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1. Spatiotemporal models for exposure estimation of NO2 and NOx   1 

For this study, this spatiotemporal model was learned from existing NO2 and NOx measurements 2 

(averaged weekly) from different sources, including routine measurements from the South Coast 3 

Air Quality Management District (SCAQMD, time series of 10 years from 2000-2009), and 4 

episodic measurements from University of California Irvine (UCI, four weekly measurements in 5 

2009) and University of California Los Angeles (UCLA, two bi-weekly measurements 6 

respectively in 2006 and 2007).  Then, the weekly concentrations of NO2 and NOx were 7 

estimated and averaged respectively for each of the three trimesters and the entire pregnancy 8 

period at each subject locations.   9 

This trained model had a good cross-validation performance: (1) for the time trends, Person’s 10 

correlation was 0.84-0.91 for NO2 and 0.81-0.90 for NOx (Figure S1 of Additional file 1); (2) for 11 

the long-term averages at the 25 SAQMD locations, R2 was 0.95 for NO2 and 0.73 for NOx 12 

(Figure S2 of Additional file 1).    13 

2. Two-stage models   14 

This section shows the details of the two-stage approach to examine spatial variability of the 15 

effects of air pollution across Census tracts, and influence of the exposure-related, 16 

socio-demographic, land-use pattern and greenness factors at the tract level on it.      17 

Stage One: Within each census tract, the association between air pollution exposure and term 18 

birth weight was established using the Bayesian additive model which takes into account 19 

potentially confounding factors at individual level:     20 
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where c is the index of Census tract (c=1,…,n), yic is term birth weight for tract c, μ(yic) is the 22 
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expected value of the target variable (yic), tr(μ(yic)) is the transformation (e.g. log, box-cox) of 23 

μ(yic), 
c
px is the concentration averages or their transformation of the pth air pollutant during a 24 

certain trimester or the pregnancy, a0c is the intercept, p
c  is the regular or transformed (e.g. log) 25 

health effect (birth weight per unit increase in exposure) of the pth air pollutant; other confounders 26 

include non-linear ones ( jcx ) such as NDVI and maternal age, as well as factor variables kcx27 

such as race/ethnicity, diabetes, hypertension and preeclampsia. sc() is the semi-parametric spline 28 

function and fc() is the factor function.  ( )icy  is the expected value of the ith individual yic 29 

conditional on their neighborhood ( )( | All  ( ))ic lc l iE y y  .  yic, 0ca  and pc  are assumed 30 

to be normally distributed: ~ ( , )ic c cy N   , 0ca  or ~ (0, )pc pN  .     31 

,~ܰሺ0ߝ ∑ሻ, ∑c=[ߪ
 ] represents spatial autocorrelation (ߪ

  between the ith and jth locations) that 32 

is incorporated into the model as spatial effects.  ߝ for individual k can be expressed as:  33 

ߝ	 
 ൌ ∑ߩ ஷݓ ሺݕ െ  ሻሻ                      (2)  34ݕሺߤ

The Matérn covariance function can be used to determine the range (rC) and nugget (nC) of spatial 35 

weight matrix [1]:  36 
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where ܥሺ݀ሻ is the Matérn covariance (variogram) function and the distance, d between h and k. Γ 38 

is the gamma function, Kv is the modified Bessel function of the second kind, , and ρ and ν are 39 

non-negative parameters of the covariance:  40 

ݓ ൌ ቊ
0													if	݀  ݎ

ଵ

ାௗೖ
				otherwise                           (4)  41 

In this study, Moran’s I [2] was used to test spatial autocorrelation; if spatial autocorrelation is 42 

statistically significant and it can be incorporated into the model [3].   43 

The effect of air pollutant and the parameters of confounders were calculated based on the 44 
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posterior distribution using full Bayesian inference:   45 
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where nc is the total number of the samples within the census tract, c, a0c is the intercept, ߚ
 is 48 

the health effect of the pth air pollutant, af is the differential intercepts for the factor variables, b 49 

represents the random effects, s is the spline functions for the non-linear confounders, the 50 

likelihood ܮሺߚ; ߟ ሻ is determined by the distribution of ߚ  and the predictors, ߟ
  (i is the 51 

sample index), ሺ߬
ଶ ሻ is the prior distribution of the variance ߬

ଶ  for the spline function, ሺݒଶ ሻ 52 

is the prior distribution of the variance, ݒଶ  for random effects.  Bayesian inference via Markov 53 

