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Figure S1. Pseudocontrols of random families with at least one affected proband case are equal to 

unscreened controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudocontrols of random families with at least one affected proband case are equal to unscreened 

controls (i.e. population mean) as displayed for the allele frequency of single loci of different effect-size 

(first two rows) and the mean genetic liability �(�) (population mean equals 0) for variable heritability ℎ��(bottom row) and different baseline population risk 	. The equivalence is exact and follows from the 

closed formulas provided in the R scripts, but is non-trivial to display in equations, because multiple 

sequential probabilities were needed to derive at the allele frequency and mean genetic liability in 

pseudocontrols. The equivalence can be understood intuitively by realizing that the non-transmitted 

alleles of random proband family are, in fact, part of the population background. 
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Figure S2. Power to detect a single SNP in trio-design and unscreened control studies, p=0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect a single SNP with risk allele frequency 
 = 0.2 for case vs screened controls (solid 

grey line) and case vs pseudocontrol (dotted grey line). The allele frequencies of proband cases are 

displayed as the red solid line, the allele frequency of screened controls as the solid blue line, and the 

allele frequency of pseudocontrols in the dotted blue line. The allele frequencies of pseudocontrols 

from proband random families equal unscreened population controls, which is reflected by the 

horizontal blue dotted lines at 0.2 in Panel A. Note that the grey lines equal the solid and dotted lines 

in Main Figure 2; the unscreened controls are not displayed in the Supplemental Figures, because 

they will always have an allele frequency equal to the population frequency. 
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Figure S3. Power to detect a single SNP in trio-design and unscreened control studies, p=0.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The power is displayed for a risk allele with frequency p=0.6, and results indicate that the conclusions 

do not depend on the allele frequency (noting that in Figure S2 a locus with p=0.2 was displayed). See 

the legend of Figure S2 for details.  
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Figure S4. Power in trio design to detect SNP with underlying recessive effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect the additive effect a single SNP with risk allele frequency 
 = 0.2 with an underlying 

recessive effect for case vs screened controls (solid grey line) and case vs pseudocontrol (dotted grey 

line). The allele frequency of cases is displayed as the red solid line, the allele frequency of screened 

controls as the solid blue line, and the allele frequency of pseudocontrols in the dotted blue line.  Note 

that the ���� are being displayed for a larger range than in Figure S2 (1.9 > 1.18� = 1.39), i.e. an 

actual recessive allele results in less power given ����. 
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Figure S5. Power in trio design to detect SNP with underlying dominant effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect the additive effect a single SNP with risk allele frequency 
 = 0.2 with an actual 

dominant effect for case vs screened controls (solid grey line) and case vs pseudocontrol (dotted grey 

line). The allele frequency of cases is displayed as the red solid line, the allele frequency of screened 

controls as the solid blue line, and the allele frequency of pseudocontrols in the dotted blue line. Note 

that the ���� are being displayed for a smaller range than in Figure S2 (1.3 < 1.18� = 1.39), i.e. a 

dominant allele results in more power given ����. 
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Figure S6. Power to detect SNP in trios with unaffected parents  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect a single SNP with risk allele frequency 
 = 0.2 for cases vs pseudocontrols without 

conditioning on parents (solid grey line) and case vs pseudocontrol restricted to trios with unaffected 

parents (dotted grey line). The allele frequency of cases from trios without conditioning on parents is 

displayed as the red solid line, and the allele frequency of their pseudocontrols as the solid blue line. 

The allele frequency in cases from trios with unaffected parents is displayed as the red dotted line, 

and the allele frequency in their pseudocontrols as the dotted blue line. To summarize: solid=no 

selection on parents; dotted=unaffected parents; grey=power; red=allele frequency case; blue=allele 

frequency pseudocontrol. Note that the grey lines overlap, i.e. selecting trios with unaffected parents 

does not increase power in pseudocontrol studies. Furthermore, note that for 	 = 0.1 and 	 = 0.5 the 

allele frequencies are lower in trios from unaffected parents, but this difference is proportional for 

cases and pseudocontrol resulting in no power-difference.  
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Figure S7. Power to detect a risk variant from screened vs. unscreened controls studies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect a risk variant with risk allele frequency 
 = 0.2 for 10,000 proband cases vs 10,000 

screened controls (solid red line) and 10,000 proband cases vs respectively 10,000 unscreened 

controls (dotted line), 15,000 unscreened controls (short dashed), 20,000 unscreened controls (long 

dashed), and 50,000 unscreened controls (dot-dashed). 



Table S1. Values of the Haseman Elston cross-product accounting for falsely classified controls  �����,� �����,� ��  �!�",� ��  �!�",� ℙ�� $�� 
1 1 0 0 ((1 − '())*+,-).)� 

'())*+,-1 − '())*+,- 

1 1 0 1 (1 − '())*+,-).'())*+,- −1 1 1 1 0 '())*+,-(1 − '())*+,-). −1 

1 1 1 1 '())*+,-�  
1 − '())*+,-'())*+,-  

1 0 1 0 '())*+,-(1 − '())*+,-)(1 − .) −1 

1 0 0 0 (1 − '())*+,-).(1 − '())*+,-)(1 − .) 
'())*+,-1 − '())*+,- 

0 1 0 1 (1 − '())*+,-)(1 − .)'())*+,- −1 

0 1 0 0 (1 − '())*+,-)(1 − .)(1 − '())*+,-). 
'())*+,-1 − '())*+,- 

0 0 0 0 ((1 − '())*+,-)(1 − .))� 
'())*+,-1 − '())*+,- 

 

To adjust the transformation from the heritability on the observed scale ℎ/0� to the liability scale ℎ/�� for a 

proportion . =  123456 789:;8451344 789:;845  of falsely classified controls, we closely followed the derivations of Golan 

et al, which we recommend for further reading (paragraphs 1.2 and 1.3 of their Supplemental 

Materials).
1
 The adjusted expected values of the cross-product <=> used for Haseman Elston-

regression follow from considering the true disease status ?@A*, and assumed disease status ?())*+,- 

with probabilities  

 ℙ(?@A*, = 1 & ?())*+,- = 1) = '())*+,-  ℙ(?@A*, = 1 & ?())*+,- = 0) = (1 − '())*+,-).   ℙ(?@A*, = 0 & ?())*+,- = 0) = (1 − '())*+,-)(1 − .)  

 

The 9 possible pairs, their probabilities ℙ�� and values of cross-product <=> are displayed in the Table. 

The expected values of C[<=>|?@A*,,=, ?@A*,,>] follow as: 

 

CG<=>H?@A*,,= = ?@A*,,> = 1] = ∑ ℙ��|J:;K6,LMJ:;K6,NMOP��|J:;K6,LMJ:;K6,NMO∑ ℙ��|J:;K6,LMJ:;K6,NMO = Q355KR6S(TUQ355KR6S)(TUV)W(Q355KR6SX(TUQ355KR6S)V)W   

CG<=>H?@A*,,= ≠ ?@A*,,>] = Q355KR6S(VUT)(Q355KR6SX(TUQ355KR6S)V)  CG<=>H?@A*,,= = ?@A*,,> = 0] = Q355KR6STUQ355KR6S  

 

Given these CG<=>H?@A*,,= , ?@A*,,>] the derivation of Golan et al can be followed with 'Z0�([ = '@A*, ='())*+,- + (1 − '())*+,-). to derive at the transformation of the observed to the liability scale as: ℎ/�� = ]W(TU])WQ(TUQ)(TUV)W^W ℎ/0__� , where ' = '())*+,-.



