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Supplement to: Identification of Heterogeneity in Pooled Studies

In this supplement, we provide the proofs of the theorems.

Following the counting process notation, we define the counting process Ny;(¢) = I[(Ty; < t,0;; =
1), and the risk process Y;;(t) = I(Ty; > t). For simplicity, we assume that failure time 77; takes
values on a finite time interval [0, 7], and we still use Z;; to denote the predictors corresponding to

the transformed parameters 6,. Then the log partial likelihood €(6,) could be expressed as

K T
€O => Y / {6, Z1 — 10g(0iS | (O, 1)IANG(2),
0

k=1 i=1

where S ,8") (O, 1) = ! SO0, VidOZE" exp(6,Zy:), with a®" = 1,a,aa’,m = 1,2,3 for a vector a.

Let M;(t) = Ny (t) — fot Aok(s) exp(6,Zy;)d s be the martingale for N;(¢). The regularity conditions
are given as follows:

(A) [§ Aw(s)ds < oo fork=1,...,K.

(B) There exists a neighborhood B of the true 6 satisfying: (i) There exist a scalar, a vector, and a
matrix s{"(6,£) (m = 0, 1,2), such that Sup,co 1, ges IS " (6ns 1) = 5" (6, Dl = 0 in probability. (i)

(m)

functions s; (6, 1) are bounded, and s,(co)

(6,1) is bounded away from zero; s,ﬂ’”)(-, t) are absolutely
continuous for § € B, uniformly in 7 € [0,7]. (iii) let ex(6,2) = 5\ (Br 1)/ (Or 1), Vi(Os 1) =
(0005 0y 1) = (ex(B,, )2, and I(82) = [ vi6, $)5 (6%, 5)Adox(5)dss s positive definite with
bounded eigenvalues, fork =1,..., K.

(C) For k = 1,...,K, there exists a matrix I'y = I';(¢;) with bounded eigenvalues such that at
true 6}, |lng' -, Var(Dy;) — Till = 0, where Dy; = [ [Zii — e(6,, D]dMi(2).

(D) There exists a constant C such that sup,¢y g; ier1.,4,) E(Dri jDkﬂ)2 < C, where Dy;;, Dy are the
Jj-th and [-th element of Dy;.

Conditions (A)-(D) are also required in Cai et al. (2005), which guarantee the local asymptotic
quadratic property for the partial likelihood function and hence the asymptotic normality.

For simplicity, we denote A} = A;,wq, A& = Ay,wiy, and define a, = max{A}, A7 : [ € Ay, k €

Ay}, and b, = min{ ), A7 : [ € A, k € A, ).

Proof. [of Theorem 1]
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Let 7, = vg,/n. We show that for any € > 0, there exists a large constant d, such that for any

Au = (Auy, Aay),

P{int 0.6, +n,0w) > Qu(6)) > 1 - €. (1)

0.6+ ) = Q,(6,) > — (6, + myow) + 66 + { 37 20l + muspl — )
leA,

+ 37 Al + el = gl }

keﬂZn
e H, + H,.

With triangular inequality and Cauchy—Schwarz inequality,

Hy> =Y Mmlopl =Y Amllacd

€A, keAr,
> = amilowl = amllaal
€A, keAa,

Z —Qylly @d 2 —mﬁld,
the last step is due to the condition A,/ Vn — 0, A2,/ vVn — 0, which implies a,/Vn —, 0,

An NG < NG < Nqu/nn = nn,.
With Taylor expansion and arguments in Cai et al. (2005),

1 ~
Hy = = VOO, au - E(nnAu)’sz(Hn)(nnAu)

= Hy + Hps,
where 6, lies between 67 and 6" + n,Au.
\Hi1| < mallaull X IVE@I = Op(, Vign)d = Op(ni,d).