Chain Monte Carlo (MCMC) simulation is based on updating full conditionals of single 54 

parameters or blocks of parameters [4].   55 

Stage Two: the effects (ߚ) of air pollutants on term birth weight were modeled against the 56 

tract-level covariates to examine spatial variability of ߚ across tracts and the effects of the 57 

tract-level modifiers for 58                   .ߚ 
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where p represents the pth pollutant (NO2 or NOx), ݉ሺߚሻ represents expected estimates for ߚመ, 60 

݄൫ߟ൯  is the link function for ߤሺߚሻ  ( ݄൫ߟ൯ ൌ ߟ  for normal distribution), ܿ  is the 61 

socio-demographic, exposure-related and land-use factor at the tract level, ݏ൫ ܿ൯  is the 62 

semi-parametric non-linear spline function for the factor ܿ.  The intercept, a0 represents the 63 

average or background estimate of air pollution effect [ܽ~ܰሺ0,   is assumed to be 64ߝ  .[ሻߪ

spatial auto-correlative (ߝ|∑~ ܰሺ0, ∑ሻ) and spatially conditional auto-correlative regression 65 

(CAR) was used to model it (∑p=[ߪ
] represents spatial covariance) [1].  The variance of ߚ 66 

measures the variability of air pollution effects across the census tracts.   67 
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The conditional expectation of the target variable (ߚ) is used to represent spatial effects [4] and 68 

determined by the tract-level factors at the location, c and a weighted sum of the mean-centered 69 

residuals at neighborhood [ܰ݁݅ሺߚ
ஷሻ in equation (6)].  The residual to incorporate spatial 70 

correlation influence from neighborhood is:      71 

ߝ ൌ ∑ߩ ஷݓ ሺߚ
 െ  ሻ                             (7)  72ߤ

where ρ represents effects of spatial neighborhood to be estimated,  ݓ  is spatial weight 73 

determining the relative influence of neighborhood location j on location c [1] (wcj=1 if tract c is a 74 

neighbor of tract j, 0 otherwise).   75 

Similar to equation (5), point estimates of the posterior effects of air pollutant and non-linear 76 

associations of the tract-level factors with the effects were calculated based on the posterior 77 

distribution using full Bayesian inference.  Bayesian inference via MCMC simulation is based on 78 

updating full conditionals of single parameters or blocks of parameters given the test and data [4].     79 

For the first stage, no spatial effect was incorporated in the model because of insignificant spatial 80 

autocorrelation for 91% census tracts according to the test of Moran’s I.  The health effect of 81 

NO2 and NOx in each Census tract was estimated using JAGS (a program of Bayesian hierarchical 82 

models using MCMC simulation; run in R by the interface package, rjags).  For the second stage, 83 

significant spatial autocorrelation was observed according to the test of Moran’s I (p-value<0.05) 84 

and we used BayesX to establish the Bayesian hierarchical models with the incorporation of 85 

spatial effects (equation 2).  JAGS was used in stage one because JAGS but not BayeX supports 86 

the inclusion of informative priors (e.g. the mean and variance of the prior effect of NO2, 87 

summarized from the previous studies, Table S1) for the fixed effects of air pollutants.  BayesX 88 

was used in the second stage since it is more efficient to incorporate spatial effects within additive 89 

models than JAGS [5].  In BayesX, uninformative priors were used for the intercept and spatial 90 

term was automatically imposed as smooth term with the sum-to-zero constraint on the errors [6].  91 

We include the major codes for the two stage models as additional files 2-5 (NO2: 92 

stage_one_no2.R, stage_two_no2.R; NOx: stage_one_nox.R, stage_two_nox.R).  93 

 94 



5 
 

Table S1   Effects of NO2 and NOx on birth weight from the previous studies  

Type  Region Pollutant  Study size Results (95%CI)  Reference  

Study for 

specific  

region  

US NO2 400,000 -1.24 g (-18.9g to 16.42 g) for per ppb increase  Bobak & Leon [7]  

