An Engineered Rare Codon Device for Optimization of Metabolic Pathways

You Wang^{1,2#}, Chunying Li^{1,2#}, Md. Rezaul Islam Khan^{1#}, Yushu Wang¹, Yunfeng Ruan^{1,2}, Bin Zhao^{1,2}, Bo Zhang^{1,2}, Xiaopan Ma^{1,2}, Kaisi Zhang^{1,2}, Xiwen Zhao^{1,2}, Guanhao Ye^{1,2}, Xizhi Guo¹, Guoyin Feng¹, Lin He^{1,2,3}*, Gang Ma^{1,2}*

1 Bio-X institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, PR China

2 2011 SJTU-BioX-Shanghai Team for The International Genetically Engineered Machine Competition (iGEM), Shanghai Jiao Tong University, Shanghai, PR China

3 Shanghai genomePilot Institutes for Genomics and Human Health, Shanghai, 200030, China

These authors contributed equally to this work.

* Corresponding authors.

Gang Ma: magang2004@gmail.com, Fax: 86-21-34207232

Lin He: helinhelin@gmail.com, Fax: 86-21-62932059

Table S1. Primers used in this study

Primer name	sequence (5' to 3')
2luc-Ncol-F	CCCCCATGGCGAGGAGGGCGGCGGAAGACGCCAAAAACATAAAG
4luc-Ncol-F	CCCCCCATGGCGAGGAGGAGGAGGGCGGCGGAAGACGCCAAAAACATAAAG
6luc-Ncol-F	CCCCCCATGGCGAGGAGGAGGAGGAGGAGGGCGGCGGAAGACGCCAAAAACATAAA
	G
8luc-Ncol-F	CCCCCCATGGCGAGGAGGAGGAGGAGGAGGAGGAGGGCGGCGGAAGACGCCAAAA
	ACATAAAG
luc-Ndel-R	CCCCCATATGTTTACACGGCGATCTTTCC
rfp - F	GGAATTCCATATG GCTTCCTCCGAAGACG
rfp - R	CCGCTCGAGTTAAGCACCGGTGGAGTGAC
6rfp-F	GGAATTCCATATG AGGAGGAGGAGGAGGAGGGCTTCCTCCGAAGACG
ampR-F	CCTGTCGCTTGCGGTATTCGGCGGCATCCGCTTACAGACA
ampR-R	CAGTGAGCGAGGAAGCGGAACGCTCAGTGGAACGAAAA
2blaluc-F	AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGGAGGAGGAAGACGCCAAAAA
4blaluc-F	AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGGAGGAGGAGGAG
	СААААС
6blaluc-F	AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGGAGGAGGAGGAG
	CGCCAAAAAC
8blaluc-F	AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGGAGGAGGAGGAG
	GGAAGACGCCAAAAAC
LucAmp-R	ACGGGAGGGCTTACCATCTGGTTACACGGCGATCTTTCC
trc-F	CCACCATACCCACGCCGAAACAAAAAAAAAAGAGTTTGTAGAAACGC
trc-R	TTGCCGTTACGCACCCCGGTATTTTCTCCTTACGCATCTGT
argW-F	TTGTGAGCGGATAACAATTTCACACGTCCTCTTAGTTAAATGGATATAACGAG
argW-R	GTGGCAGCAGCCTAGGTTAAGTCAACGATCTGAAGCGAACCAT
aspV - F	CCACCATACCCACGCCGAAACCTAAAAATAGCGACTTGGGC
aspV - R	TTGCCGTTACGCACCACCCTTGAACAGAGAAATGGTGGAA
Т7-F	AGAATGAATCACCGATACGCAGATCTCGATCCCGCGAA
T7-R	CCTACGAGTTGCATGATAAAGACAAAAAACCCCCTCAAGACCC
aspV-CCU-F	AGTCGGTTAGAATACCTGCCT CCT ACGCAGGGGGTCGC
aspV-CCU-R	GCGACCCCCTGCGT AGG AGGCAGGTATTCTAACCGACT
TAGluc-Ncol-F	CCCCCCATGGCGTAGAGGAGGGCGGCGGAAGACGCCAAAAACATAAAG
TDRS-F	CATGCC ATGGGCGTTCTGCCGCTTGACTCT
TDRS-R	GGAATTCCATATG TCAGTTATTCTCAGCCTTCTTCACA
FB-argW-F	GGAATTCCATATG GAAAAATTATAAAAACCCG
FB-argW-R	CCGCTCGAGGTCAACGATCTGAAGCG
Note:	

