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Disease and Polygenic Architecture: Avoid
Trio Design and Appropriately Account
for Unscreened Control Subjects for Common Disease

Wouter J. Peyrot,1,2,* Dorret I. Boomsma,3 Brenda W.J.H. Penninx,1 and Naomi R. Wray2,*

Genome-wide association studies (GWASs) are an optimal design for discovery of disease risk loci for diseases whose underlying genetic

architecture includes many common causal loci of small effect (a polygenic architecture). We consider two designs that deserve careful

consideration if the true underlying genetic architecture of the trait is polygenic: parent-offspring trios and unscreened control subjects.

We assess these designs in terms of quantification of the total contribution of genome-wide genetic markers to disease risk (SNP herita-

bility) and power to detect an associated risk allele. First, we show that trio designs should be avoided when: (1) the disease has a lifetime

risk > 1%; (2) trio probands are ascertained from families with more than one affected sibling under which scenario the SNP heritability

can drop by more than 50% and power can drop as much as from 0.9 to 0.15 for a sample of 20,000 subjects; or (3) assortative mating

occurs (spouse correlation of the underlying liability to the disorder), which decreases the SNP heritability but not the power to detect a

single locus in the trio design. Some studies use unscreened rather than screened control subjects because these can be easier to collect;

we show that the estimated SNP heritability should then be scaled by dividing by (1 � K 3 u)2 for disorders with population prevalence

K and proportion of unscreened control subjects u. When omitting to scale appropriately, the SNP heritability of, for example, major

depressive disorder (K ¼ 0.15) would be underestimated by 28% when none of the control subjects are screened.
Optimal experimental design of genetic studies of disease

for discovery of associated loci depends on the underlying

genetic architecture of the trait. Although the true genetic

architecture of the trait is usually not known, different

experimental designs aim at exposing causal loci of

differing population frequencies. For example, the optimal

experimental design to detect de novo mutations is a trio

design in which affected probands and their parents are

genotyped.1 In contrast, genome-wide association studies

(GWASs) are an optimal design for a genetic architecture

that includes many common causal loci of small effect

(a polygenic architecture). Here, we consider two designs

of GWASs, which we show deserve careful consideration:

designs based on parent-offspring trios and designs based

on unscreened control subjects. We assess these designs

in terms of quantification of the total contribution to dis-

ease risk of genome-wide genetic markers, via estimation

of so-called SNP heritability,2 and the power to detect an

associated risk allele.

Our study is motivated by experiences with GWAS de-

signs for psychiatric disorders, but our results are parame-

terized based on baseline disease risk and heritability, and

are, therefore, applicable to the full range of diseases and

disorders with a polygenic genetic architecture of underly-

ing risk. For psychiatric disorders, GWASs have had vari-

able success in detecting genome-wide significant com-

mon SNPs. On the one hand, 108 significant loci were

recently found for schizophrenia (SCZ [MIM: 181500]) in

a sample comprising 36,989 case subjects,3 whereas only

two loci were found in one study on major depressive dis-

order (MDD [MIM: 608516])4 but none in another,5 no loci
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for attention-deficit/hyperactivity disorder (ADHD [MIM:

143465]),6 and only single-study genome-wide significant

loci for autism spectrum disorder (ASD [MIM: 209850]).7–9

Sample size is pivotal in explaining this discrepancy,

because much smaller numbers of cases were included for

MDD (5,303 and 9,240, respectively), ADHD (2,960), and

ASD (2,705, 1,984, and 1,553, respectively) than for SCZ.

Other contributing factors have, nevertheless, been pro-

posed, such as the impact of de novo mutations in

ASD10,11 (although these are expected to explain only a

small proportion of variation),12 lower family-based herita-

bility of MDD (~0.4 versus ~0.8 for SCZ, ASD, and ADHD,

assuming a similar genetic architecture between disor-

ders),13 and higher prevalence and greater heterogeneity

of MDD.14 Here, we show that the trio design, which is

regularly applied in ASD and ADHD, and use of unscreened

control subjects deserves careful consideration in the

context of an underlying polygenic architecture, which is

an important consideration for design of future studies

that strive to increase sample size.15

The impact of trio design and the use of unscreened con-

trol subjects on the SNP heritability have, to the best of our

knowledge, not yet been described, probably because the

methods for estimation of SNP heritability were developed

only in recent years.16,17 The impact on the power to

detect a single locus has, on the other hand, been studied

in the pre-GWAS era of candidate genes,18–21 but we could

find no clear-cut comparison of the power to detect an

associated risk allele with trio studies versus screened con-

trol studies, and we will therefore also give an overview of

these differences. We investigate the trio design and the
sterdam 1081 HL, the Netherlands; 2Queensland Brain Institute, University

y, VU University Amsterdam, Amsterdam 1081 BT, the Netherlands

.R.W.)

y of Human Genetics. All rights reserved.