 

Table S2. Simulation of falsely classified controls 

Simulation parameters Haseman-Elston regression ℎ/0__�  ℎ/�� (assuming F=0) ℎ/�� (corrected for F) 

K ℎ�� P F   Mean SE   Mean SE   Mean SE 

Parameters of Major Depressive Disorder 

0.2 0.4 0.5 0 0.3048 0.0131 0.3983 0.0171 0.3983 0.0171 

0.2 0.4 0.5 0.1 0.2467 0.0112 0.3224 0.0146 0.3980 0.0180 

0.2 0.4 0.5 0.2   0.1834 0.0095   0.2396 0.0124   0.3744 0.0194 

0.2 0.4 0.25 0 0.2288 0.0062 0.3985 0.0107 0.3985 0.0107 

0.2 0.4 0.25 0.1 0.1795 0.0088 0.3127 0.0153 0.3861 0.0189 

0.2 0.4 0.25 0.2 0.1545 0.0055 0.2691 0.0096 0.4204 0.0150 

Parameters of Schizophrenia 

0.01 0.8 0.5 0 1.4699 0.0130 0.8113 0.0072 0.8113 0.0072 

0.01 0.8 0.5 0.005 1.4358 0.0116 0.7924 0.0064 0.8004 0.0065 

0.01 0.8 0.5 0.01   1.4096 0.0157   0.7780 0.0087   0.7938 0.0089 

0.01 0.8 0.25 0 1.0927 0.0055 0.8041 0.0040 0.8041 0.0040 

0.01 0.8 0.25 0.005 1.0829 0.0078 0.7969 0.0057 0.8049 0.0058 

0.01 0.8 0.25 0.01   1.0737 0.0049   0.7901 0.0036   0.8061 0.0037 

Additional parameter settings to further validate the derived equation 

0.2 0.8 0.5 0 0.6282 0.0182 0.8207 0.0238 0.8207 0.0238 

0.2 0.8 0.5 0.1 0.4964 0.0117 0.6485 0.0153 0.8006 0.0189 

0.2 0.8 0.5 0.2   0.4062 0.0076   0.5307 0.0100   0.8293 0.0156 

0.2 0.8 0.25 0 0.4608 0.0077 0.8028 0.0135 0.8028 0.0135 

0.2 0.8 0.25 0.1 0.3722 0.0061 0.6484 0.0107 0.8005 0.0132 

0.2 0.8 0.25 0.2   0.2956 0.0062   0.5150 0.0109   0.8047 0.0170 

0.01 0.4 0.5 0 0.7287 0.0108 0.4022 0.0059 0.4022 0.0059 

0.01 0.4 0.5 0.005 0.6993 0.0148 0.3859 0.0082 0.3898 0.0082 

0.01 0.4 0.5 0.01   0.7022 0.0132   0.3876 0.0073   0.3954 0.0074 

0.01 0.4 0.25 0 0.5395 0.0047 0.3970 0.0035 0.3970 0.0035 

0.01 0.4 0.25 0.005 0.5393 0.0076 0.3969 0.0056 0.4009 0.0057 

0.01 0.4 0.25 0.01   0.5375 0.0064   0.3956 0.0047   0.4036 0.0048 

 

To validate the Equation 3, ℎ/�� = ]W(TU])WQ(TUQ)(TUV)W^W ℎ/0__� , we performed a simulation study in line with Golan 

et al (Supplemental Materials paragraph 5.3).
1
 

1. MAFs of 10,000 SNPs in full linkage equilibrium were randomly sampled from `[0.05,0.5], and 

the effect sizes were randomly sampled from a(0, ℎ�� 10,000⁄ ).  

2. An individual was generated by  

a. Randomly assigning alleles with the probabilities given by the MAFs 

b. Standardizing the allele counts by (cddede fghij − 2 ∗ lm.)/o2lm.(1 − lm.). 

c. Assessing the genetic liability � as the product of the standardized allele counts with 

the effects 

d. Assessing the phenotypic liability d as � + � with � randomly drawn from a(0, 1 − ℎ��) 



e. Defining disease status ? = 1 for those with d > p with p the liability threshold 

corresponding to a proportion of 	 cases 

3. Step 2 was repeated until we obtained 2,000 cases, an additional . ∗ 2,000 cases which we 

labeled as controls, and  (1 − .) ∗ 2,000 true controls. The cases and controls were saved in a 

single ped-file.  

4. Plink was used to transform the ped-file to a bim-file,
2
 and GCTA

3
 to estimate the genetic 

relationship matrix and to perform cross-product Haseman-Elston regression with the “--

HEreg” option yielding ℎ/0__� . 

5. Steps 1-4 were repeated 10 times. The mean of these 10 point-estimates of the SNP-

heritability are displays, as well as their standard error (SE) estimated as their standard 

deviation divided by √10. 

6. The mean ℎ/0� was, first, transformed to the liability scale assuming . = 0 (i.e. with Equation 2, 

ℎ/�� = ]W(TU])WQ(TUQ)^W ℎ/0__� ), and second, with Equation 3, ℎ/�� = ]W(TU])WQ(TUQ)(TUV)W^W ℎ/0__� . Simulation illustrates 

that Equation 3 appropriately accounts for unscreened controls, because the actual simulated ℎ�� fall within the approximate 95% confidence interval of the mean ℎ/�� from simulation (mean ± 

1.96*SE).  

 

 

 

 

 

 



 Table S3. Analytical derivation of genetic liabilities in trios versus simulation 

Screened controls Case Pseudo control Case | sib aff Ps contr | sib aff 

Method 	 ℎ�� r� s�(�) �(�)   s�(�) �(�)   s�(�) �(�)   s�(�) �(�)   s�(�) �(�) 

Sim 0.001 0.8 0 0.7932 -0.0027 0.2052 2.6945 0.8059 -0.0014 0.2134 2.9642 0.6400 0.9853 

Ana 0.001 0.8 0 0.7933 -0.0027   0.2034 2.6937   0.8000 0.0000   0.2133 2.9529   0.6347 0.9788 

Sim 0.001 0.8 0.5 0.9450 -0.0058 0.2259 2.8185 0.9360 0.4686 0.2415 3.1014 0.7186 1.4582 

Ana 0.001 0.8 0.5 0.9451 -0.0058   0.2250 2.8182   0.9396 0.4697   0.2381 3.0970   0.7162 1.4595 

Sim 0.001 0.4 0 0.3982 -0.0013 0.2502 1.3461 0.3991 0.0003 0.2417 1.6929 0.3489 0.5700 

Ana 0.001 0.4 0 0.3983 -0.0013   0.2508 1.3468   0.4000 0.0000   0.2384 1.7045   0.3622 0.5674 

Sim 0.001 0.4 0.5 0.4377 -0.0017 0.2688 1.4265 0.4392 0.1287 0.2519 1.8069 0.3818 0.7377 

Ana 0.001 0.4 0.5 0.4377 -0.0017   0.2668 1.4286   0.4386 0.1299   0.2506 1.8200   0.3896 0.7484 

Sim 0.01 0.8 0 0.7596 -0.0216 0.2218 2.1327 0.7996 -0.0004 0.2342 2.3623 0.6462 0.7870 

Ana 0.01 0.8 0 0.7595 -0.0215   0.2220 2.1322   0.8000 0.0000   0.2344 2.3578   0.6432 0.7813 

Sim 0.01 0.8 0.5 0.8914 -0.0350 0.2488 2.2414 0.9403 0.3723 0.2674 2.4906 0.7281 1.1794 

Ana 0.01 0.8 0.5 0.8913 -0.0350   0.2492 2.2423   0.9403 0.3737   0.2642 2.4889   0.7282 1.1733 

Sim 0.01 0.4 0 0.3899 -0.0109 0.2552 1.0664 0.4015 -0.0012 0.2451 1.3546 0.3632 0.4459 

Ana 0.01 0.4 0 0.3899 -0.0108   0.2555 1.0661   0.4000 0.0000   0.2437 1.3561   0.3637 0.4513 

Sim 0.01 0.4 0.5 0.4270 -0.0128 0.2720 1.1315 0.4375 0.1025 0.2571 1.4517 0.3905 0.5990 

Ana 0.01 0.4 0.5 0.4271 -0.0129   0.2723 1.1323   0.4386 0.1029   0.2568 1.4509   0.3916 0.5965 

Sim 0.1 0.8 0 0.6157 -0.1558 0.2682 1.4039 0.8004 -0.0003 0.2844 1.5857 0.6633 0.5286 

Ana 0.1 0.8 0 0.6157 -0.1560   0.2682 1.4040   0.8000 0.0000   0.2818 1.5844   0.6615 0.5261 

Sim 0.1 0.8 0.5 0.7104 -0.1982 0.3073 1.4969 0.9420 0.2497 0.3265 1.7023 0.7538 0.8060 

Ana 0.1 0.8 0.5 0.7102 -0.1984   0.3071 1.4968   0.9419 0.2495   0.3208 1.6993   0.7530 0.8035 

Sim 0.1 0.4 0 0.3539 -0.0780 0.2670 0.7020 0.3998 0.0000 0.2567 0.9043 0.3668 0.3016 

Ana 0.1 0.4 0 0.3539 -0.0780   0.2671 0.7020   0.4000 0.0000   0.2562 0.9040   0.3671 0.3009 

Sim 0.1 0.4 0.5 0.3851 -0.0873 0.2859 0.7480 0.4392 0.0677 0.2724 0.9727 0.3971 0.4003 

Ana 0.1 0.4 0.5 0.3851 -0.0873   0.2858 0.7483   0.4387 0.0680   0.2713 0.9721   0.3961 0.3997 

 



Legend to Table S3. 