Note:

underlined letters	the homologous sequence used for overlap extension PCR
blod letters	the restriction enzyme sites
italic and blod letters	the mutation points

Table S2. Vectors used in this study

Vector name	Description
pET-T7-2AGGluc	lucferase gene with 2 AGG codons inserted after the second codon was
	inserted into pET28a between Ncol and Ndel under the T7 promoter
pET-T7-4AGGluc	lucferase gene with 4 AGG codons inserted after the second codon was
	inserted into pET28a between Ncol and Ndel under the T7 promoter
pET-T7-6AGGluc	lucferase gene with 6 AGG codons inserted after the second codon was
	inserted into pET28a between Ncol and Ndel under the T7 promoter
pET-T7-8AGGluc	lucferase gene with 8 AGG codons inserted after the second codon was
	inserted into pET28a between Ncol and Ndel under the T7 promoter
pET-ampR	ampR operon from pUC18 was amplified and inserted into pET28a
	replacing a nonessential region
pET-bla-4AGGluc	the ORF of luciferase gene inserted 4 AGG codons after initial codon
	replacing the ORF of <i>amp</i> R gene on pET-bla
pET-bla-6AGGluc	the ORF of luciferase gene inserted 6 AGG codons after initial codon
	replacing the ORF of ampR gene on pET-bla
pET-bla-8AGGluc	the ORF of luciferase gene inserted 8 AGG codons after initial codon
	replacing the ORF of <i>amp</i> R gene on pET-bla
pET-T7-RFP	wild type RFP gene was inserted into pET28a between Ndel and
	Xhol under the T7 promoter
pET-T7-6AGGRFP	RFP gene with 6 AGG codons inserted after initial codon was inserted
	into pET28a between <i>Nde</i> I and <i>Xho</i> I under the T7 promoter
pACYC-trc	lacl regulator, trc promoter and rrnB ternimator were amplified
	together from pTrc99b and inserted into pACYC184 replacing CmR
	operon
pACYC-trc-argW	insert <i>arg</i> W after the trc promoter on pACYC-trc
pACYC-aspV	aspV operon was amplified from the genome of <i>E.coli</i> and inserted into
	pACYC184 replacing the <i>Cm</i> R operon
pACYC-T7-aspV	T7 promoter from pET28a was inserted into pACYC-aspV replacing a
	fragment of blank sequence
pACYC-T7-aspV(CCU)	mutated the anticodon part of <i>asp</i> V gene on pACYC-T7-aspV from GTC
	to CCT
pACYC-T7-4AGGluc-asp	luciferase gene with 4 AGG codons inserted after initial codon was
V(CCU)	inserted after T7 promoter on pACYC-T7-aspV(CCU)
pACYC-T7-6AGGRFP-as	RFP gene with 6 AGG codons inserted after initial codon was inserted
pV(CCU)	after T7 promoter on pACYC-T7-aspV(CCU)
pET-T7-TDRS	the truncated aspRS was amplified from the genome of <i>E.coli</i> and
	inserted after T7 promoter on pET28a using overlap extension PCR
pET-T7-2AGGluc-argW	argW gene was amplified from <i>E.coli</i> genome and inserted after
	2AGG-luc gene before T7 ternimator on pET-T7-2AGGluc
pET-T7-4AGGluc-argW	argW gene was amplified from <i>E.coli</i> genome and inserted after
	4AGG-luc gene before T7 ternimator on pET-T7-4AGGluc
pET-T7-6AGGluc-argW	argW gene was amplified from <i>E.coli</i> genome and inserted after
	6AGG-luc gene before T7 ternimator on pET-T7-6AGGluc

