Supplement to: Identification of Homogeneous and Heterogeneous Variables in Pooled Cohort Studies

Xin Cheng^{1,*}, Wenbin Lu^{2,**}, and Mengling Liu^{1,***}

¹Departments of Population Health and Environmental Medicine, New York University School of Medicine, New York, U.S.A.

²Department of Statistics, North Carolina State University, Raleigh, North Carolina, U.S.A.

*email: xc311@nyu.edu

**email: lu@stat.ncsu.edu

***email: mengling.liu@nyu.edu

In this supplement, we provide the proofs of the theorems.

Following the counting process notation, we define the counting process $N_{ki}(t) = I(T_{ki} \le t, \delta_{ki} = 1)$, and the risk process $Y_{ki}(t) = I(T_{ki} \ge t)$. For simplicity, we assume that failure time T_{ki}^* takes values on a finite time interval $[0, \tau]$, and we still use Z_{ki} to denote the predictors corresponding to the transformed parameters θ_n . Then the log partial likelihood $\ell(\theta_n)$ could be expressed as

$$\ell(\theta_n) = \sum_{k=1}^K \sum_{i=1}^{n_k} \int_0^{\tau} \{\theta'_n Z_{ki} - \log(n_k S_k^{(0)}(\theta_n, t))\} dN_{ki}(t),$$

where $S_k^{(m)}(\theta_n, t) = n_k^{-1} \sum_{i=1}^{n_k} Y_{ki}(t) Z_{ki}^{\otimes m} \exp(\theta_n' Z_{ki})$, with $a^{\otimes m} = 1, a, aa', m = 1, 2, 3$ for a vector a.

Let $M_{ki}(t) = N_{ki}(t) - \int_0^t \lambda_{0k}(s) \exp(\theta'_n Z_{ki}) ds$ be the martingale for $N_{ki}(t)$. The regularity conditions are given as follows:

(A)
$$\int_0^\tau \lambda_{0k}(s)ds < \infty$$
 for $k = 1, \dots, K$.

- (B) There exists a neighborhood \mathcal{B} of the true θ_n^* satisfying: (i) There exist a scalar, a vector, and a matrix $s_k^{(m)}(\theta,t)$ (m=0,1,2), such that $\sup_{t\in[0,\tau],\theta\in\mathcal{B}}\|S_k^{(m)}(\theta_n,t)-s_k^{(m)}(\theta_n,t)\|\to 0$ in probability. (ii) functions $s_k^{(m)}(\theta,t)$ are bounded, and $s_k^{(0)}(\theta,t)$ is bounded away from zero; $s_k^{(m)}(\cdot,t)$ are absolutely continuous for $\theta\in\mathcal{B}$, uniformly in $t\in[0,\tau]$. (iii) let $e_k(\theta_n,t)=s_k^{(1)}(\theta_n,t)/s_k^{(0)}(\theta_n,t)$, $v_k(\theta_n,t)=s_k^{(2)}(\theta_n,t)/s_k^{(0)}(\theta_n,t)-(e_k(\theta_n,t))^{\otimes 2}$, and $I_k(\theta_n^*)=\int_0^\tau v_k(\theta_n^*,s)s_k^{(0)}(\theta_n^*,s)\lambda_{0k}(s)ds$ is positive definite with bounded eigenvalues, for $k=1,\ldots,K$.
- (C) For k = 1, ..., K, there exists a matrix $\Gamma_k = \Gamma_k(\theta_n^*)$ with bounded eigenvalues such that at true θ_n^* , $||n_k^{-1} \sum_{i=1}^{n_k} Var(D_{ki}) \Gamma_k|| \to 0$, where $D_{ki} = \int_0^{\tau} [Z_{ki} e_k(\theta_n, t)] dM_{ki}(t)$.
- (D) There exists a constant C such that $\sup_{k \in [1,K], i \in [1,n_k]} E(D_{kij}D_{kil})^2 < C$, where D_{kij}, D_{kil} are the j-th and l-th element of D_{ki} .

Conditions (A)-(D) are also required in Cai et al. (2005), which guarantee the local asymptotic quadratic property for the partial likelihood function and hence the asymptotic normality.