Using Chebyshev’s inequality and the assumption qi /n— 0, ||%V2€(§,,)+I @Il = o,(1)(Caiet al., 2005),

1 2 ’ 1 2000 * 1 2 ’ *

Hy =- Emyn[Au {;V (6, + 1(6,)}au] + Em]nAu 1(6,)Au
1 1
= EmyﬁAu’I(HZ)Au - Em]ﬁdzop(l).

Therefore, combining H,, H,, and H,, we see Hj, dominates the other two. So when ||Au|| = d

is sufficiently large, Q,(6; + n,au) > Q,(6,

). This completes the proof.
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Proof. [of Theorem 2] We show P(@ﬂg=0) — 1. Without loss of generality, we assume the true
value a; of 6 equals to for a certain k, and show in details P(@; = 0) — 1. Suppose & # 0, then

0, becomes differentiable w.r.t a;. Therefore,

af ~ &k

0=——"(f,)+ 27— 2
da O+ W, @
or . T4 5206,
(@)= ———@) - -6
Gak( ) (9ak( n) Z (9 (99 ( J)
£ H, + H,.

We can easily see that H; = O,(+/ng,), and for H,,

ij( ‘9 e RS o) -3 525 )0, - 0
Oay 89 = a0,

= H21 + H22.

By Cauchy-Schwarz inequality,

1/2

qn
PL Pl
< - n .
|H2i [E {ﬁakaej E(aakaej)}] 16, = G5l

= 0p(Vgum)0y(\/quln) = 0,(Nngy),

|Hy,| < nO,(D|16,, = 6.l
= nOp(l)Op( V qn/n) = Op( VnQn),
we get H, = O,(+/ng,). The ”<” in Hy, is due to the finite eigenvalues of the information matrix.
Therefore, H, + H, = 0,(+/ng,). Since A,/q, — oo and Ay, /q, — oo, b,/ +\/ng, — oo,

H/lg&k/ﬂ&kll \Vnq,(b,/ \Inq,) > +ng,0,(1). That implies the "= in (2) cannot be

satisfied. Proof is completed.

Proof. [of Theorem 3]
We first show I, (8n, — 0 ) = 1V4,€(6") + 0,(n""/?). Then for any m X s, matrix B, Lindeberg—

Feller central limit theorem gives

. o1 3
VB, la,(0a, — 0 ) = x/ﬁBnlﬂiﬂ{;Vﬂnaen)} —4 N(0,G).
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Since 0 = —V,£(6,) + D(,), DO) = (A'sgn(iy), AL/ @xlDiea, ke, IDGIP < sua2, and Ay,
Ay, satisfy the conditions in Theorem 3, then a? = 0,(n/qn), D@,) = , /$,0,(n/qy) = 0,(\n).

By Taylor expansion,

~V,60,) = =Va,006;) = V5, 60,0, — 027,
A . 1 - oA . 1 ~ n .
I, (B2, = 0,) = =~V 60O, = 0n)+ {Ln, + V3, 6B0) } B, — 0
£ H 1+ Hs.

By Cauchy-Schwarz inequality, we can easily see that H, = o0,(1/ +/n). Therefore, Iﬂn(éﬂn -
0,) = %Vﬂnf(e*) +0,(n"?).

Now we justify the conditions for Lindeberg—Feller central limit theorem. Let Gy; = LB,I, i/ szi‘,

ViUl

where Dy; corresponds to the nonzero elements in Dy,. Since

nk

ZE[IIGk,-uz]{qu,.” > 6}} <[§:EIIGHH ] [ZE(’ Gul > )]1 2
i=1

i=1

1 i -1/2 4 Zﬁ] E”le”2
< ;EHZBnlﬂn Dk,._H sl TR
i=1

e2

\/—/l,znax(B’B )A%. (BB, )0,(s2) X 0,(1)
= 0,(1),
then Zk : Z E [lle, IPI{|Gill > }} = 0,(1). By central limit theorem, we prove the asymptotic

normality.
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