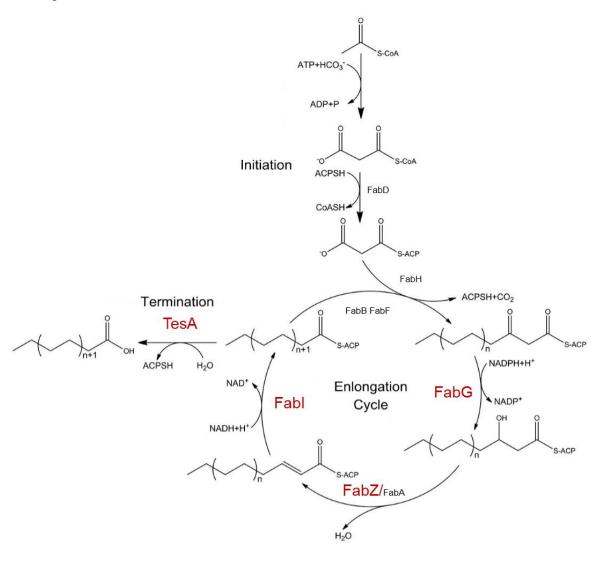
Supplementary Figure legends

Fig. S1: Fatty acid metabolism pathway in *E. coli*. FabA, FabB, FabD, FabF, FabG, FabH, FabI, FabZ are the main enzymes of the fatty acid biosynthesis pathway in *E. coli*. FabB, FabF, Fab G, FabI, FabZ/FabA are mainly responsible for fatty acid elongation. TesA is the enzyme that is able to release free fatty acid by hydrolysis of acyl-ACP species. FabG, FabZ, FabI and TesA were picked as targets for manipulation in these experiments based on previous studies.

Fig. S2: RFP expression controlled by rare codon devices. (**A**) Constructs for testing rare codon devices. RFP containing 6 AGGs and tRNA^{Arg} (CCU) were expressed under separate *T7* promoters (blue). (**B**) Cells containing *rfp* without the rare AGG codon and tRNA^{Arg} (CCU) expressed RFP (upper row). RFP expression nearly ceased upon insertion of 6 AGG codons (S2A) (middle row). RFP expression was restored in cells containing pACYC-trc-argW (coded for tRNA^{Arg} (CCU)) (bottom row). (**C-I**) Time-course assays of luciferase activity. Black line indicates luciferase activity in the cell carrying pET-T7-nAGGluc and pACYC-trc-argW (C-F, n = 2, 4, 6, 8) or pET-bla-*n*AGGluc and pACYC-trc-argW (C-F, n = 2, 4, 6, 8).

Fig S3: Protein levels of luciferase with various numbers of rare AGG codon insertions after the start codon. (A) SDS-PAGE of lysates of cells containing rare codon devices shown in Fig. 1A. The upper bands (nAGGLuc) represent luciferase with various numbers of arginines at the N terminus. The lower bands are western blots of DnaK protein, which was chosen as the internal control. (**B**) The bands in Fig. S3A were quantified in terms of relative protein amounts using Quantity One® software.

Fig. S4: Control of luciferase expression via TDRS and mutated tRNA^{Asp} (GUC→CCU).


(A) Sketch showing TDRS and mutated tRNA^{Asp} (GUC \rightarrow CCU). (B) Luciferase activity was detected only in the cell carrying plasmids containing *luciferase* with 4 AGG codon insertions, mutated tRNA^{Asp} (GUC \rightarrow CCU), and TDRS (right-hand column). Only the luciferase substrate (considered as background) was detected from the cell containing *luciferase* with 4 AGG codon insertions and mutated tRNA^{Asp} (GUC \rightarrow CCU) (left-hand column).

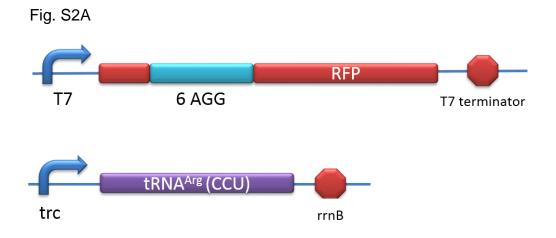

Fig. S5: Control of kanamycin resistance gene expression using truncated MetRS and tRNA^{fMet} (CAT \rightarrow TCG). (A) Sketch of the test system. The start codon of *KanR* was mutated to CGA to permit recognition by tRNA^{fMet} (CAT \rightarrow TCG). The tRNA^{fMet} (CAT \rightarrow TCG) was charged using truncated MetRS. (B) Expression of *KanR* (ATG \rightarrow CGA) was controlled by truncated MetRS and tRNA^{fMet} (CAT \rightarrow TCG). The left-hand figure shows a cell carrying truncated MetRS, tRNA^{fMet} (CAT \rightarrow TCG), and *KanR* (ATG \rightarrow CGA) grown on a plate containing kanamycin. The cell that carried only tRNA^{fMet} (CAT \rightarrow TCG) and *KanR* (ATG \rightarrow CGA) could not grow on the kanamycin plate showed in the right-hand figure. "N" and "M" indicate two independent clones.