4, 2016

mailto:w.peyrot@ggzingeest.nl
mailto:naomi.wray@uq.edu.au
http://dx.doi.org/10.1016/j.ajhg.2015.12.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2015.12.017&domain=pdf


use of unscreened control subjects by analytical derivation

followed by simulation studies to validate theory. Assorta-

tive mating (correlation in liability between spouses) is

included in our trio design analyses, because this has

been reported for a range of psychiatric disorders.22–25

For example, a spouse correlation on the social responsive-

ness scale (a quantitative measure of autistic traits) of 0.29

has been reported in a population sample23 and of 0.26 in

parents of ASD probands.22 For ADHD a spouse correlation

of 0.11 on the ADHD index in population samples has

been reported.25 In trio designs, genotypes of proband

cases are compared to genotypes of pseudocontrol subjects

(the non-transmitted parental alleles).
SNP Heritability Calculations

The SNP heritability estimates the total proportion of vari-

ance tagged by common SNPs from a genome-wide associ-

ation study.2,16 If samples with GWAS data are population

samples, then the variance estimated on the observed scale

ðbh2

oÞ is expressed with the Robertson’s transformation on

the liability scale ðbh2

l Þ as26

bh2

l ¼ bh2

o

Kð1� KÞ
z2

; (Equation 1)

where z denotes the height of the standard normal density

function at the threshold corresponding to a baseline dis-

ease risk K. Quantification on the liability scale is most

interpretable because it allows direct comparisons of esti-

mates of heritability from family data that are reported

on this scale to estimates of variance explained by individ-

ual genome-wide significant loci. However, usually GWAS

samples are oversampled for case subjects compared to

population samples and the transformation of proportion

of variance attributable to SNPs estimated from case-con-

trol data ðbh2

occÞ must also account for the proportion of

cases in the sample P by2,27

bh2

l ¼ bh2

occ

K2ð1� KÞ2
Pð1� PÞz2 ; (Equation 2)

which reduces to Equation 1 when the sample is

a population sample and P ¼ K. However, these trans-

formations assume that control subjects are screened.

To account for control subjects being unscreened,

we define F as the proportion of falsely classified

control subjects, F¼Nfalse controls=ðNfalse controlsþNtrue controlsÞ¼
Nfalse controls= Ncontrols. We closely followed the derivations of

Golan et al. (paragraphs 1.2 and 1.3 of their Supplemental

Materials)27 to derive an updated equation (Table S1)

validated by simulation (Table S2),

bh2

l ¼ bh2

occ

K2ð1� KÞ2
Pð1� PÞð1� FÞ2z2; (Equation 3)

which reduces to Equation 2 when F ¼ 0 and control sub-

jects are screened. If a proportion u of the control subjects

are a random sample from the population, then one can
The Americ
assume that F z Ku. Therefore, if it is unknown whether

control subjects are screened or not, the potential underes-

timation when all control subjects are unscreened (u ¼ 1)

of the SNP heritability bh2

l estimated from the standard

Equation 2 can be assessed as bh2

l ð1� KÞ2 and thus depends

on baseline risk K. In trio designs where probands are ascer-

tained randomly, the pseudocontrol subjects are equiva-

lent to unscreened control subjects under a polygenic

model (Figure S1).

For the trio design, the SNP heritability was derived for

a disease parameterized with normally distributed pheno-

typic (l) and genetic (G) liabilities with means E(l) ¼
E(G) ¼ 0 and variances Vl ¼ 1 and VG ¼ h2

l , the true her-

itability on the liability scale in the parental generation.28

Under the liability-threshold model, individuals are

deemed affected when their liability (l) is larger than

threshold (T) such that Pðl > T j l � Nð0;1ÞÞ ¼ K. Parental

assortative mating was taken into account by parameter-

izing a spouse liability correlation of rl and genetic corre-

lation of rG ¼ h2
l rl.