We validated the analytical estimations (see Supplemental Methods) of the mean genetic liabilities �(�) with a simulation study. The heritability ℎ��, phenotypic 

correlation between parents r�, the population disease frequency 	, and corresponding threshold p were defined as described in the main text. Hereby, the 

variance-covariance matrix of the genetic liabilities of the parents was defined as 

 

 ∑t�+, �uv = w ℎ�� r�ℎ��ℎ��r�ℎ��ℎ�� ℎ�� x 

 

with yZ = ℎ��y� = ℎ��. Subsequently, the genetic liabilities of the mothers and fathers were randomly drawn from this bivariate normal distribution. The genetic 

liabilities of the first and second sibling were independently defined as �) = T� �+ + T� �u + �A,)=-*(�, where �A,)=-*(� represent Mendelian variation and was 

randomly drawn from the normal distribution with mean 0 and variation 
T� yZ.

4
 The phenotypes d of the siblings were than independently defined as d) = �) + �), 

with �) randomly drawn from a(0,1 − ℎ��). To conclude, the genetic liability of the complement f1 of the first sibling z1 was defined as �_T = �+ + �u − �)T. In 

this manner, d)T, �)T, d)�, �)�, �+ , �u and �_T were defined for 10{ families. We note that the value of s�(�)) thus simulated was in line with previous theoretical 

derivations yZ + T� rZyZ.
4,5

 The respective variances, covariances and means were estimated from this simulation study and were in line with the theoretically 

derived values (see Table S3). Simulations were performed in R.
6
 



Table S4. Heuristic prediction of assessed heritability in trios versus simulation 

     
ℎ/�� screened control 

 
ℎ/�� pseudocontrol  

Simulation parameters 
 

Simulation   

 
Simulation   	 ℎ�� sib aff r�   Mean SE Pred. ℎ/��   Mean SE Pred. ℎ/�� 

0.3 0.8 Y 0 
 

0.9885 0.0225 0.9864 
 

0.2182 0.0196 0.2331 

0.3 0.8 N 0.5 
 

0.9741 0.0155 0.9833 
 

0.3303 0.0139 0.3221 

0.3 0.8 Y 0.5   1.2126 0.0113 1.2214   0.1452 0.0129 0.1736 

0.1 0.8 Y 0 
 

0.9888 0.0122 0.9957 
 

0.3613 0.0158 0.3682 

0.1 0.8 N 0.5 
 

0.9418 0.0152 0.9447 
 

0.5001 0.0129 0.5114 

0.1 0.8 Y 0.5   1.2115 0.0105 1.1839   0.2822 0.0107 0.2638 

0.01 0.8 Y 0 
 

0.9899 0.0069 0.9764 
 

0.4249 0.0073 0.4287 

0.01 0.8 N 0.5 
 

0.8810 0.0096 0.8945 
 

0.6054 0.0067 0.6022 

0.01 0.8 Y 0.5   1.1072 0.0045 1.0987   0.3135 0.0057 0.2985 

0.3 0.4 Y 0 
 

0.6153 0.0127 0.5913 
 

0.1397 0.0213 0.1491 

0.3 0.4 N 0.5 
 

0.4643 0.0162 0.4640 
 

0.2154 0.0180 0.1860 

0.3 0.4 Y 0.5   0.6995 0.0210 0.6957   0.1438 0.0132 0.1362 

0.1 0.4 Y 0 
 

0.6435 0.0140 0.6340 
 

0.2257 0.0118 0.2391 

0.1 0.4 N 0.5 
 

0.4539 0.0086 0.4591 
 

0.3002 0.0104 0.3043 

0.1 0.4 Y 0.5   0.7240 0.0117 0.7379   0.1998 0.0083 0.2154 

0.01 0.4 Y 0 
 

0.6531 0.0056 0.6445 
 

0.2952 0.0059 0.2824 

0.01 0.4 N 0.5 
 

0.4507 0.0075 0.4524 
 

0.3573 0.0043 0.3655 

0.01 0.4 Y 0.5   0.7451 0.0057 0.7391   0.2604 0.0093 0.2518 

 

To formally get from the �(�) (Table S3) of cases and controls to the SNP-heritability ℎ/�� that would be 

assessed is non-trivial, because no normal distribution thresholds exist to define the pseudocontrols or 

the probands with an additional affected sibling (which form a non-random subset of all cases not 

defined by a specific threshold). ℎ/�� was therefore heuristically derived and validated with a simulation 

study of individual level SNP-data. In short, for any baseline disease frequency 	, a unique set of p, |, 

and } can be found such that 	 equals '(d > p|d~a(0,1)), | the height of the standard normal 

distribution at p, and } = |/	 the mean d of cases, which results in a mean � in cases of }ℎ��. We 

numerically inverted this equation in R to find an unique equivalent-	 matching the difference between �(�_(),) − �(�(�),*-0)_0[@A0�). The equivalent-	, corresponding equivalent-| and Equation 3 yields the 

heritability that would be assessed with Haseman-Elston regression (Pred. ℎ/��), and was validated with 

simulation study: 

1. Following Golan et al,
1
 the MAFs of 10,000 SNPs in full linkage disequilibrium were randomly 

sampled from `[0.05,0.5], and the effect sizes were randomly sampled from a(0, ℎ�� 10,000⁄ ).  

2. An individual was generated by  

a. Randomly assigning alleles with the probabilities given by the MAFs 

b. Standardizing the allele counts by (cddede fghij − 2 ∗ lm.)/o2lm.(1 − lm.). 



c. Assessing the genetic liability � as the product of the standardized allele counts with 

the effects 

d. Assessing the phenotypic liability d as � + � with � randomly drawn from a(0, 1 − ℎ��) 

e. Defining disease status ? = 1 for those with d > p with p the liability threshold 

corresponding to a proportion of 	 cases 

3. Assortative mating r� was simulated following  

a. The genotypes and phenotypes of 600 men d+,[ and 600 women d�0+,[ were 

simulated 

b. A vector y was simulated as y = r�d+,[ + a(0,1 − r��) so that fg�(d+,[, y) =
fg�(d+,[, y)/(s�R69s�) = fg�(d+,[, r�d+,[)/(1s�) = r�/�s�4�R69� + 1 − r�� = r�  

c. Subsequently, the d�0+,[ were ordered in line with y thereby ensuring fg�(d+,[, d�0+,[) = r� 
4. For the 600 pair of spouses, families were generated as follows 

a. Kid-1 got one random allele from the father and one from the mother for all of the 

10,000 loci. Subsequently, d and disease status ? were generates as described 

above.  

b. The genetic complement of Kid-1 was formed by the non-transmitted alleles of the 

parents 

c. Kid-2 was generated as Kid-1 

5. Affected proband (Kid-1) were selected as cases. Depending on the type of families 

simulated, we additionally conditioned on ?]=-U� = 1. 

6. Unaffected Kid-1’s were selected as screened controls. 

7. Step 2-6 were repeated until 2,000 cases and 2,000 screened controls were collected 

8. Cross-product Haseman-Elston regression yielded the ℎ/0__�  for case vs screened controls and 

case vs pseudocontrols, which were than transformed to the liability scale with ℎ/�� =
ℎ/0__� ]W(TU])WQ(TUQ)^W 

9. Steps 1-8 were repeated 10 times for the different setting of 	, ℎ��, and r�. The mean of these 

10 point-estimates of the SNP-heritability are displays, as well as their standard error (SE) 

estimated as their standard deviation divided by √10. 

10. The heuristically predicted ℎ/�� are within or very close to the ballpark 95% confidence interval 

of the mean ℎ/�� from simulation (mean ± 1.96*SE), which justifies the use of this heuristic 

approach for Main Figure 1. 