Fig. S6: Component analysis of fatty acid products by GC-MS. Data for the strains (**A**) ZGIT, (**B**) 4Z4G4I4T, and (**C**) 4Z8G4I1T. The X-axis and Y-axis represent retention time and relative amounts, respectively.

Fig. S7: Analysis of the structures of aminoacyl-tRNA synthetases complexed with cognate tRNAs. Black arrows indicate the anticodon recognition domains of various aminoacyl-tRNA synthetases. Figures on the left depict natural aminoacyl-tRNA synthetases complexed with cognate tRNAs, while those on the right represent hypothesized truncated aminoacyl-tRNA synthetases without the anticodon recognition domain. (A) Arginyl-tRNA synthetase, (B) cysteinyl-tRNA synthetase, (C) glutaminyl-tRNA synthetase, (D) glutamyl-trna synthetase, (E) threonyl-tRNA synthetase, (F) tryptophanyl-tRNA, (G) tyrosyl-tRNA synthetase, and (H) methionyl-tRNA synthetase.

Fig. S1

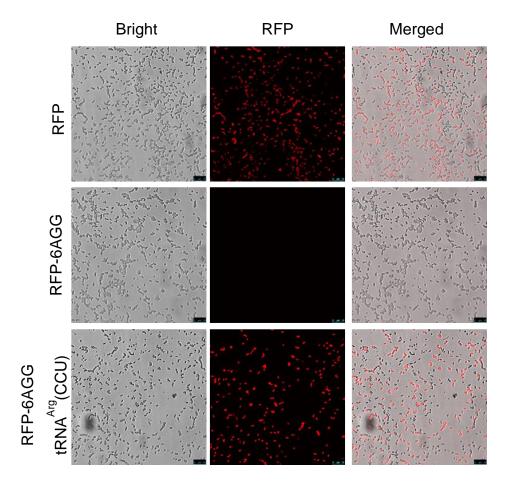


Fig. S2C

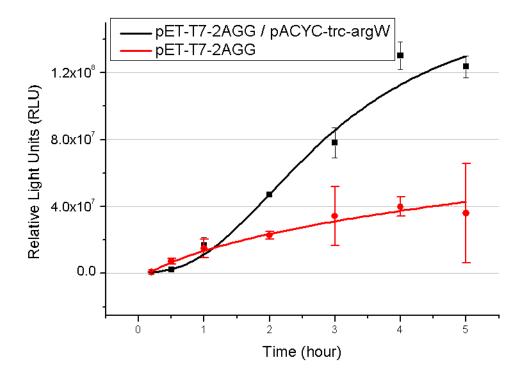


Fig. S2D

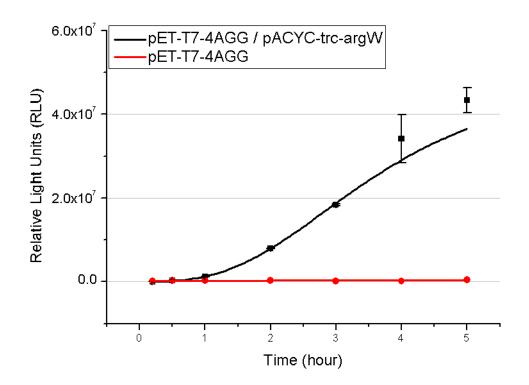


Fig. S2E

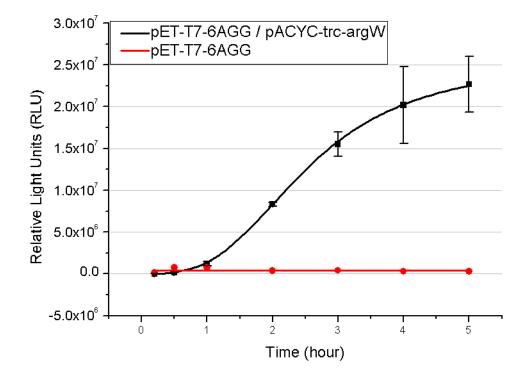
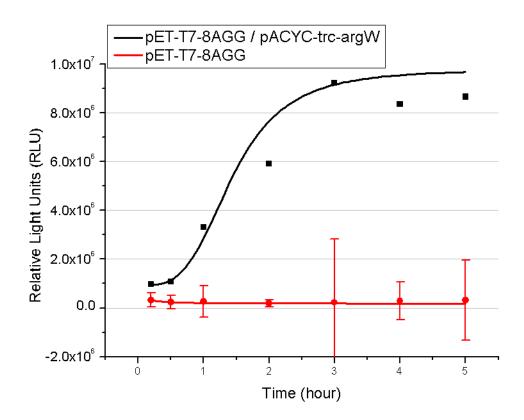