28 The E(G) of proband case subjects

and pseudocontrol subjects were derived by considering

the variance-covariance matrix of l and G of individuals

that could contribute to a trio design (proband, sibling,

mother, father, pseudocontrol). To account for the

affected proband, the variance-covariance matrix of

random families was conditioned on the proband being

affected by accounting for the reduction in variance as a

result of the Bulmer effect29 in related individuals

described by Tallis.30 To account for a second affected sib-

ling, the variance-covariance matrix was further condi-

tioned on the sibling also being affected. Details of these

derivations are provided in the Supplemental Methods

and were validated with a simulation study in R (Tables

S3 and S4).

Figure 1A displays the SNP heritability assessed from un-

screened control subjects (Figure 1A, dashed line), which

is equivalent to estimates from pseudocontrol subjects

from random families with at least one affected proband

(Figure 1A, dotted line) and screened control subjects

(Figure 1, solid lines). Although the standard transforma-

tion (Equation 2) applied to derive estimates of SNP herita-

bility on the liability scale ðbh2

l Þ is expected to give unbiased

estimates of the true SNP heritability when case subjects

are randomly ascertained and control subjects are screened

(Figure 1A, solid line), the transformation underestimates

h2
l by a factor (1 � K)2 when diseases are common (high

K) and control subjects are unscreened or are pseudocon-

trol subjects (Figure 1A, dashed and dotted line). The esti-

mated heritability from the Equation 2 transformation bh2

l

severely underestimates h2
l when data result from a trio

design with probands ascertained from multiplex families

(Figure 1B, dotted line), for example, bh2

l ¼ 0:31 for K ¼
0.05 and h2

l ¼ 0:5, because the mean liability of pseudo-

control subjects is greater than the average in the popula-

tion and so the contrast in genetic values between case sub-

jects and pseudocontrol subjects is less than between case

subjects and screened control subjects (Table 1, additional
an Journal of Human Genetics 98, 382–391, February 4, 2016 383
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Figure 1. Relationship between the True SNP Heritability and Its Estimates Based on the Standard Transformation with Equation 2
from Trio Data, Screened Controls, and Unscreened Controls

The SNP heritability bh2

l that would be estimated based on the standard liability transformation equation (Equation 2) for GWASs using
pseudocontrol subjects (dotted lines), unscreened control subjects (dashed lines), and screened control subjects (solid lines) compared

to the true parental SNP heritability h2
l for designs based on randomly ascertained proband families (A), families with an additional

affected sibling (B), in the context of parental assortative mating with a correlation on the liability scale of rl ¼ 0.3 (C), and families
with an additional affected sibling in the context of parental assortative mating (D) for disorders with lifetime risk K ¼ 0.01, 0.05,
and 0.15. The pseudocontrol subjects of randomproband families are equivalent to unscreened control subjects (dashed and dotted lines

overlap in A), and the slope of these lines are defined by (1 � K)2, i.e., the underestimation of bh2

l when mistakenly applying Equation 2
rather than Equation 3 to transform the heritability on the observed scale to the liability scale when none of the control subjects are
screened.
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Table 1. Mean Genetic Liabilities and SNP Heritability Estimated from the Standard Transformation with Equation 2 from GWAS using
Trio Design, Screened Control Subjects, or Unscreened Control Subjects for Actual Parental Heritability 0.5

K h2
l Parents

Mean Genetic Liability (E(G))

bh2

l Assessed from Proband

Case

Control

Screened Unscreened Pseudo Screened Unscreened Pseudo

Random Proband Families

0.01 0.5 1.333 �0.013 0.000 0.000 0.500 0.490 0.490

0.05 0.5 1.031 �0.054 0.000 0.000 0.500 0.451 0.451

0.15 0.5 0.777 �0.137 0.000 0.000 0.500 0.361 0.361

Additional Sibling Affected

0.01 0.5 1.634 �0.013 0.000 0.543 0.749 0.736 0.328

0.05 0.5 1.275 �0.054 0.000 0.424 0.750 0.690 0.307

0.15 0.5 0.972 �0.137 0.000 0.323 0.735 0.565 0.251

Parental Assortative Mating

0.01 0.5 1.386 �0.016 0.000 0.097 0.542 0.530 0.459

0.05 0.5 1.075 �0.060 0.000 0.075 0.547 0.490 0.424

0.15 0.5 0.812 �0.148 0.000 0.057 0.552 0.395 0.341

Additional Sibling Affected and Parental Assortative Mating

0.01 0.5 1.706 �0.016 0.000 0.670 0.818 0.803 0.296

0.05 0.5 1.335 �0.060 0.000 0.525 0.826 0.756 0.278

0.15 0.5 1.021 �0.148 0.000 0.402 0.818 0.624 0.230

The mean genetic liabilities E(G) are displayed for probands, unrelated screened control subjects, unrelated unscreened control subjects, and their pseudocontrol
subjects as well as the SNP heritability bh2