 

 

 



Table S5. Analytical derivation of allele frequencies in trios versus simulation 

Genotype relative risk 
Random families  

with at least one affected sibling Second sibling affected 
Second sibling aff. 
Parents unaffected 

Assortative  
mating parents 

Method Bb BB 
 

Case Scr control Ps control 
 

Case Ps control 
 

Case Ps control 
 

Case Scr control Ps control 

K=0.01; p=0.2 

Sim 1.00 2.25 
 

0.2381 0.1996 0.1995 
 

0.2723 0.2163 
 

0.2718 0.2155 
 

0.2596 0.1995 0.2052 

Ana 1.00 2.25 
 

0.2381 0.1996 0.2000 
 

0.2695 0.2205 
 

0.2688 0.2199 
 

0.2593 0.1994 0.2056 

Sim 1.50 2.25 
 

0.2727 0.1993 0.2000 
 

0.3159 0.2316 
 

0.3141 0.2303 
 

0.2865 0.1980 0.2110 

Ana 1.50 2.25 
 

0.2727 0.1993 0.2000 
 

0.3171 0.2358 
 

0.3161 0.2349 
 

0.2862 0.1991 0.2109 

Sim 2.25 2.25 
 

0.3106 0.1989 0.2002 
 

0.3671 0.2512 
 

0.3660 0.2502 
 

0.3167 0.2012 0.2165 

Ana 2.25 2.25 
 

0.3103 0.1989 0.2000 
 

0.3663 0.2475 
 

0.3652 0.2466 
 

0.3169 0.1988 0.2169 

K=0.01; p=0.8 

Sim 1.00 2.25 
 

0.8890 0.7991 0.8001 
 

0.9174 0.8424 
 

0.9167 0.8413 
 

0.8909 0.7982 0.8128 

Ana 1.00 2.25 
 

0.8889 0.7991 0.8000 
 

0.9179 0.8446 
 

0.9174 0.8437 
 

0.8907 0.7991 0.8131 

Sim 1.50 2.25 
 

0.8571 0.7995 0.8004 
 

0.8767 0.8267 
 

0.8763 0.8261 
 

0.8634 0.7992 0.8085 

Ana 1.50 2.25 
 

0.8571 0.7994 0.8000 
 

0.8788 0.8283 
 

0.8784 0.8278 
 

0.8637 0.7994 0.8085 

Sim 2.25 2.25 
 

0.8181 0.7998 0.7998 
 

0.8233 0.8107 
 

0.8233 0.8104 
 

0.8294 0.8001 0.8029 

Ana 2.25 2.25 
 

0.8182 0.7998 0.8000 
 

0.8241 0.8086 
 

0.8239 0.8085 
 

0.8295 0.7997 0.8028 

K=0.3; p=0.2 

Sim 1.00 2.25 
 

0.2381 0.1836 0.2000 
 

0.2696 0.2206 
 

0.2415 0.1956 
 

0.2593 0.1730 0.2055 

Ana 1.00 2.25 
 

0.2381 0.1837 0.2000 
 

0.2695 0.2205 
 

0.2403 0.1943 
 

0.2593 0.1736 0.2056 

Sim 1.50 2.25 
 

0.2727 0.1688 0.2000 
 

0.3171 0.2358 
 

0.2733 0.1980 
 

0.2861 0.1644 0.2109 

Ana 1.50 2.25 
 

0.2727 0.1688 0.2000 
 

0.3171 0.2358 
 

0.2732 0.1980 
 

0.2862 0.1628 0.2109 

Sim 2.25 2.25 
 

0.3104 0.1527 0.2000 
 

0.3663 0.2475 
 

0.3152 0.2068 
 

0.3169 0.1539 0.2169 

Ana 2.25 2.25 
 

0.3103 0.1527 0.2000 
 

0.3663 0.2475 
 

0.3148 0.2060 
 

0.3169 0.1514 0.2169 

K=0.3; p=0.8 

Sim 1.00 2.25 
 

0.8889 0.7619 0.8000 
 

0.9178 0.8445 
 

0.8953 0.8062 
 

0.8908 0.7609 0.8131 

Ana 1.00 2.25 
 

0.8889 0.7619 0.8000 
 

0.9179 0.8446 
 

0.8958 0.8066 
 

0.8907 0.7602 0.8131 

Sim 1.50 2.25 
 

0.8571 0.7755 0.8000 
 

0.8787 0.8283 
 

0.8622 0.8055 
 

0.8637 0.7719 0.8085 

Ana 1.50 2.25 
 

0.8571 0.7755 0.8000 
 

0.8788 0.8283 
 

0.8621 0.8056 
 

0.8637 0.7726 0.8085 

Sim 2.25 2.25 
 

0.8183 0.7922 0.8000 
 

0.8242 0.8086 
 

0.8184 0.8021 
 

0.8294 0.7893 0.8028 

Ana 2.25 2.25 
 

0.8182 0.7922 0.8000 
 

0.8241 0.8086 
 

0.8184 0.8026 
 

0.8295 0.7876 0.8028 

 



Legend to Table S5. 

We checked the analytical estimations (described in Supplemental Methods) of allele frequencies with a simulation study. Genotypes were simulated by first 

randomly assigning each parent two alleles with frequency 
 = '(�) of the risk allele �. Then, genotypes of the first and second siblings were defined by 

assigning them a single random allele from both of their parents. The genotypes of the pseudocontrols were defined as the two alleles of the parents not 

transmitted to the first sibling. Disease status was randomly assigned to parents, siblings, with a probability of disease per genotype of '(Disease|Genotype) 

(see Witte et al for details)
7
. Families with the first sibling affected were selected as proband families with the first sibling serving as the proband case. 

Assortative mating was simulated as the non-random mating fraction � = 0.3 (see Supplemental Methods section 2.4 for details), which correspond to a 

spouse-correlation at the locus of 0.3 (note that this unrealistic large value is merely to validate theory, because assortative mating will have no impact on 

allele frequency as for a phenotypic spouse-correlation of 0.3 a locus explaining 1% of variance would have a spouse-correlation of only 0.3 ∗ 0.01 = 0.003). 

We simulated 10{ families and compared allele frequencies in different types of cases, controls, and pseudocontrols to the algebraic estimates. Results 

displayed in this Table validate the analytical estimations described in the Supplemental Methods that were used to make the relevant Figures and Tables. 

 



Supplemental Methods 

 

1. Derivation of genetic liabilities in trio design 

The mean genetic liabilities (breeding values) �(�) and their variances were subsequently derived for 

random families (Section 1.1), families with one affected sibling (Section 1.2), and families with two 

affected siblings (Section 1.3). Therefore, variance-covariance matrices were derived for these 

family’s phenotypic liabilities and genetic liabilities. The mean genetic liability of screened controls in 

the offspring generation was derived in Section 1.4. The analytical estimates of the mean genetic 

liabilities and their variances were validated with a simulation study (Table S3). In Table S4, the 

derived mean genetic liabilities are used to heuristically predict the SNP-based heritability that would 

be assessed with Haseman Elston-regression, which is again validated with a simulation study.  

 

Consider a complex disease with a population frequency 	 and heritability ℎ�� in the parental 

population. Define phenotype d to represent the underlying liability for disease with variance y� = 1 (the 

choice for y� is arbitrary, but conveniently set to 1). The variance of genetic liabilities � equals yZ = y�ℎ�� = ℎ��, while the environmental variance equals y� = y� − yZ = 1 − ℎ��. Assuming that the 

parents have a phenotypic correlation of r� ≥ 0, the genetic correlation follows as rZ = ℎ��r� (page 175 

of Falconer and Mackay)
8
 and the genetic covariance as rZyZ. 

 

1.1 Variances and covariances of genetic liabilities in random families 

Consider families with a mother (�), father (�), first sibling (z1), second sibling (z2) and the 

pseudocontrol of the first sibling (interchangeably referred to as the complement of the first sibling, f1). 