Fig. S2F

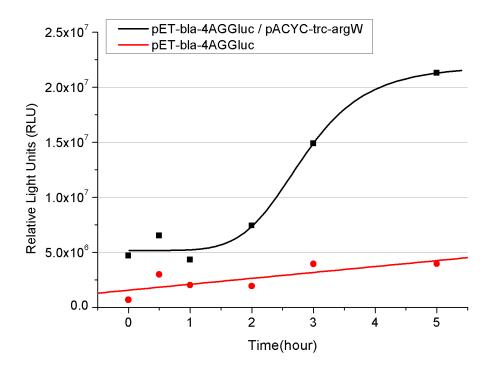
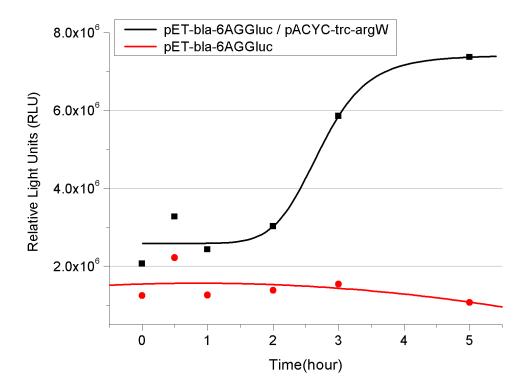
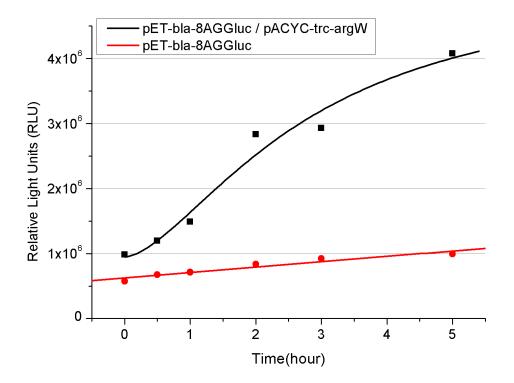
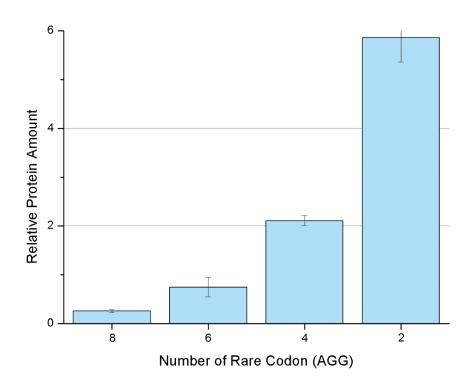
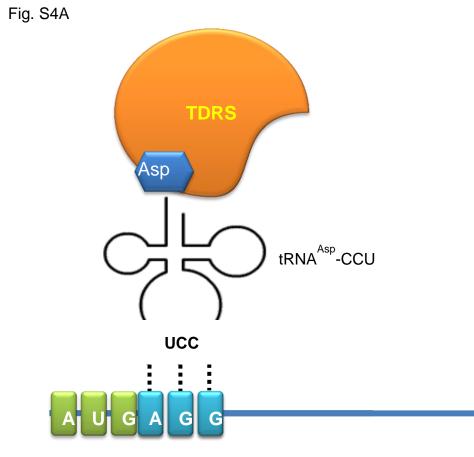
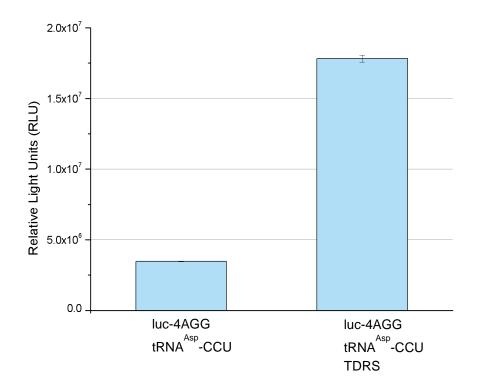


