluding those with 0 contact counts) of the 2D contact matrix, we are

essentially assuming that yij is independent of yi′j for i 6= i′, thus ignoring the dependency

inherent by the virtue of these two counts sharing a common locus j.
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The second drawback is tPAM’s inability to accommodate potential over-dispersion of

sequencing data. More specifically, the mean and the variance of a truncated Poisson random

variable Y with parameter λ are

E(Y ) =
λeλ

eλ − 1
,

V ar(Y ) = E(Y )− λ2eλ

(eλ − 1)2
.

As such, one can see that the variance is in fact smaller than the mean for a truncated

Poisson distribution, leading to the opposite effect of what one would desire (having larger

variance than the mean to accommodate over-dispersion). The proposed tREX is to address

these two main issues, we we elaborate in the following two sections.

S2. Dependence of mean contact counts for tREX

Recall that in tREX, the observed count yij also follows a truncated Poisson distribution

but with its intensity parameter modeled as

log λij = β0 + β1 log dij + zTijγ +Wij, (2)

where the variables and parameters in β0 + β1 log dij + zTijγ are as explained in S1, and we

assume Wij ≡ Xi + Xj + Uij where Xi
iid∼ N(0, σ2

x), for i = 1, · · · , n, Uij
iid∼ N(0, σ2

u), for

i, j = 1, · · · , n, i 6= j, and {Xi, i = 1, · · · , n} and {Uij, i, j = 1, · · · , n, i 6= j} are independent.
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Let i 6= i′. Then

Cov(Yij, Yi′j′) = E(YijYi′j′)− E(Yij)E(Yi′j′)

= E{E(YijYi′j′|λij, λi′j′)} − E{E(Yij|λij)}E{E(Yi′j′ |λi′j′)}

= E

(
eλij

eλij − 1

eλi′j′

eλi′j′ − 1
λijλi′j′

)
− E

(
eλij

eλij − 1
λij

)
E

(
eλi′j′

eλi′j′ − 1
λi′j′

)
= Cov

(
eλij

eλij − 1
λij,

eλi′j′

eλi′j′ − 1
λi′j′

)
.

Now note that random variable Zij = λije
λij/(eλij − 1) is a function of random variable

Wij, that is, Z = f(Wij), where f is a function whose inverse exists. Similarly, Zi′j′ =

λi′j′e
λi′j′/(eλi′j′ − 1) = g(Wi′j′). Furthermore,

Cov(Wij,Wi′j′) =


σ2
x if j = j′;

0 if j 6= j′.

(3)

Since the Wij’s are normally distributed, we can see that, for two pairs that do not share a

common locus (that is, j 6= j′), they are not only uncorrelated, they are in fact independent.

On the other hand, if two pairs do share a common locus (that is, j = j′),

Cov

(
eλij

eλij − 1
λij,

eλi′j′

eλi′j′ − 1
λi′j′

)
6= 0,

because otherwise Wij and Wi′j′ would have to be independent, which we have already shown

not to be the case (equation (3)). Therefore, for two pairs of loci sharing a common locus,

the means of their observed contact counts are dependent.

S3. Accommodation of over-dispersion with tREX

As we see in S1, for the tPAM model, E(Yij) < V ar(Yij), that is, the mean is in fact smaller

than the variance. As such, tPAM fails to account for over-dispersion typically seen in
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sequencing data. On the other hand, as we derive in the following, the tREX model can

lead to V ar(Yij) > E(Yij), hence its ability to accommodate over-dispersion. For simplicity

without ambiguity, we drop the subscript ij in Yij and λij here after. We first write out the

variance as follows:

V ar(Y) = E {V ar (Y|λ)}+ V ar {E (Y|λ)}

= E

{
E (Y|λ)− λ2eλ

(eλ − 1)2

}
+ V ar

(
λeλ

eλ − 1

)
= E (Y) + V ar

(
λeλ

eλ − 1

)
− E

{
λ2eλ

(eλ − 1)2

}
.

We let

A = V ar

(
λeλ

eλ − 1

)
− E

{
λ2eλ

(eλ − 1)2

}
.