Their genetic liability values are denoted with �+ , �u, �)T, �)�, respectively. The variance of genetic 

liabilities in the siblings equals s�(�)T) = s�(�)�) = s�(�)) = s� �T� �+ + T� �u� + yA,)=-*(�, where 

yA,)=-*(� represents Mendelian variation. Bulmer (page 175)
4
 proved that yA,)=-*(� = T� yZ, which gives 

s�(�)) = s� �T� �+� + s� �T� �u� + 2s �T� �+ , T� �u� + T� yZ = yZ + T� rZyZ. In addition, Bulmer showed that 

the variation of non-genetic effects (E) is not effected by assortative mating, which gives the 

phenotypic variation of the siblings as s�(d)T) = s�(d)�) = s�(d)) = s�(�) + �)) = s�(�)) + s�(�)) =s�(�)) + y�. Keeping in mind that s(�, �) = 0 per definition, gives s(d), �)) = s�(�)), as well as s(d)T, �)�) = s(d)�, �)T) = s(�)T, �)�) = s �T� �u + T� �+ , T� �u + T� �+� = s �T� �u, T� �u� + s �T� �u , T� �+� +
s �T� �+ , T� mu� + s �T� �+, T� �+� = T� yZ + T� rZyZ. The variance of the genetic liabilities in the parents 

equals s�(�+) = s�(�u) = yZ, and the covariance between fathers and mother equals st�+ , �uv =rZyZ. The covariance between the siblings and their parents subsequently follows as s(�+ , d)) =st�u, d)v = s(�+ , �)) = st�u , �)v = s ��u , T� �+ + T� �u� = s ��u , T� �+� + s ��u , T� �u� = T� yZ + T� rZyZ. For 

the complement of the first sibling, the following covariances are found:  

 



• s(�_T, d)T) = s(�_T, �)T) = st�++�u − �)T, �)Tv = s(�+ , �)T) + st�u, �)Tv − s�(�)T) = yZ +rZyZ − yZ − T� rZyZ = T� rZyZ, and   

• s(�_T, d)�) = s(�_T, �)�) = st�++�u − �)T, �)�v = (�+ , �)�) + st�u, �)�v − s(�)T, �)�) = yZ +rZyZ − T� yZ − T� rZyZ = T� yZ + T� rZyZ, and  

• s(�_T, �+) = st�_T, �uv =  st�++�u − �)T, �uv = st�+ , �uv + s�t�uv − st�)T, �uv = rZyZ +yZ − T� yZ − T� rZyZ = T� yZ + T� rZ , and finally 

• s�(�_T) = s�t�++�u − �)Tv = s� ��+ + �u − T� �+ − T� �u − �A,)=-*(�� = s� �T� �+ , T� �u� +
(−1)�s�(�A,)=-*(�) = yZ + T� rZyZ 

 

By this, all element were derived of ∑(d)T, �)T, d)�, �)�, �+ , �u, �_T), the 7x7 variance-covariance matrix 

of random families. The means of d)T, �)T, d)�, �)�, �+ , �u and �_T all equal zero, noting that assortative 

mating does not change the mean genetic liability, because � �T� �+ + T� �u + �A,)=-*(�� = � �T� �+� +
� �T� �u� + �(�A,)=-*(�), also when s �T� �+ , T� �u� > 0. 

 

1.2 Variances and covariances of genetic liabilities in families with at least one affected sibling 

Assortative mating increases the variances of the phenotype d from the parental to the offspring 

generation with 
T� rZyZ. The increase in y� results in a higher disease frequency in the offspring 

generation, because the liability threshold p remains the same. In order to estimate the reduction in 

variance in the affected siblings (assume z1 to be affected), the offspring population was first 

described in terms of the standard normal distribution, and than transformed back to the parental 

scale. The new disease frequency 	0uu)�A=[� follows from '(� > p | �~a(0, os�(d)))), and gives the 

mean phenotypic value of the affected siblings z1 on the standardized liability scale as }0uu)�A=[� =|0uu)�A=[�/	0uu)�A=[�, where |0uu)�A=[� is the height of the standard normal distribution a(0,1) at 

threshold p0uu)�A=[� with 	0uu)�A=[� = 't� > p0uu)�A=[� H �~a(0,1)). Bulmer showed (page 153)
4
 that the 

reduction of variation in affected siblings on the standardized liability scale equals �0uu)�A=[� =}0uu)�A=[�(}0uu)�A=[� − p0uu)�A=[�), and the variance reduction on the parental liability scale thus equals � = �0uu)�A=[� s�(d))⁄ . Tallis showed that given normality of � and d in the family members, the new 

variances and covariances are given by s(�, �|z1 c��efje�) = s(�, �) − �s(�, d)T)s(�, d)T), where � 

and � represent all pairwise combinations of d)T, �)T, d)�, �)�, �+ , �u and �_T.
9
 By this, all element are 

defined of ∑td)T, �)T, d)�, �)�, �+ , �u , �_T H z1 c��efje�), the 7x7 variance-covariance matrix of families 

with one affected sibling. Given these variances and covariances, the means were derived as follows.  

 

• �(d)T|z1 c��) = }0uu)�A=[�os�(d))  

• �(�)T|z1 c��) = {s�(�)T)/s�(d)T)} ∗ �(d)T|z1 c��)   
• �(d)�|z1 c��) = {s(d)T, d)�)/s�(d)T)} ∗ �(d)T|z1 c��)   
• �(�)�|z1 c��) = {s(�)T, �)�)/s�(�)T)} ∗ �(�)T|z1 c��)   



• �(�+|z1 c��) = �t�uHz1 c��v = ¡(T� yZ + T� rZyZ) s�(�))¢ £ ∗ �(�)T|z1 c��), noting that 
T� yZ +

T� rZyZ is the part of s�(�)) following from the parents contribution 
T� �u + T� �+.  

• �(�_T|z1 c��) = �(�+|z1 c��) + �t�uHz1 c��v − �(�)T|z1 c��) 

 

1.3 Variances and covariances of genetic liabilities in families with two affected siblings 

To derive variances and covariances within families with two affected siblings, we take the estimates 

of families with one affected sibling as starting point. However, in order to apply Tallis’ method to 

account of reduction in variance when selecting for an affected sibling, � and d need to be normally 

distributed in all family members. The distribution of d in the first sibling z1 is evidentially non-normal, 

because he is affected. Nevertheless, the distributions of � and d in the other family members are 

approximately normally distributed, which was illustrated by simulation (not shown) and can be 

intuitively understood as follows. The first sibling is affected when d)T exceeds the threshold p. 

However, because d)T is the sum of �)T and �)T and because �)T and �)T are independent, the 

violation of normality in �)T|)T (uu is less than in d)T|)T (uu. In addition, the covariances between �)T|)T (uu 

and � and d in the other family members are considerably smaller than 1. Hence, the distribution of � 

and d in all family members but sibling z1 are approximately normally distributed. Furthermore, note 

that the first and second sibling have equal genetic characteristics when they are both selected to be 

affected (except for their covariance with the complement, but this characteristic is not needed for this 

study). The variances and covariances are thus given by  

 s(�, � | z1 c��efje� & z2 c��efje�) =s(�, � | z1 c��efje�) − ��s(�, d)�| z1 c��efje�)s(�, d)�| z1 c��efje�),  

 

where � and � take all pairwise combinations of d)�, �)�, �+ , �u and �_T. The variance reduction �� is 

derived analoguously as �. The disease frequency in the second siblings 	)� | )T (uu,_@,- follows from '(� > p | �~a(�(d)�|z1 c��), os�(d)�|z1 c��efje�))), and gives the mean phenotypic value of the 

affected siblings z2 on the standardized liability scale as })� | )T (uu,_@,- = |)� | )T (uu,_@,-/	)� | )T (uu,_@,-, 

where |)� | )T (uu,_@,- is the height of the standard normal distribution a(0,1) at threshold p)� | )T (uu,_@,- 

with 	)� | )T (uu,_@,- = 't� > p)� | )T (uu,_@,-  H �~a(0,1)). The reduction of variation in affected second 

siblings on the standardized liability scale equals �)� | )T (uu,_@,- = })� | )T (uu,_@,-(})� | )T (uu,_@,- −p)� | )T (uu,_@,-), and the variance reduction on the parental liability scale thus equals �� = �)� | )T (uu,_@,- s�(d)�|z1 c��efje�)⁄ . This defines ∑td)�, �)�, �+ , �u , �_T H z1 & z2 c��efje�), the 5x5 

variance-covariance matrix of families with two affected siblings (leaving out the first sibling z1). Given 

this variance-covariance matrix, the means were derived as: 

 

• �(d)�| z1 & z2 c��) = �(d)�| z1 c��) + })� | )T (uu,_@,-os�(d)�| z1 c��efje�)  



• �(�)�| z1 & z2 c��) =�(�)�| z1 c��) + {})� | )T (uu,_@,-os�(d)�| z1 c��efje�)} ∗s�(�)�| z1 c��efje�) s�(d)�| z1 c��efje�)⁄   

• �(�+|z1 & z2 c��) = �t�uHz1 & z2 c��v =�t�uHz1 c��v + ¤ ∗ {T� s�(�+|z1 c��) + T� s(�+ , �u|z1 c��)}/{s�(�)�|z1 c��)}, with ¤ =
�(�)�| z1 & z2 c��) − �(�)�| z1c��), while noting that 

T� s�(�+|z1 c��) + T� st�+ , �uHz1 c��v +
T� yA,)=-*(� = s�(�)�|z1 c��). 