Fig. S2H

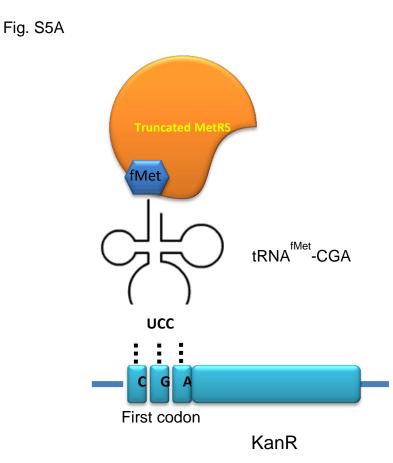
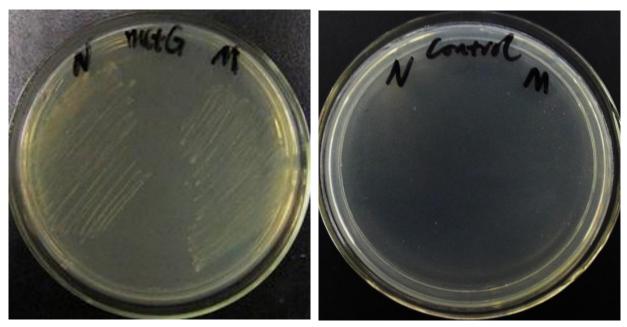



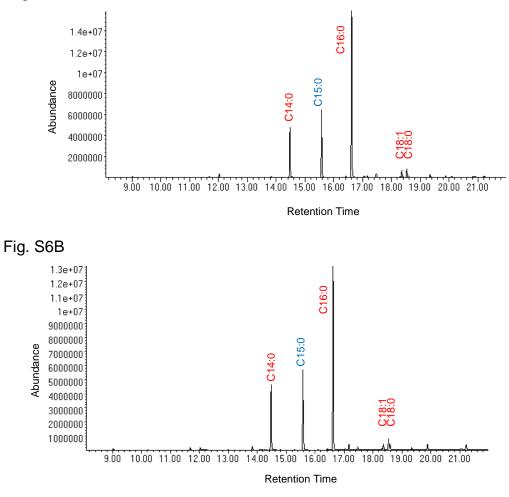

Fig. S2I

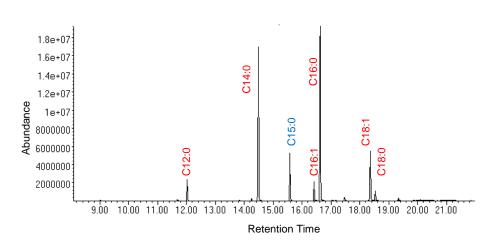


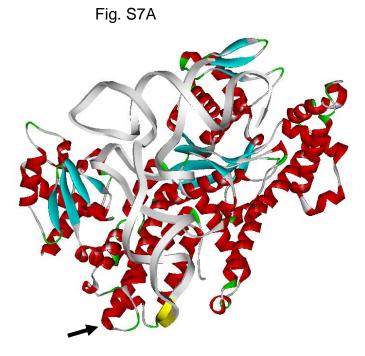


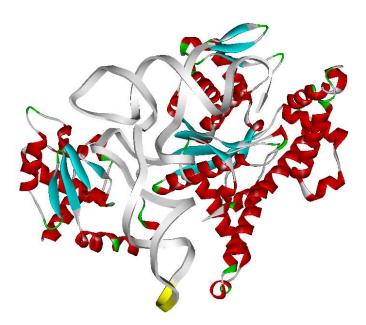
Luciferase (4AGG)

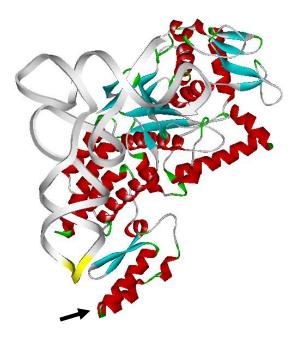



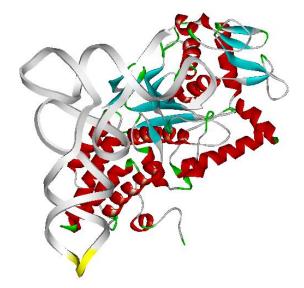

Fig. S5B


Trucated MetRS tRNA^{fMet} (CAT→TCG) KanR (ATG→CGA)


tRNA^{fMet} (CAT→TCG) KanR (ATG→CGA)