Then A > 0 implies that V ar(Y) > E(Y). It follows from

V ar

(
λeλ

eλ − 1

)
= E

{
λ2e2λ

(eλ − 1)2

}
− E2

(
λeλ

eλ − 1

)

that a lower bound of A can be obtained

A = E

{
λ2e2λ

(eλ − 1)2

}
− E2

(
λeλ

eλ − 1

)
− E

{
λ2eλ

(eλ − 1)2

}
= E

(
λ2eλ

eλ − 1

)
− E2

(
λeλ

eλ − 1

)
> V ar(λ) + E

(
λ2

eλ − 1

)
− 2E (λ)− 1 (4)

> V ar(λ)− 2E (λ)− 1, (5)
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where inequality (4) is obtained because

E

(
λ2eλ

eλ − 1

)
= E

(
λ2
)

+ E

(
λ2

eλ − 1

)
,

E

(
λeλ

eλ − 1

)
= E (λ) + E

(
λ

eλ − 1

)
, and

E

(
λ

eλ − 1

)
< 1 since 0 <

λ

eλ − 1
< 1.

On the other hand, inequality (5) is obtained simply noting that E(λ2/(eλ − 1)) > 0.

Making the same assumption as in S2 for W , it can be seen that λ follows a log-normal

distribution with the mean and the variance of log λ being µ = β0 + β1 log dij + zTijγ and

σ2 = 2σ2
x + σ2

u, respectively. Then one has

E (λ) = eµ+σ2/2, and

V ar (λ) =
(
eσ

2 − 1
)
e2µ+σ2

.

Hence, (5) (a lower bound of A) can be rewritten as

V ar(λ)− 2E (λ)− 1 = (eσ
2 − 1)e2µ+σ2 − 2eµ+σ2/2 − 1.

Setting the lower bound given above to be positive, we can solve the inequality to obtain

the following relationship between µ and σ2 by completing the square:

µ > h(σ2) = log

(
1 + eσ

2/2

eσ2 − 1

)
− σ2/2.

Note that dh(σ2)/dσ2 < 0, and thus h(σ2) is a decreasing function of σ2 = 2σ2
x + σ2

u.

Therefore, by letting the variance in the random effect component W be sufficiently large,

one can accommodate the over-dispersion problem in sequencing data with tREX. That is,

it is completely within the capability of tREX to accommodate over-dispersion if such a

feature indeed exists in the data.
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Supplementary Table 1: P-values of Wilcoxon signed-rank tests comparing the performance
of tREX with each of the comparison methods for the model with parameters (β0, β1, γ1, γ2) =
(3,−0.434, 0.05,−0.25). The results for the NRE model are given in the top segment (A)
and those for the ST model are given in the bottom segment (B).

(A). NRE Model
Resolution/Percent Zeros

Criterion Method 0% 10% 20% 30% 60%
RMSD tPAM 6.4× 10−1 8.2× 10−1 9.9× 10−1 9.9× 10−1 9.5× 10−1

BACH 3.1× 10−1 1.8× 10−8 1.4× 10−9 8.0× 10−10 4.6× 10−10

PASTIS 4.1× 10−10 2.9× 10−1 9.9× 10−1 9.6× 10−9 1.9× 10−7

ShRec3D 4.1× 10−10 1.7× 10−15 1.7× 10−15 1.7× 10−15 1.1× 10−9

ChromSDE 4.8× 10−4 3.1× 10−2 5.3× 10−2 2.5× 10−2 7.1× 10−3

Correlation tPAM 1.4× 10−1 4.7× 10−1 9.5× 10−1 9.9× 10−1 4.8× 10−1

BACH 1.6× 10−1 1.8× 10−8 5.9× 10−10 3.8× 10−10 3.8× 10−10

PASTIS 4.6× 10−10 9.9× 10−1 9.9× 10−1 5.9× 10−10 4.3× 10−10

ShRec3D 3.8× 10−10 1.3× 10−11 4.3× 10−10 2.5× 10−9 3.9× 10−7

ChromSDE 7.3× 10−1 9.7× 10−1 8.7× 10−1 9.9× 10−1 5.5× 10−1

(B). ST Model
Resolution/Percent Zeros

Criterion Method 0% 10% 20% 30% 60%
RMSD tPAM 4.8× 10−5 4.2× 10−6 6.6× 10−5 3.1× 10−4 6.4× 10−6