l estimated from Equation 2 from comparing case subjects to these three sets of control subjects, for different parame-
terization of baseline disease risk K and a fixed underlying heritability of h2

l ¼ 0:5. The probands are parameterized in line with Figure 1 to be selected from random
proband families (Figure 1A), families with an additional affected sibling (Figure 1B), families in the context of parental assortative mating (Figure 1C), and families
with an additional affected sibling in the context of assortative mating (Figure 1D), respectively.
sibling affected), which is not fully compensated by the

fact that case subjects from multiplex families have higher

mean liability than randomly selected case subjects

(Table 1, random proband families). In contrast, when

case subjects are selected from multiplex families and con-

trol subjects are screened, the estimated SNP heritability

based on the standard transformation is an overestimate

of h2
l (for example, bh2

l ¼ 0:75 for K ¼ 0.05 and h2
l ¼ 0:5).

When control subjects are unscreened, the SNP heritability

is found between the SNP heritabilities from screened and

pseudocontrol subjects (Figure 1, dashed lines), when SNP

heritabilities are estimated by Equation 2. In the context of

assortative mating, a trio design comparison of probands

to pseudocontrol subjects yields decreased bh2

l (Figure 1C;

Table 1, parental assortative mating; spouse correlation

rl ¼ 0.3). Again, comparing the probands to screened

control subjects (from the offspring generation) does in

fact overestimate the heritability in the parent generation

h2
l ; this is, however, a well-known consequence of assorta-

tive mating and is not restricted to the trio design

ðVG;offspring ¼ VG;parents þ ð1=2ÞrG;parentsVG;parentsÞ.29 The most

pronounced difference between screened and pseudocon-

trol control subjects is found for probands with an addi-

tional affected sibling in the context of parental assortative
The Americ
mating (Figure 1D; Table 1, additional sibling affected and

parental assortative mating).

Power Calculations

The power to detect an associated risk allele in a case-con-

trol association test follows from the non-centrality param-

eter NCP of the c2 test statistic. This NCP is expressed in

terms of sample size N, proportion of case subjects in the

study v, the allele frequency in case subjects pcase, the allele

frequency in control subjects pcontrol, and the mean allele

frequency in the sample p ¼ vpcase þ ð1� vÞpcontrol as

NCP ¼
�
pcase � pcontrol

�2
pð1� pÞ

�
1

2N�v þ 1
2N�ð1�vÞ

� (Equation 4)

and the power as Pð x >
ffiffiffiffiffiffiffiffiffiffi
NCP

p þ xT
�� z � Nð0;1ÞÞ, where

xT is the z -value quantile-function of the standard normal

distribution for the desired significance threshold, here set

at a¼ 53 10�8 (xT ¼�5.45). The power of different experi-

mental designs is reflected in the appropriate expressions of

pcase and pcontrol. We parameterize a disease with a baseline

lifetime disease risk K, a di-allelic locus with risk allele fre-

quency P(B) ¼ p, non-risk allele frequency P(b) ¼ q ¼ 1 � p,
an Journal of Human Genetics 98, 382–391, February 4, 2016 385
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Figure 2. Power to Detect a Single Risk Variant in Association Studies of 10,000 Case Subjects that Use a Trio Design, Screened Con-
trol Subjects, or Unscreened Control Subjects
Power of association analysis comparing 10,000 probands to 10,000 screened control subjects (solid line), 10,000 unscreened control
subjects (dashed), 20,000 unscreened control subjects (dot-dashed), and 10,000 pseudocontrol subjects (dotted) to detect a single asso-
ciated risk variant for a risk allele with frequency p¼ 0.2, for a baseline disease risk K¼ 0.01, 0.05, and 0.15. Power was estimated for risk
variants with underlying additive effect ðRRBB ¼ RR2