For simplicity, we denote $\lambda_l^{\mu} = \lambda_{1n}\omega_{0l}$, $\lambda_k^{\alpha} = \lambda_{2n}\omega_{1k}$, and define $a_n = \max\{\lambda_l^{\mu}, \lambda_k^{\alpha} : l \in \mathcal{A}_{1n}, k \in \mathcal{A}_{2n}\}$, and $b_n = \min\{\lambda_l^{\mu}, \lambda_k^{\alpha} : l \in \mathcal{A}_{1n}^c, k \in \mathcal{A}_{2n}^c\}$.

Proof. [of Theorem 1]

Let $\eta_n = \sqrt{q_n/n}$. We show that for any $\epsilon > 0$, there exists a large constant d, such that for any $\Delta u = (\Delta \mu'_1, \Delta \alpha'_k)'$,

$$P\{\inf_{\|\Delta u\|=d} Q_n(\theta_n^* + \eta_n \Delta u) > Q_n(\theta_n^*)\} > 1 - \epsilon.$$
(1)

$$Q_n(\theta_n^* + \eta_n \triangle u) - Q_n(\theta_n^*) \geqslant -\ell(\theta_n^* + \eta_n \triangle u) + \ell(\theta_n^*) + \left\{ \sum_{l \in \mathcal{A}_{1n}} \lambda_l^{\mu} (|\mu_l^* + \eta_n \triangle \mu_l| - |\mu_l^*|) + \sum_{k \in \mathcal{A}_{2n}} \lambda_k^{\alpha} (||\alpha_k^* + \eta_n \triangle \alpha_k|| - ||\alpha_k^*||) \right\}$$

$$\triangleq H_1 + H_2.$$

With triangular inequality and Cauchy-Schwarz inequality,

$$H_{2} \geq -\sum_{l \in \mathcal{A}_{1n}} \lambda_{l}^{\mu} \eta_{n} |\Delta \mu_{l}| - \sum_{k \in \mathcal{A}_{2n}} \lambda_{k}^{\alpha} \eta_{n} ||\Delta \alpha_{k}||$$

$$\geq -\sum_{l \in \mathcal{A}_{1n}} a_{n} \eta_{n} |\Delta \mu_{l}| - \sum_{k \in \mathcal{A}_{2n}} a_{n} \eta_{n} ||\Delta \alpha_{k}||$$

$$\geq -a_{n} \eta_{n} \sqrt{q_{n}} d \geq -n \eta_{n}^{2} d,$$

the last step is due to the condition $\lambda_{1n}/\sqrt{n} \to 0$, $\lambda_{2n}/\sqrt{n} \to 0$, which implies $a_n/\sqrt{n} \to_p 0$, $a_n\sqrt{q_n} < \sqrt{n}\sqrt{q_n} < \sqrt{q_n/n}n = n\eta_n$.

With Taylor expansion and arguments in Cai et al. (2005),

$$H_{1} = -\nabla \ell(\theta_{n}^{*})\eta_{n} \triangle u - \frac{1}{2}(\eta_{n} \triangle u)' \nabla^{2} \ell(\tilde{\theta}_{n})(\eta_{n} \triangle u)$$

$$\triangleq H_{11} + H_{12},$$

where $\tilde{\theta}_n$ lies between θ_n^* and $\theta_n^* + \eta_n \triangle u$.

$$|H_{11}| \leq \eta_n ||\Delta u|| \times ||\nabla \ell(\theta_n^*)|| = O_p(\eta_n \sqrt{nq_n})d = O_p(n\eta_n^2 d).$$

Using Chebyshev's inequality and the assumption $q_n^4/n \to 0$, $\|\frac{1}{n}\nabla^2\ell(\tilde{\theta}_n) + I(\theta_n^*)\| = o_p(1)(Caiet\ al.,\ 2005)$,

$$H_{12} = -\frac{1}{2}n\eta_n^2 [\triangle u' \{ \frac{1}{n} \nabla^2 \ell(\tilde{\theta}_n) + I(\theta_n^*) \} \triangle u] + \frac{1}{2}n\eta_n^2 \triangle u' I(\theta_n^*) \triangle u$$
$$= \frac{1}{2}n\eta_n^2 \triangle u' I(\theta_n^*) \triangle u - \frac{1}{2}n\eta_n^2 d^2 o_p(1).$$

Therefore, combining H_{11} , H_{12} and H_2 , we see H_{12} dominates the other two. So when $||\Delta u|| = d$ is sufficiently large, $Q_n(\theta_n^* + \eta_n \Delta u) > Q_n(\theta_n^*)$. This completes the proof.