BACH 9.3× 10−5 5.1× 10−7 7.9× 10−6 4.0× 10−5 3.8× 10−7

PASTIS 5.6× 10−6 4.0× 10−2 1.5× 10−4 9.8× 10−1 3.7× 10−1

ShRec3D 7.9× 10−3 8.5× 10−4 1.2× 10−2 1.0× 10−1 1.9× 10−3

ChromSDE 9.0× 10−3 7.7× 10−5 9.7× 10−3 3.7× 10−2 3.5× 10−3

Correlation tPAM 1.3× 10−9 4.1× 10−10 5.8× 10−9 1.9× 10−8 4.1× 10−10

BACH 2.7× 10−9 6.7× 10−10 4.1× 10−10 5.2× 10−10 3.8× 10−10

PASTIS 7.1× 10−10 6.1× 10−6 6.4× 10−8 8.0× 10−1 1.2× 10−1

ShRec3D 2.5× 10−7 3.6× 10−8 2.4× 10−3 8.4× 10−4 6.7× 10−9

ChromSDE 2.3× 10−9 1.0× 10−9 2.2× 10−8 1.2× 10−7 8.0× 10−10
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Supplementary Table 2: P-values of Wilcoxon signed-rank tests comparing the performance
of tREX with each of the comparison methods for the model with parameters (β0, β1, γ1, γ2) =
(3,−0.434, 0.05, 0.25). The results for the NRE model are given in the top segment (A) and
those for the ST model are given in the bottom segment (B).

(A). NRE Model
Resolution/Percent Zeros

Criterion Method 0% 10% 20% 30% 60%
RMSD tPAM 1.9× 10−1 2.2× 10−1 2.3× 10−1 8.1× 10−1 2.3× 10−2

BACH 3.1× 10−2 8.6× 10−9 7.1× 10−10 3.8× 10−10 4.1× 10−10

PASTIS 3.8× 10−10 4.1× 10−2 9.7× 10−1 9.9× 10−1 9.9× 10−1

ShRec3D 3.8× 10−10 4.1× 10−10 3.8× 10−10 4.1× 10−10 8.5× 10−10

ChromSDE 2.7× 10−7 8.3× 10−5 8.3× 10−3 3.7× 10−3 1.1× 10−6

Correlation tPAM 5.4× 10−3 3.4× 10−3 4.9× 10−1 1.8× 10−1 1.2× 10−2

BACH 2.3× 10−2 4.6× 10−10 3.8× 10−10 3.8× 10−10 3.8× 10−10

PASTIS 5.9× 10−10 9.4× 10−1 9.9× 10−1 9.9× 10−1 9.9× 10−1

ShRec3D 4.1× 10−10 3.8× 10−10 4.1× 10−10 1.5× 10−9 2.4× 10−7

ChromSDE 1.6× 10−3 1.6× 10−1 4.2× 10−1 3.5× 10−1 8.0× 10−2

(B). ST Model
Resolution/Percent Zeros

Criterion Method 0% 10% 20% 30% 60%
RMSD tPAM 6.1× 10−4 1.2× 10−5 2.2× 10−5 2.1× 10−4 1.0× 10−4

BACH 2.3× 10−4 1.9× 10−6 3.7× 10−6 2.0× 10−6 1.1× 10−8

PASTIS 2.0× 10−6 4.2× 10−2 6.3× 10−1 5.8× 10−1 07.5× 10−1

ShRec3D 7.6× 10−3 1.0× 10−3 2.7× 10−2 2.7× 10−3 1.7× 10−3

ChromSDE 7.4× 10−3 1.4× 10−4 5.7× 10−3 1.2× 10−4 4.6× 10−4

Correlation tPAM 1.2× 10−9 4.3× 10−10 5.6× 10−10 6.8× 10−9 4.3× 10−10

BACH 3.1× 10−9 4.3× 10−10 3.8× 10−10 4.1× 10−10 3.8× 10−10

PASTIS 6.7× 10−10 3.5× 10−6 7.4× 10−3 3.5× 10−1 1.2× 10−2

ShRec3D 3.3× 10−6 2.4× 10−9 1.7× 10−7 6.5× 10−4 1.6× 10−10

ChromSDE 2.4× 10−9 3.1× 10−9 4.9× 10−10 2.3× 10−8 4.9× 10−10
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Supplementary Table 3: Average silhouette width ratio for the model with parameters
(β0, β1, γ1, γ2) = (3,−.434, 0.05,−0.25). Each number represents the ratio of the average
silhouette width of the estimated structure and the average silhouette width of the underly-
ing 3D structure.