Seoul, S. Korea  NO2 276,763 -1.83 g for per ppb increase  Ha et al. [8]  

Sao Paulo, Brazil  NO2 179,460 - 7.0 g (-14.3 g to 0.3 g) for 10 μg/m3 increase Gouveia et al. [9]  

California  NO2 3,901 -7.2 g (-34.7 g to 20.4 g) for IQR (25 ppb) increase   Salam et al. [10] 

Brisbane NO2 28,200 102.9 g (-70.0 g to 275.7 g) for per 20 ppb increase  Hansen et al. [11]  

Connecticut  NO2 358,504 -8.9 g (-10.8 g to -7.0 g) for IQR (4.8 ppb) increase   Bell et al. [12] 

Sabadell, Spain  NO2 570  34.8 g (- 94.4 g to 164.0 g) for per 20 ppb increase  Aguilera et al. [13] 

England/Wales NO2 56,525 -81.0 g (-102.8 g to -59.2 g) for per 20 ppb increase  Jackson et al. [14] 

Oslo, Norway NO2 25,229 -19.8 g (-62.8 g to 23.2 g) for per 20 ppb increase  Madsen et al. [15] 

California  NO2 3,545,177 - 18.0 g (-19.2 g to -16.8 g) for 20 ppb increase  Morello-Frosch et al. [16] 

Valencia NO2 787 -36.6 g (-125.0 g to 51.8 g) for 20 ppb increase  Ballester et al. [17] 

Poitiers, Nancy NO2 776 -41.4 g (-150.5 g to 67.7 g) for 20 ppb increase  Lepeule et al. [18] 

Dutch cities  NO2  3,853 18.8 g (-47.4 g to 85 g) for per 20 ppb increase  Parker et al. [19]  

Atlanta  NO2 406,627 - 4.5 g (-8.5 g to - 0.6 g) for per quartile increase (IQR: 5.0 ppb) Darrow et al. [20]  

Review (Review)a  NO2 Variance: -28.1 g (-44.8 g to 11.5 g) for 20 ppb increase  Stieb et al. [21] 

Abbreviations: CI, Confidence interval; IQR: Inter Quartile Range; AOR, adjusted odds ratio; g: gram; US: United States.   

a(Review): not specific-region but from the review paper based on the studies of multiple regions   
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Table S2  Contribution of each tract-level factor in linear models to the NO2 and NOx effects  

Covariate (unit)  NO2  NOx  

Distance to the freeways/highways (km) 
4.1e-5 (-7.4e-6,9.5e-5)a 1.8E-4 (7.1e-5, 2.8e-4)  

Proportion of taking vehicles to work #  -0.61 (-1.30, 0.11)   -3.29 (-5.65, -1.02)  

Proportion of taking bikes or walk to 
work  

0.43 (-0.65, 1.54)  4.96 (1.50, 8.34)  

Proportion of travel time to work<30m # 0.44 (-1.79,2.71)  

Proportion of White race 0.10 (-0.35,0.54)  #  

Proportion of Black race -0.19 (-1.11,0.76)  -0.04 (-1.94, 1.91)  

Proportion of Asian race  -0.26 (-1.10, 0.56)   

Proportion of women with no education#  -0.86 (-2.89, -1.19)  #  

Proportion of women with bachelor plus 
education # 

0.05 (-2.13, 2.24)  # 

Proportion of gas use for heating  -0.71 (-1.17, -0.24)  -2.21 (-3.67,-0.61)  

Proportion of electricity power facility 
land-use  

-10.75 (-20.23,-1.04)  -15.41 (-43.03,-12.45)  

Median family income (USD)    1.17e-6 (-1.99e-6, 

4.13e-6)  

2.8e-5 (3.4e-7, 5.6e05)  

Proportion of heavy industry land-use   -3.85 (-7.36,-0.06)   -0.86 (-1.22, -0.54)  

Proportion of park and recreational 
land-use 

#  15.40 (7.81, 22.89)  

Mean NDVI   2.17 (1.25, 3.10)  #  

#: Result not shown due to statistical insignificance.   

a. effect coefficient in linear models (mean effect with 95% confident intervals for each change)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