• �(�_T| z1 & z2 c��) = �(�+| z1 & z2 c��) + �t�uH z1 & z2 c��v − �(�)T| z1 & z2 c��), where �(�)T| z1 & z2 c��) = �(�)�| z1 & z2 c��). 

 

1.4 Genetic liabilities of screened controls 

Screened controls were selected from the offspring generation, i.e. after one generation of assortative 

mating. In order to apply the useful properties of the standard normal distribution, the liability scale 

was inverted to regard controls as ‘cases’, and later transformed back to the original scale of d in the 

parental generation. The population frequency of screened controls in the offspring generation is 	)_A,,[,- _0[@A0�) = 1 − 	0uu)�A=[�, which gives })_A,,[,- _0[@A0�) and �)_A,,[,- _0[@A0�) as described 

previously in Section 1.2. The variation of genetic liabilities follows as s�(�)_A,,[,- _0[@A0�)) = s�(�)) −{�)_A,,[,- _0[@A0�) s�(d))⁄ } ∗ s(d), �)) ∗ s(d), �)), and the mean as �(�)_A,,[,- _0[@A0�)) = −1 ∗ {s�(�)T)/s�(d)T)} ∗ })_A,,[,- _0[@A0�)os�(d)), where the term is multiplied by −1 to transform the mean back to the 

original parental liability scale of d.  



2. Derivation of a single SNP’s risk allele frequency in trio design 

First, the risk allele frequencies were analytically derived for screened controls, cases, and cases with 

unaffected parents (‘cases’ and ‘probands’ are used interchangeably) (Section 2.1). Second, risk allele 

frequencies were derived for cases with affected siblings by applying the first set of derived 

frequencies and by considering IBD-sharing between cases and their siblings (Section 2.2). Third, all 

acquired estimates were applied to estimate risk allele frequencies in pseudocontrols (Section 2.3). 

Next we consider the impact of assortative mating (Section 2.4). To conclude, analytical derivations 

were validated with a simulation study (Table S5).  

 

2.1 Risk allele frequencies in screened controls, cases, and cases with unaffected parents 

This Section closely follows the work of Witte et al.
7
 Assume the complex disease of interest has a 

population frequency '(D) = 	, and the locus of interest has risk allele B with frequency '(B) = 
, 

and non-risk allele b with frequency '(b) = 1 − 
 = §. Given Hardy-Weinberg Equilibrium (HWE), the 

genotype frequencies are '(bb) = §�, '(�¨) = 2
§, and '(BB) = 
�. Under a multiplicative risk model 

with relative risk of the heterozygote ©, the risk of disease given genotype '(D|G) can be expressed as '(D|bb) = �ªª, '(«|�¨) = �ªª©, and '(D|BB) = �ªª©�, with �ªª the disease risk in subjects with 

genotype ¨¨. The probabilities of genotypes in cases is given by '(G|D) = '(D|G)'(G)/'(D), that is '(bb|D) = �ªª§�/	, '(Bb|D) = �ªª©2
§/	, and '(BB|D) = �ªª©�
�/	. Affected individuals, thus, 

have a risk allele frequency of 
_(), = '(BB|D) + T�  '(Bb|D). Analogously, the probabilities of 

genotypes in unaffected individuals (i.e., screened controls, sc) are given by 
(bb|ND) = (1 − �ªª)§�/(1 − 	), '(Bb|ND) = (1 − �ªª©)2
§/(1 − 	), and '(BB|ND) = (1 − �ªª©�)
�/(1 − 	), and they have a 

risk allele frequency of 
)_ = '(BB|ND) + T�  '(Bb|ND), and non-risk allele frequency §)_ = 1 − 
)_. The 

offspring of unaffected parents will have genotype frequencies '(G | parents unaffected) of '(bb|pu) =§)_� , '(Bb|pu) = 2
)_§)_, and '(BB|pu) = 
)_� , noting that HWE is re-established after one generation. 

Assuming no correlation between genotype and family environment, the '(D|G) in offspring of 

screened controls are equal to '(D|G) in the baseline population. The probabilities of genotypes in 

cases (proband) with unaffected parents, therefore, equal '(bb|D, pu) = �ªª§)_� /'(D|pu), '(Bb|D, pu) = �ªª©2
)_§)_/'(D|pu), and '(BB|D, pu) = �ªª©�
)_� /'(D|pu), with '(D|pu) = �ªª§)_� +�ªª©2
)_§)_ + �ªª©�
)_� . Note that all can be expressed in terms of 
, § = 1 − 
, 	, and © by realizing 

that 	 =  ∑ '(«|�)'(�) =Z §��ªª + 2
§�ªª© + 
��ªª©�, and thus �ªª = 	/(§� + 2
§© + 
�©�). To take 

account of dominance effect, substitute © with ���ª and ©� with ���� in the above. 

 

2.2 Risk allele frequencies in proband with an affected sibling  

To estimate the risk allele frequency in cases (proband) with affected siblings, the combined 

probabilities of genotypes in cases and their siblings is required: 

 

²(�_(),, �)=ª) = ²(�_ , �)) = ³ '(¨¨, ¨¨) '(¨¨, �¨) '(¨¨, ��)'(�¨, ¨¨) '(�¨, �¨) '(�¨, ��)'(��, ¨¨) '(��, �¨) '(��, ��)´ 

 



The rows of ²(�_ , �)) thus correspond to the three possible genotypes of cases and the columns to 

the three possible genotypes of their siblings. ²(�_ , �)) is the sum of four matrices: ²(�_ , �)| µ�« = 0), ²(�_ , �)| µ�« = 1(¨)), ²(�_ , �)| µ�« = 1(�)), and ²(�_, �)| µ�« = 2), all weighted by 0.25 =²(µ�« = 0) = ²(µ�« = 1)/2 = ²(µ�« = 2). To illustrate, the three row elements of ²(�)| �_ =�¨, µ�« = 1(�)) follow from basic Mendelian reasoning as '(�) = ¨¨| �_ = �¨, µ�« = 1(�)) = 0 ∗§1¶|Z7·�ª (the probability that the IDB-allele is ¨ equals 0; the probability that the non-IBD allele is ¨ 

depends on its frequency in the non-transmitted alleles from the parents given �_ = �¨), '(�) =�¨| �_ = �¨, µ�« = 1(�)) = 1 ∗ §1¶|Z7·�ª, and '(�) = ��| �_ = �¨, µ�« = 1(�)) = 1 ∗ 
1¶|Z7·�ª 

respectively, where 
1¶|Z7 represents the frequency of � in the non-transmitted alleles from parents 

given �_, and §1¶|Z7 = 1 − 
�|Z7 the frequency of ¨. Note that 
1¶|Z7 equals 
�(A,[@) when the parental 

generation is in HWE, however when the parents are unaffected they are not in HWE and derivation of 
1¶|Z7 is slightly more elaborate (described in Appendix A). When IBD=0, the genotypes �) depend on 

the distribution of the non-transmitted genotypes, which is also described in Appendix A. In this 

manner, the four matrices ²(�)| �_ , µ�«) are defined as: 

 

²(�)| �_ , µ�« = 0) = ³ '(ap = ¨¨|�_ = ¨¨) '(ap = �¨|�_ = ¨¨) '(ap = ��|�_ = ¨¨)'(ap = ¨¨|�_ = �¨) '(ap = �¨|�_ = �¨) '(ap = ��|�_ = �¨)'(ap = ¨¨|�_ = ��) '(ap = �¨|�_ = ��) '(ap = ��|�_ = ��)´   