BbÞ for random ascertainment of probands (A) and probands from families with an
additional affected sibling (B). Note that pseudocontrol subjects from random families are equivalent to unscreened control subjects
and that the dotted and dashed lines in (A) overlap. The variation explained on the liability scale was approximated by
h2
locusz2pð1� pÞðRRBb � 1Þ2=i2, where i equals z/K the mean liability of probands, and z the height of the standard normal density func-

tion at the threshold corresponding with disease of lifetime risk K.
relative risk of heterozygotes RRBb ¼ PðDisease jBbÞ=
PðDisease j bbÞ, and relative risk of the homozygotes

RRBB ¼ PðDisease jBBÞ=PðDisease j bbÞ.31,32 When control

subjects are screened, power follows from pcase ¼
kbbRRBbp(1 þ p(RRBb � 1))/K, where kbb ¼ PðDisease jbbÞ ¼
K=ðq2 þ 2pqRRBb þ p2RRBBÞ and pcontrol ¼ ((1 � kbbRRBb)

p(1 � p) þ (1 � kbbRRBB)p
2)/(1 � K),32 which agrees with

the genetic power calculator of Purcell et al.33When control

subjects are unscreened, the power of an association study is

expressed by Equation 4 with pcontrol¼ p. For the trio design,

power was assessed by substituting in Equation 4 the allele

frequency in probands and pseudocontrol subjects (the

non-transmitted alleles of theparents).When trios are ascer-

tained from families with an additional affected sibling or

when there is assortative mating, the risk allele frequency

in control subjects can be derived from combined and con-

ditional genotype frequencies of an individual, the affected

sibling, and the parents. Under assortative mating, expres-

sions are dependent on spouse liability correlation rliability,

which results in the correlation between the parental geno-

types as rlocus ¼ rliabilityh
2
locus.

28 It follows that assortativemat-

ing (for example, rliability¼ 0.3) has no impact on the power

to detect a single locus for loci typical of polygenic architec-

ture that explain less than 1% of variation (rlocus ¼ 0.3 3
386 The American Journal of Human Genetics 98, 382–391, February
0.01 ¼ 0.003).28 When assuming a small RRBb typical of

complex genetic disease and a multiplicative model on the

disease scale (RRBB ¼ RR2
Bb, implying additively on the un-

derlying risk scale), the variance attributable to the risk locus

can be approximated by h2
locusz2pqðRRBb � 1Þ2=i2 with i ¼

z/K the mean liability of case subjects and z the height of

the standardnormal density functionat the threshold corre-

sponding to a baseline disease risk K.32 The expressions to

derive allele frequencies in trios are closed but complex

(Supplemental Methods) and were validated by simulation

(Table S5).

Figure 2 displays the power to detect an associated risk

allele for probands from random trios with an affected pro-

band (Figure 2A) and multiplex trios with an additional

affected sibling (Figure 2B), when the risk allele has a fre-

quency of P(B) ¼ p ¼ 0.2 for disorders with baseline risk

K ¼ 0.01, 0.05, and 0.15 in a sample of n ¼ 10,000 trios

(probands versus pseudcontrol subjects) against RRBb given

an underlying additive effect ðRRBB ¼ RR2
BbÞ (dotted line).

Note that pseudocontrol subjects from random families

are equivalent to unscreened control subjects (Figure S1),

which are displayed in Figure 2 for 10,000 unscreened con-

trol subjects (dashed line) and 20,000 unscreened control

subjects (dot-dashed line) compared to 10,000 probands.
4, 2016



Table 2. Maximum Power Difference between Trio Design and Screened Control Subject Studies with 20,000 Subjects

K RRBb

Allele Frequencies Power (n ¼ 20,000) n (Power ¼ 0.8)