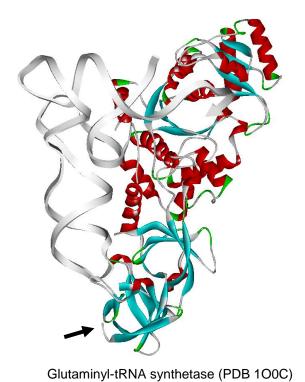


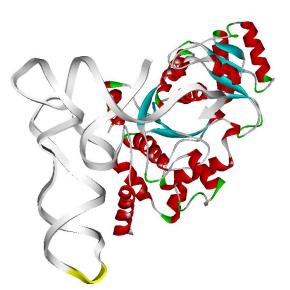


Arginyl-tRNA synthetase

Truncated Arginyl-tRNA synthetase (anticodon recognition domain deletion (483-607))

Fig. S7B





Truncated Cysteinyl-tRNA synthetase (anticodon recognition domain deletion (413-461))

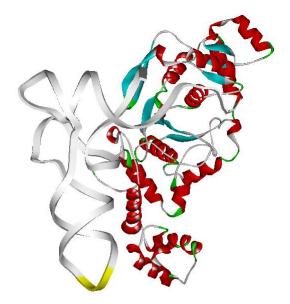
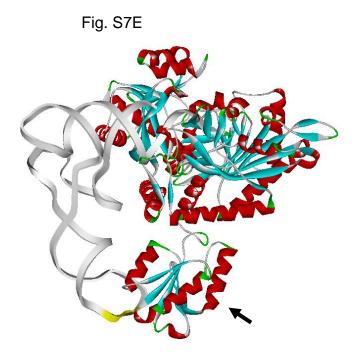
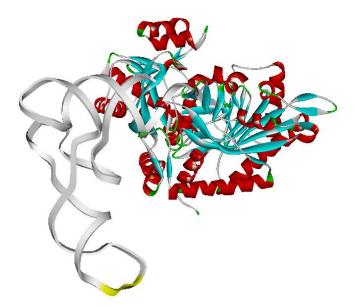

Cysteinyl-tRNA synthetase

Fig. S7C

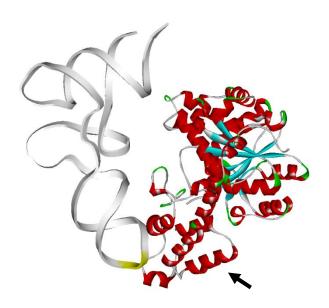

Truncated Glutaminyl-tRNA synthetase (anticodon recognition domain deletion (340-547))



Glutamyl-trna synthetase (PDB 1G59)

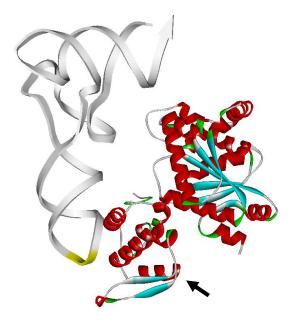
Truncated Glutamyl-trna synthetase (anticodon recognition domain deletion (375-468))

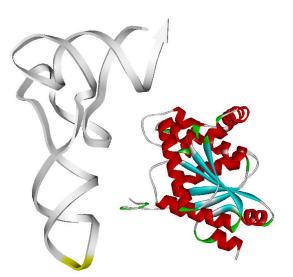
Fig. S7D



Threonyl-tRNA synthetase (PDB 1QF6)

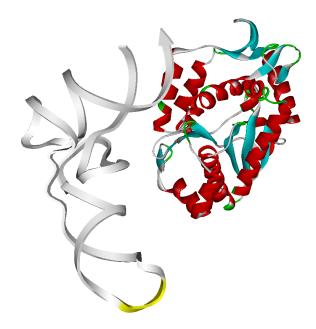
Truncated Threonyl-tRNA synthetase (anticodon recognition domain deletion (536-642))


Fig. S7F


Tryptophanyl-tRNA synthetase (PDB 2AKE)

Truncated Tryptophanyl-tRNA synthetase (anticodon recognition domain deletion (365-469))

Fig. S7G


Tyrosyl-tRNA synthetase (PDB 1J1U)

Truncated Tyrosyl-tRNA synthetase (anticodon recognition domain deletion (219-306))

Methionyl-tRNA synthetase (PDB 2CSX)

Truncated Methionyl-tRNA synthetase (anticodon recognition domain deletion (336-497))