 

²(�)| �_ , µ�« =  1(¨)) = ³2§1¶|Z7·ªª 2
1¶|Z7·ªª 0§1¶|Z7·�ª 
1¶|Z7·�ª 00 0 0´ 

 

²(�)| �_ , µ�« = 1(�)) = ³0 0 00 §1¶|Z7·�ª 
1¶|Z7·�ª0 2§1¶|Z7·�� 2
1¶|Z7·��´ 

 

²(�)| �_ , µ�« = 2) = ¸1 0 00 1 00 0 1¹ 

 

First, the allele frequency in cases with an affected sibling and random parents (in HWE) was derived, 

where 
1¶ = 
 irrespective of �_. Furthermore, define the diagonal matrix with the genotype 

probabilities in cases, and the diagonal matrix with the probabilities on an affected sibling given the 

siblings genotype as follows 

 ²(�_) = diagt'(�|«)v = diag('(¨¨|«), '(�¨|«), '(��|«)), and ²(» = m��efje�|�)) = diagt'(«|�)v = diag('(«|¨¨), '(«|�¨), '(«|��)) 

 

Now estimate the combined genotype probabilities of cases and their sibling 

 ²(G¼, G½·¾¿¿À¼ÁÀÂ|IBD) = ²(G¼) ∗ ²(�)| �_ , µ�«) ∗ ²(» = m��efje�|G½), (Eq 1) and 



²t�_ , �)·Äuu,_@,-v = Å 0.25 ∗ ²tG¼, G)·Äuu,_@,-HIBDvÆ�Ç  

  

Because of the ascertainment on cases the elements of ²(�_ , �)) do not add up to 1. Hence, ²t�_(), , �È·Äuu,_@,-|fcze, » = m��efje�v = ²(�_ , �))/ ∑ ²(�_ , �)). The rows of ²t�_(), , �È·Äuu,_@,-|fcze, » = m��efje�v add up to '(�_ = bb|fcze, » = m��efje�), '(�_ = Bb|fcze, » =m��efje�), and '(�_ = BB|fcze, » = m��efje�) respectively. This defines the risk allele frequency in 

cases with an affected sibling as 
_(), | È·Äuu,_@,- = '(�_ = BB|fcze, » = m��efje�) + T�  '(�_ =Bb|fcze, » = m��efje�). Second, the allele frequency in cases with an affected sibling and unaffected 

parents was derived analoguously but with 
1¶ depending on �_ (see Appendix A in Section 2.5), and 

with ²(�_) = diagt
(�|«, 
c�eijz hic��efje�)v. 
 

2.3 Risk allele frequencies in pseudocontrols 

Pseudo-control (pc) genotypes are the genomic complement genotypes from both parents not 

transmitted to their offspring. Allele frequencies in pseudocontrols depend on the genotypes of the 

cases selected, on the genotypes and disease statuses of the siblings and their IBD sharing with the 

cases. The genotype probabilities in pseudocontrols 'tG�_HIBD, G¼, G½) were estimated as follows and 

the sum of these 4 ∗ 3 ∗ 3 = 36 probabilities for a specific GË¼ weighted by the probabilities of the 

genotypes in cases and controls and their IBD-sharing, gives '(GË¼).  

 

Define the matrices ²tG�_HIBD, �_ , �)) which has rows defined by genotypes of the cases and columns 

defined by the genotypes of the siblings 

 

Ì 'tG�_HIBD, G¼ = ¨¨, G½ = ¨¨) 'tG�_HIBD, G¼ = ¨¨, G½ = �¨) 'tG�_HIBD, G¼ = ¨¨, G½ = ��)'tG�_HIBD, G¼ = �¨, G½ = ¨¨) 'tG�_HIBD, G¼ = �¨, G½ = �¨) 'tG�_HIBD, G¼ = �¨, G½ = ��)'tG�_HIBD, G¼ = ��, G½ = ¨¨) 'tG�_HIBD, G¼ = ��, G½ = �¨) 'tG�_HIBD, G¼ = ��, G½ = ��)Í 

 

Given the parental genotype frequencies '(�� = ¨¨), '(�� = �¨) and '(�� = ��), these 3 t��_v ∗4 (µ�«) = 12 matrices follow from basic Mendelian reasoning and are displayed in Appendix B 

(Section 2.6). With these matrices the values of '(GË¼ = ¨¨), '(GË¼ = �¨), and '(GË¼ = ��) are 

separately estimated by 

 

²(��_|G¼, G½, fcze, » = m��efje�) = Å 0.25 ∗ ²(G¼, G½·¾¿¿À¼ÁÀÂ|IBD) ∘ ²tG�_HIBD, �_ , �))Æ�Ç  

²tGË¼v = Å ²(��_|G¼, G½, fcze, » = m��efje�) 
 

Where ∘ represent the Hadamard product of two matrices (i.e., when m = � ∘ Ï, than c=> = =̈> ∗ f=>). 

The probabilities '(GË¼ = ¨¨), '(GË¼ = �¨), and '(GË¼ = ��) do not add up to 1, because they are 

defined in terms of the full population. Therefore, 'tGË¼ | fcze, » = m��efje�v equal '(GË¼)/



∑ '(GË¼)ÐÑÒ . This yields the risk allele frequency in pseudocontrols from cases with affected siblings as 


�_ | È·Äuu,_@,- =  'tGË¼ = ��v + T� '(GË¼ = �¨).  

 

The following variations yield the estimation for the other sets of pseudocontrols. (i) To estimate 
�_ 

(without conditioning on affected siblings), replace ²(G¼, G½·¾¿¿À¼ÁÀÂ|IBD) by ²(G¼, G½|IBD) by 

substituting the diagonal matrix ²(» = m��efje�|�)) in the above for the identity matrix Ó. (ii) To 

estimate 
�_|Q·*[(uu,_@,-, adjust the parental genotype probabilities accordingly (no longer in HWE) 

and set ²(�_) = diagt
(�|«, 
c�eijz hic��efje�)v. (iii) To estimated 
�_|È·Äuu,_@,- & Q·*[(uu,_@,-, 

combine the substitutions described in (i) and (ii). 

 

2.4 Assortative mating 

The impact of assortative mating on a single locus is expressed as the non-random mating fraction � 

of parents with similar genotypes. The next generation has the following frequencies
8
  

 ²(�_ = ¨¨| czzg�jcj}�e �cj}iÔ 
c�eijz) = (1 − �)§� + �(§� + T� 
§), ²(�_ = �¨| czzg�jcj}�e �cj}iÔ 
c�eijz) = (1 − �)2
§ + �
§, and ²(�_ = ��| czzg�jcj}�e �cj}iÔ 
c�eijz) = (1 − �)
� + �(
� + T� 
§), 

 

when the parental generation is in HWE, and with 
 the parental frequency of � and § of ¨. The 

genotype probabilities of affected siblings are given by ²(G|D, c. �. 
c�eijz) = '(D|G)'(G|c. �.  
c�eijz)/'(D) analoguous to Section 2.1. Substituting these as ²(G¼) in Eq 1 in 

Section 2.2 

 ²(G¼, G½|IBD, c. �. 
c�eijz) = ²(G¼) ∗ ²(�)| �_, µ�«) ∗ Ó, 

 

and following the other steps in Sections 2.1 and 2.2 gives the frequencies of cases and 

pseudocontrol of parents with assortative mating (not selecting of disease-status of parents or 

siblings). Note that assortative mating changes the probabilities of the combined genotypes of parents, 

which is described in Appendix A (Section 2.5). 