Proband Pseudo Screened Pseudo Screened Pseudo Screened

Proband from Random Proband Families

0.01 1.147 0.223 0.200 0.200 0.56 0.58 25,226 24,714

0.05 1.144 0.222 0.200 0.199 0.51 0.63 26,327 23,712

0.15 1.135 0.221 0.200 0.196 0.39 0.74 29,670 21,297

Proband from Families with an Additional Affected Sibling

0.01 1.115 0.228 0.209 0.200 0.17 0.91 39,201 17,307

0.05 1.113 0.227 0.209 0.199 0.15 0.92 40,533 16,923

0.15 1.108 0.226 0.208 0.197 0.11 0.94 44,574 15,945

The loci with allele frequency p¼ 0.2 from Figure 2 that result in most pronounced decrease in power for pseudocontrol compared to screened control studies for a
sample of 10,000 case subjects and 10,000 control subjects are displayed in detail. The power difference depends on the baseline disease risk K, its effect size RRBb,
and whether the probands are from random proband families or families with an additional affected sibling (compare to solid and dotted lines, respectively,
in Figure 2). For these loci, the allele frequencies in probands, pseudocontrol subjects, and screened control subjects is displayed, as well as the power given a
sample size of n ¼ 20,000 (50% case subjects) and the required sample size to obtain a power of 0.8. Note that pseudocontrol subjects from random families
are equivalent to unscreened population control subjects.
The solid line on each graph is the power for 10,000 pro-

bands compared to 10,000 unrelated screened control sub-

jects. Figure 2A shows that there is little to be gained in

screening control subjects for diseases of lifetime morbid

risk < 1%, but for more common disorders (such as

ADHD and MDD), there is an important gain in power,

which can also be gained by increasing the number of un-

screened control subjects. When trios come from families

with an additional affected sibling, the case subjects have

an increased probability of carrying the risk allele and so

when matched with screened control subjects, there is a

gain in power compared to random ascertainment of case

subjects (solid line in Figure 2B versus solid line in

Figure 2A). For example, when p ¼ 0.2, RRBb ¼ 1.2, then

pproband B ¼ 0.248 and pproband A ¼ 0.231, respectively

(these frequencies do not depend on K). However, when

the association study is of case subjects from multiplex

families compared to pseudocontrol subjects, there is little

gain in power compared to trios based on randomly

selected case subjects (dotted line in Figure 2B versus

dotted line in Figure 2A), because the pseudocontrol sub-

jects also have increased probability of carrying the risk

allele (ppseudocontrol B ¼ 0.215 and ppseudocontrol A ¼ 0.2). The

maximum power difference between using screened and

pseudocontrol subjects depends on RRBb, K, sample size,

and whether probands are ascertained randomly or from

families with an additional affected sibling (Table 2),

but is found for a sample comprising 20,000 subjects at

RRBb ¼ 1.11 and K ¼ 0.15 for probands with additional

affected siblings, under which scenario a total sample

size of n ¼ 15,945 is needed when control subjects are

screened versus n ¼ 44,574 for the pseudocontrol trio

design, respectively, to obtain a power of 0.8. For un-

screened control subjects (equivalent to pseudocontrol

subjects from random families), the most pronounced

decrease in power in a sample of 20,000 subjects is found
The Americ
for a locus with RRBb ¼ 1.14 in disease with K ¼ 0.15 where

unscreened control subjects yield a power of 0.39 and

screened control subjects a power of 0.74. As expected,

the impact of using screened control subjects is higher

for more common disorders. Allele frequencies in pro-

bands, pseudocontrol subjects, and screened control sub-

jects for all Figure 2 scenarios are presented in Figure S2.

Furthermore, the power differences between pseudocon-

trol and screened control studies are consistent for other

risk allele frequencies, e.g., p ¼ 0.6 (Figure S3) underlying

actual recessive (RRBb ¼ 1; Figure S4) and dominant

(RRBb ¼ RRBB; Figure S5) effects. In addition, to select

only trios with unaffected parents has no impact on power

of pseudocontrol studies, because although the risk allele

frequency in pseudocontrol subjects decreases, the fre-

quency in case subjects decreases proportionally

(Figure S6). When unscreened control subjects are much

easier to obtain then screened control subjects, the loss

of power due to not screening can be balanced by

increasing the number of unscreened control subjects,

which is illustrated for different numbers of unscreened

control subjects in Figure S7. Note that Equation 4 defines

a limit to the power-gain from increasing the number of

unscreened control subjects, but that when increasing

number of unscreened control subjects from 10,000 to

20,000, the loss of power due to not screening is balanced

for all scenarios under consideration here. In Figure 2,

the additional x axis is variance explained by the locus,

and therefore the results generalize to many combinations

of p and RRBb that together explain the same locus vari-

ance.31 Although association studies have similar power

to detect a locus based on RRBb regardless of baseline dis-

ease risk K, the variance explained by a locus is much larger

for high K. Therefore, to detect a risk allele that explains

the same proportion of genetic variance, a much larger

sample size is needed for larger K (Figure 3).
an Journal of Human Genetics 98, 382–391, February 4, 2016 387