Proof. [of Theorem 2] We show $P(\hat{\theta}_{\mathcal{A}_n^c=0}) \to 1$. Without loss of generality, we assume the true value α_k^* of θ_n^* equals to for a certain k, and show in details $P(\hat{\alpha}_k = 0) \to 1$. Suppose $\hat{\alpha}_k \neq 0$, then Q_n becomes differentiable w.r.t α_k . Therefore,

$$0 = -\frac{\partial \ell}{\partial \alpha_k} (\hat{\theta}_n) + \lambda_k^{\alpha} \frac{\hat{\alpha}_k}{\|\hat{\alpha}_k\|}.$$
 (2)

$$-\frac{\partial \ell}{\partial \alpha_k}(\hat{\theta}_n) = -\frac{\partial \ell}{\partial \alpha_k}(\theta_n^*) - \sum_{j=1}^{q_n} \frac{\partial^2 \ell(\tilde{\theta}_n)}{\partial \alpha_k \partial \theta_j}(\hat{\theta}_j - \theta_j^*)$$

$$\triangleq H_1 + H_2$$
.

We can easily see that $H_1 = O_p(\sqrt{nq_n})$, and for H_2 ,

$$H_2 = -\sum_{j=1}^{q_n} \left(\frac{\partial^2 \ell}{\partial \alpha_k \partial \theta_j} - E\left(\frac{\partial^2 \ell}{\partial \alpha_k \partial \theta_j}\right)\right) (\hat{\theta}_j - \theta_j^*) - \sum_{j=1}^{q_n} E\left(\frac{\partial^2 \ell}{\partial \alpha_k \partial \theta_j}\right) (\hat{\theta}_j - \theta_j^*)$$

$$\triangleq H_{21} + H_{22}$$
.

By Cauchy-Schwarz inequality,

$$|H_{21}| \leq \left[\sum_{j=1}^{q_n} \left\{ \frac{\partial^2 \ell}{\partial \alpha_k \partial \theta_j} - E(\frac{\partial^2 \ell}{\partial \alpha_k \partial \theta_j}) \right\}^2 \right]^{1/2} ||\hat{\theta}_n - \theta_n^*||$$

$$= O_p(\sqrt{q_n n}) O_p(\sqrt{q_n / n}) = o_p(\sqrt{n q_n}),$$

$$\begin{split} |H_{22}| & \leq nO_p(1)||\hat{\theta}_n - \theta_n|| \\ & = nO_p(1)O_p(\sqrt{q_n/n}) = O_p(\sqrt{nq_n}), \end{split}$$

we get $H_2 = O_p(\sqrt{nq_n})$. The " \leq " in H_{22} is due to the finite eigenvalues of the information matrix.

Therefore, $H_1 + H_2 = O_p(\sqrt{nq_n})$. Since $\lambda_{1n}/q_n \to \infty$ and $\lambda_{2n}/q_n \to \infty$, $b_n/\sqrt{nq_n} \to \infty$, $\left\|\lambda_k^\alpha \hat{\alpha}_k/\|\hat{\alpha}_k\|\right\| \geqslant b_n = \sqrt{nq_n}(b_n/\sqrt{nq_n}) > \sqrt{nq_n}O_p(1)$. That implies the "=" in (2) cannot be satisfied. Proof is completed.