Table S3.  Change in effects of NO2 and NOx between the 1st and 4th quartiles of each tract-level factor in non-linear models    

Covariate (unit)  Intervals of 

range 

(min-max)  

NO2  NOx   

 Effect change (g 

per 10 ppb)a 

Percent for 

average effect 

Effect change (g 

per 10 ppb)a  

Percent for average 

effect 

Average posterior effect of air pollutants (reference)a  -14.7 1 -6.9 1 

Distance from freeways/highways (km)b 0-40  
3.7  25%a  4.9   71% 

Percent of population driving vehicles to work #  0-92% -1.6   -10% -14.7   -213% 

Percent of population taking bikes or walk to work 0-50% 1.2   8% 6.5   94% 

Percent of population commuting to work < 30 minutes 33-95% - - 5.9  86% 

Percent of Whites population 2-75% 0.3   2% -  - 

Percent of Blacks population  6-92%  -3.9   -27% -3.7   -53% 

Percent of Asian population  0-60% -2.3  -16% -   - 

Percent of women with no or lower education level below 
bachelor#   

0-50% -5.1  -34% -  - 

Percent of women with bachelor or higher educational level 
# 

0-50% 5.2    35% - - 

Percent of population using gas for heating  7-97% -1.8   -12% -17.4   -252% 

Percent of electrical power facility land-use  0-12%  -31.4  -213% -62.3   -902% 

Median household income (USD)    7271-200064 1.0   7% 3.4    49% 

Percent of heavy-industry land-use   0-32%  -13.0   -88% -3.9 -56% 

Percent of park and recreational land-use 0-35%  -  - 6.7    97% 

Mean NDVI   0-0.5  4.8  33% -  - 

-: Result not shown due to no statistical significance. a negative sign indicates adverse effect (from the regression models), i.e. decrease of term birth weight by NO2 

and NOx for the total or average posterior effect. b: change in effects of air pollutants between the 1st and 4th quartiles of the tract-level factors, with the posterior 

average effects as the reference, positive value indicating decrease in adverse effects while negative value indicating increase in adverse effects   
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a. NO2  

 

b. NOx 

Figure S1  NO2 and NOx time series predicted by the spatiotemporal model  

(Station address: 2850 Mesa Verde Dr. East, Costa Mesa)   
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a. NO2                                b. NOx  

Figure S2  NO2 (a) and NOx (b) long-term averages of the predicted time series vs. the 

measurements for all the 25 stations   
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μ=-11.2 g per 10 ppb change, σ2=82.9 

Figure S3.  A priori statistics of the effects of NO2 on birth weight summarized from the previous 

studies    
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a. Distance from freeways/highways (m)              b. Percent of population driving to work   

 

c. Percent of population who bike/walk to work                 d. Percent of Whites   

 
 e. Percent of Blacks                            f. Percent of Asians 

 

   g. Percent of women with no or low education       h. Percent of women with bachelor or higher education 

Figure S4.  Non-linear effects of NO2 on birth weight (smooth term) from stage two (to be 

continued)  
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       i. Percent of population who use gas for heating     j. Percent of electricity power facility land-use 

 

 

           k. Median household income                   l. Percent of heavy industry land-use   

 

                   m. Mean NDVI    

Figure S4.  Non-linear effects of NO2 on birth weight (smooth term) from stage two (continued) 
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a. Distance from freeways/highways (m)            b. Percent of population driving to work  

   

   c. Percent of population who bike or walk to work     d. Percent of population with commuting time < 30 m  

   

             e. Percent of Blacks                     f. Percent of population who use gas for heating  

   

       g. Percent of electricity power facility land-use             h.  Median household income  

Figure S5.  Non-linear effects of NOx on birth weight (smooth term) from stage two (to be 

continued)  
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i. Percent of heavy industry land-use            j. Percent of park and recreational land-use  

Figure S5.  Non-linear effects of NOx on birth weight (smooth term) from stage two (continued)  
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a. NO2  

 

b. NOx  

Figure S6.  Posterior estimates of the effects of NO2 and NOx   
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a. NO2   

 
b. NOx 

Figure S7.  Probability map of Census tract NO2 and NOx effects for term birth weight [P(β < 0)]  
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