 

2.5 Appendix A: allele and genotype frequencies of non-transmitted alleles 

When the parents are unaffected, they are not in HWE, in which case the non-transmitted allele and 

genotype frequencies are dependent on the case’s (proband’s) genotype �_. These non-transmitted 

allele and genotype frequencies are needed to derive the combined probabilities of genotypes in 

cases and their sibling ²(�_ , �)). (Note that these non-transmitted alleles are not the pseudocontrols of 

interest.) Suppose the genotypes in the parents have frequencies '(�� = ¨¨), '(�� = �¨) and '(�� = ��). The distribution of the genotypes of pairs of parents with a genotype correlation (non-

random mating fraction) � is given by  

 



²t�u(@Õ,A�+0@Õ,Av =

Ö
×××
×××
×Ø

'(�u = ¨¨, �+ = ¨¨) '(�u = ¨¨, �+ = �¨)'(�u = ¨¨, �+ = ��)'(�u = �¨, �+ = ¨¨)'(�u = �¨, �+ = �¨)'(�u = �¨, �+ = ��)'(�u = ��, �+ = ¨¨)'(�u = ��, �+ = �¨)'(�u = ��, �+ = ��)Ù
ÚÚÚ
ÚÚÚ
ÚÛ

=

Ö
×××
×××
××
Ø (1 − �)'t�� = ¨¨v't�� = ¨¨v + �'t�� = ¨¨v(1 − �)'t�� = ¨¨v'(�� = �¨)(1 − �)'t�� = ¨¨v'(�� = ��)(1 − �)'t�� = �¨v'(�� = ¨¨)(1 − �)'t�� = �¨v't�� = �¨v + �'t�� = �¨v(1 − �)'t�� = �¨v'(�� = ��)(1 − �)'t�� = ��v'(�� = ¨¨)(1 − �)'t�� = ��v'(�� = �¨)(1 − �)'t�� = ��v't�� = ��v + �'t�� = ��vÙ

ÚÚÚ
ÚÚÚ
ÚÚ
Û

 

 

The distributions of the genotypes of pairs of parents conditional on their offspring �_ are proportional 

to the pairwise multiplications of the probability of these parental genotypes times the probability of 

getting offspring with �_, that is 

 ²Üt�u(@Õ,A�+0@Õ,A|�_ = ¨¨v = ²t�u(@Õ,A�+0@Õ,Av*(1  0.5  0  0.5  0.25  0  0  0  0)¶ ²Üt�u(@Õ,A�+0@Õ,A|�_ = �¨v = ²t�u(@Õ,A�+0@Õ,Av ∗ (0  0.5  1  0.5  0.5  0.5  1  0.5  0)¶ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ��v = ²t�u(@Õ,A�+0@Õ,Av ∗ (0  0  0  0  0.25  0.5  0  0.5  1)¶ 

 

The probabilities of non-transmitted (NT) genotypes are proportional to the sum of the combined 

parental genotypes resulting in this NT genotype, that is 

 ²Ü(ap = ¨¨|�_ = ¨¨) = (1  0  0  0  0  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ¨¨v ²Ü(ap = �¨|�_ = ¨¨) = (0  1  0  1  0  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ¨¨v ²Ü(ap = ��|�_ = ¨¨) = (1  0  0  0  0  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ¨¨v ²Ü(ap = ¨¨|�_ = �¨) = (0  1  0  1  0  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = �¨v ²Ü(ap = �¨|�_ = �¨) = (0  0  1  0  1  0  1  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = �¨v ²Ü(ap = ��|�_ = �¨) = (0  0  0  0  0  1  0  1  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = �¨v ²Ü(ap = ¨¨|�_ = ��) = (0  0  0  0  1  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ��v ²Ü(ap = �¨|�_ = ��) = (0  0  0  0  0  1  0  1  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ��v ²Ü(ap = ��|�_ = ��) = (0  0  0  0  0  0  0  0  1) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ��v 

 

Scaling gives the exact probabilities of the NT genotypes: '(ap = ¨¨|�_ = ¨¨) = 'Ý(ap = ¨¨|�_ = ¨¨)/ �'Ý(ap = ¨¨|�_ = ¨¨) + 'Ý(ap = �¨|�_ = ¨¨) + 'Ý(ap = ��|�_ = ¨¨)� etc. The 

allele frequencies 
1¶|Z7 follow directly from the NT genotype frequencies.  

 

 

2.6 Appendix B: pseudocontrol genotypes conditional on IBD, Gc and Gs 

Define the matrices ²tG�_HIBD, �_ , �)) as  

 



Ì 'tG�_HIBD, G¼ = ¨¨, G½ = ¨¨) 'tG�_HIBD, G¼ = ¨¨, G½ = �¨) 'tG�_HIBD, G¼ = ¨¨, G½ = ��)'tG�_HIBD, G¼ = �¨, G½ = ¨¨) 'tG�_HIBD, G¼ = �¨, G½ = �¨) 'tG�_HIBD, G¼ = �¨, G½ = ��)'tG�_HIBD, G¼ = ��, G½ = ¨¨) 'tG�_HIBD, G¼ = ��, G½ = �¨) 'tG�_HIBD, G¼ = ��, G½ = ��)Í 

 

Given the parental genotype frequencies '(�� = ¨¨), '(�� = �¨) and '(�� = ��), these 3 ∗ 4 = 12 

matrices follow from basic Mendelian reasoning. Note that IBD=0 (between cases and their siblings) 

indicates that the pseudocontrol shares both alleles with the sibling; IBD=1 indicates that the 

pseudocontrol shares the non-IBD allele with the sibling; and IBD=2 indicates that the pseudocontrol 

and sibling share no alleles. Alleles in the pseudocontrols not shared with the sibling come from the 

parents with the probabilities derived in Appendix A (Section 2.5). The ²tG�_HIBD) are thus defined as: 

 

²tG�_ = ¨¨HIBD = 0) = ¸1 0 01 0 01 0 0¹ 

²tG�_ = ¨¨HIBD = b) = ³§1¶|Z7·ªª 0 0§1¶|Z7·�ª 0 0§1¶|Z7·�� 0 0´ 

²tG�_ = ¨¨HIBD = B) = ³§1¶|Z7·ªª §1¶|Z7·ªª 0§1¶|Z7·�ª §1¶|Z7·�ª 0§1¶|Z7·�� §1¶|Z7·�� 0´ 

²tG�_ = ¨¨HIBD = 2) = ³ '(ap = ¨¨|�_ = ¨¨) '(ap = ¨¨|�_ = ¨¨) '(ap = ¨¨|�_ = ¨¨)'(ap = ¨¨|�_ = �¨) '(ap = ¨¨|�_ = �¨) '(ap = ¨¨|�_ = �¨)'(ap = ¨¨|�_ = ��) '(ap = ¨¨|�_ = ��) '(ap = ¨¨|�_ = ��)´ 

²tG�_ = �¨HIBD = 0) = ¸0 1 00 1 00 1 0¹ 

²tG�_ = �¨HIBD = b) = ¸
1¶|Z7·ªª §1¶|Z7·ªª §1¶|Z7·ªª
1¶|Z7·�ª §1¶|Z7·�ª §1¶|Z7·�ª
1¶|Z7·�� §1¶|Z7·�� §1¶|Z7·��¹ 

²tG�_ = �¨HIBD = B) = ¸
1¶|Z7·ªª 
1¶|Z7·ªª §1¶|Z7·ªª
1¶|Z7·�ª 
1¶|Z7·�ª §1¶|Z7·�ª
1¶|Z7·�� 
1¶|Z7·�� §1¶|Z7·��¹ 

²tG�_ = �¨HIBD = 2) = ³ '(ap = �¨|�_ = ¨¨) '(ap = �¨|�_ = ¨¨) '(ap = �¨|�_ = ¨¨)'(ap = �¨|�_ = �¨) '(ap = �¨|�_ = �¨) '(ap = �¨|�_ = �¨)'(ap = �¨|�_ = ��) '(ap = �¨|�_ = ��) '(ap = �¨|�_ = ��)´ 

²tG�_ = ��HIBD = 0) = ¸0 0 10 0 10 0 1¹ 

²tG�_ = ��HIBD = b) = ³0 
1¶|Z7·ªª 
1¶|Z7·ªª0 
1¶|Z7·�ª 
1¶|Z7·�ª0 
1¶|Z7·�� 
1¶|Z7·��´ 

²tG�_ = ��HIBD = B) = ³0 0 
1¶|Z7·ªª0 0 
1¶|Z7·�ª0 0 
1¶|Z7·��´ 

²tG�_ = ��HIBD = 2) = ³ '(ap = ��|�_ = ¨¨) '(ap = ��|�_ = ¨¨) '(ap = ��|�_ = ¨¨)'(ap = ��|�_ = �¨) '(ap = ��|�_ = �¨) '(ap = ��|�_ = �¨)'(ap = ��|�_ = ��) '(ap = ��|�_ = ��) '(ap = ��|�_ = ��)´ 
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