Resolution
Model Method 0% 10% 20% 30% 60%
NRE tREX 0.854 0.830 0.816 0.798 0.738

tPAM 0.845 0.830 0.826 0.816 0.744
BACH 0.843 0.743 0.673 0.599 0.409
PASTIS 0.754 0.875 0.911 0.931 0.884
ShRec3D 0.738 0.734 0.729 0.723 0.683
ChromSDE 0.864 0.854 0.839 0.822 0.738

ST tREX 0.742 0.726 0.703 0.689 0.634
tPAM 0.610 0.596 0.590 0.572 0.520
BACH 0.608 0.574 0.533 0.494 0.364
PASTIS 0.601 0.690 0.601 0.721 0.635
ShRec3D 0.673 0.668 0.656 0.648 0.576
ChromSDE 0.653 0.646 0.630 0.616 0.549

9



Supplementary Table 4: Average silhouette width ratio for the model with parameters
(β0, β1, γ1, γ2) = (3,−.434, 0.05, 0.25). Each number represents the ratio of the average sil-
houette width of the estimated structure and the average silhouette width of the underlying
3D structure.

Resolution
Model Method 0% 10% 20% 30% 60%
NRE tREX 0.848 0.839 0.822 0.799 0.752

tPAM 0.846 0.830 0.830 0.803 0.736
BACH 0.846 0.751 0.667 0.599 0.406
PASTIS 0.754 0.876 0.904 0.935 0.887
ShRec3D 0.736 0.733 0.728 0.722 0.683
ChromSDE 0.860 0.850 0.842 0.818 0.734

ST tREX 0.740 0.732 0.712 0.692 0.651
tPAM 0.602 0.603 0.588 0.573 0.520
BACH 0.616 0.565 0.531 0.491 0.364
PASTIS 0.601 0.693 0.715 0.721 0.649
ShRec3D 0.673 0.667 0.658 0.647 0.576
ChromSDE 0.653 0.646 0.629 0.616 0.553
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(a)

(b)

Supplementary Figure S1: Boxplots for comparing 3D estimation accuracy of six methods
under NRE model and parameter setting (β0, β1, γ1, γ2) = (3,−0.434, 0.05,−0.25). The
comparison are for data simulated from the NRE model based on two criteria: (a) RMS
D, and (b) Correlation. For each resolution/percent zeros, the six boxplots are for tREX,
tPAM, BACH, ShRec3D, ChromSDE, and PASTIS, in that order.
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(a)

(b)

Supplementary Figure S2: Boxplots for comparing 3D estimation accuracy of six methods
under ST model and parameter setting (β0, β1, γ1, γ2) = (3,−0.434, 0.05,−0.25). The com-
parison are for data simulated from the NRE model based on two criteria: (a) RMS D, and
(b) Correlation. For each resolution/percent zeros, the six boxplots are for tREX, tPAM,
BACH, ShRec3D, ChromSDE, and PASTIS, in that order.
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(a)

(b)

Supplementary Figure S3: Boxplots for comparing 3D estimation accuracy of six methods
under NRE model and parameter setting (β0, β1, γ1, γ2) = (3,−0.434, 0.05, 0.25). The com-
parison are for data simulated from the NRE model based on two criteria: (a) RMS D, and
(b) Correlation. For each resolution/percent zeros, the six boxplots are for tREX, tPAM,
BACH, ShRec3D, ChromSDE, and PASTIS, in that order.
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(a)

(b)

Supplementary Figure S4: Boxplots for comparing 3D estimation accuracy of six methods
under ST model and parameter setting (β0, β1, γ1, γ2) = (3,−0.434, 0.05, 0.25). The com-
parison are for data simulated from the ST model based on two criteria: (a) RMS D, and
(b) Correlation. For each resolution/percent zeros, the six boxplots are for tREX, tPAM,
BACH, ShRec3D, ChromSDE, and PASTIS, in that order.
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Supplementary Figure S5: Comparison of the estimated distances with the FISH measure-
ments (gold standard) based on analyses of human lymphoblastoid cell line Hi-C data. For
each pair of loci, the four boxplots are for FISH, tREX, tPAM, and BACH, in that order.
More specifically, for FISH, the boxplot is based on 100 FISH measurements. For tREX,
tPAM, and BACH, each boxplot is based on 10000 reconstructions of the underlying 3D
structure. The line within each box represents the median; the two end points of the box
mark the 25th and 75th percentiles of the measurements (for FISH) or the estimates (for
tREX, tPAM, and BACH). For ShRec3D, ChromsSDE, and PASTIS, only one consensus 3D
structure is reconstructed, as such their boxplot degenerates into a single line. Specifically,
the three lines are for the single estimate of distance for ShRec3D, ChromSDE, and PASTIS,
respectively.
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