Proof. [of Theorem 3]

We first show $I_{\mathcal{A}_n}(\hat{\theta}_{\mathcal{A}_n} - \theta_{\mathcal{A}_n}^*) = \frac{1}{n} \nabla_{\mathcal{A}_n} \ell(\theta^*) + o_p(n^{-1/2})$. Then for any $m \times s_n$ matrix B_n , Lindeberg–Feller central limit theorem gives

$$\sqrt{n}B_nI_{\mathcal{A}_n}(\hat{\theta}_{\mathcal{A}_n}-\theta_{\mathcal{A}_n}^*)=\sqrt{n}B_nI_{\mathcal{A}_n}^{-1/2}\{\frac{1}{n}\nabla_{\mathcal{A}_n}\ell(\theta_n^*)\}\to_d N(0,G).$$

Since $0 = -\nabla_{\mathcal{A}_n} \ell(\hat{\theta}_n) + D(\hat{\theta}_n)$, $D(\hat{\theta}) = (\lambda_l^{\mu} \operatorname{sgn}(\hat{\mu}_l), \lambda_k^{\alpha} \hat{\alpha}_k / ||\hat{\alpha}_k||)_{l \in \mathcal{A}_{1n}, k \in \mathcal{A}_{2n}}, ||D(\hat{\theta}_n)||^2 \leqslant s_n a_n^2$, and λ_{1n} , λ_{2n} satisfy the conditions in Theorem 3, then $a_n^2 = o_p(n/q_n)$, $D(\hat{\theta}_n) = \sqrt{s_n o_p(n/q_n)} = o_p(\sqrt{n})$.

By Taylor expansion,

$$-\nabla_{\mathcal{A}_n} \ell(\hat{\theta}_n) = -\nabla_{\mathcal{A}_n} \ell(\theta_n^*) - \nabla_{\mathcal{A}_n}^2 \ell(\tilde{\theta}_n) (\hat{\theta}_{\mathcal{A}_n} - \theta_{\mathcal{A}_n}^*),$$

$$I_{\mathcal{A}_n} (\hat{\theta}_{\mathcal{A}_n} - \theta_{\mathcal{A}_n}^*) = -\frac{1}{n} \nabla_{\mathcal{A}_n}^2 \ell(\tilde{\theta}_n) (\hat{\theta}_{\mathcal{A}_n} - \theta_{\mathcal{A}_n}^*) + \left\{ I_{\mathcal{A}_n} + \frac{1}{n} \nabla_{\mathcal{A}_n}^2 \ell(\tilde{\theta}_n) \right\} (\hat{\theta}_{\mathcal{A}_n} - \theta_{\mathcal{A}_n}^*)$$

$$\triangleq H_1 + H_2.$$

By Cauchy–Schwarz inequality, we can easily see that $H_2 = o_p(1/\sqrt{n})$. Therefore, $I_{\mathcal{A}_n}(\hat{\theta}_{\mathcal{A}_n} - \theta_{\mathcal{A}_n}^*) = \frac{1}{n} \nabla_{\mathcal{A}_n} \ell(\theta^*) + o_p(n^{-1/2})$.

Now we justify the conditions for Lindeberg–Feller central limit theorem. Let $G_{ki} = \frac{1}{\sqrt{n}} B_n I_{\mathcal{A}_n}^{-1/2} D_{ki}$, where D_{ki} corresponds to the nonzero elements in D_{ki} . Since

$$\sum_{i=1}^{n_k} E\left[\|G_{ki}\|^2 I\{\|G_{ki}\| \ge \epsilon\}\right] \le \left[\sum_{i=1}^{n_k} E\|G_{ki}\|^4\right]^{1/2} \left[\sum_{i=1}^{n_k} E(I\{\|G_{ki}\| \ge \epsilon\})\right]^{1/2}$$

$$\le \sqrt{\frac{1}{n^2}} E\left\|\sum_{i=1}^{n_k} B_n I_{\mathcal{A}_n}^{-1/2} D_{ki.}\right\|^4 \sqrt{\frac{\sum_{i=1}^{n_k} E\|G_{ki}\|^2}{\epsilon^2}}$$

$$\le \sqrt{\frac{1}{n^2}} \lambda_{max}^2 (B_n' B_n) \lambda_{min}^2 (B_n' B_n) O_p(s_n^2) \times O_p(1)$$

$$= O_p(1),$$

then $\sum_{k=1}^K \sum_{i=1}^{n_k} E\left[||G_{ki}||^2 I\{||G_{ki}|| \ge \epsilon\}\right] = o_p(1)$. By central limit theorem, we prove the asymptotic normality.

References

Cai, J., Fan, J., Li, R., and Zhou, H. (2005). Variable selection for multivariate failure time data. *Biometrika* **92**, 303–316.