Figure 3. Power to Detect an Associated Locus by the Propor-
tion of Variation It Explains
The power to detect an associated locus depends on the propor-
tion of variation it explains on the liability scale h2

locus, the baseline
disease risk K, and is displayed for random case versus screened
control. For a locus with the same h2

locus, larger sample sizes are
required for larger K. h2

locus can be approximated by 2p(1 � p)
(RRBb � 1)2/i2, where i equals z/K the mean liability of probands,
and z the height of the standard normal density function at the
threshold corresponding with disease of lifetime risk K. The (com-
plex) relation between allele frequency p, RRBb, and the non-cen-
trality parameter NCP given h2

locus results in an identical relation
between power and h2

locus for varying p.
To summarize our findings, our results generate two

important conclusions that trio-based samples and un-

screened control subjects for common diseases deserve

careful consideration when the underlying genetic archi-

tecture is highly polygenic. We have quantified this in

two ways, first by the underestimation of SNP heritability

through application of the inappropriate transformation

equation, and second by power calculations of association

analysis. We derived a transformation equation for the

SNP heritability that is appropriate for unscreened control

samples (Equation 3).

The use of trio designsmost commonly occurs for pediat-

ric diseases and disorders in which it is relatively easy to

obtain blood samples fromparents. Trio designs are needed

to detect de novo causal mutations,34 to determine accu-

rately phased haplotypes,34 and to undertake parent-of-

origin analyses implied by a hypothesis of parental

imprinting.35 Trio designs have also been considered for

detection of gene-environment interaction.36,37 In the

pre-GWAS era, trio designs were recommended to protect

against potential bias from population stratification,1 and

although this quality is also sometimes promoted for trio

GWAS, with genome-wide SNP data, other strategies, such

as genomic principal components38 ormixedmodel associ-

ationanalysis,39 appropriately account for population strat-

ification without the need to incur 50% higher costs by

genotyping three samples to generate two genomes. While

acknowledging the benefits of parent-offspring trios under

some experimental paradigms, trio-design GWASs have

been undertaken without full regard of the implications
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to power under the genetic architecture implicated by the

GWAS paradigm. We draw the following conclusions.

(1) If the case probands of trios are ascertained

randomly, then the resulting case-pseudocontrol

study is equivalent to a case-unscreened control

design under a polygenic genetic architecture and

has little impact on the SNP heritability and power

for disorders that are less common, but for more

common disorders there is important decrease in

SNP heritability (Figure 1A) and loss of power

(Figure 2A), inadvertently contributing to the

missing heritability problem. For example, in a

study on MDD (lifetime risk K ~ 0.15)13,40 where

all control subjects are unscreened, the SNP herita-

bility (say 0.3) would reduce by a factor of 0.72

(0.72 3 0.3 ¼ 0.22) (hence underestimated by

28%) when not accounting for the unscreened con-

trol subjects (i.e., applying Equation 2 rather than

Equation 3). For disorders such as MDD, even

when control subjects have been screened, it is

likely that some control subjects remain misclassi-

fied, because onset can occur throughout the life-

time. Naturally, it should also be noted that when

super-control subjects are used (control subjects

screened to be at the lower end of the liability distri-

bution, for example based on low scores for the per-

sonality trait neuroticism in the context of MDD),

SNP heritability estimates based on the standard

transformation equation would be biased upward.

The loss of power due to including unscreened con-

trol subjects can be compensated by increasing

the number of control subjects (Figures 2 and S7),

in particular in the context of the continuously

decreasing costs for genotyping, but this requires

caution when estimating the SNP heritability,

because Equation 3 should then be applied rather

than the standard Equation 2.

(2) If case probands are ascertained from multiplex

families, then the SNP heritability and power of

GWASs are substantially reduced when using pseu-

docontrol subjects even for less-common disorders

(see Figures 1B and 2B, respectively; modeled on

families with two affected siblings). Even in the

absence of deliberate ascertainment of multiplex

families, studies are likely to be biased by self-ascer-

tainment because parents from multiplex families

might be more concerned with the genetic origins

of the disorder. In fact, 43.6% of the 1,369 families

included in the Autism Genome Project (AGP) had

two or more children affected with ASD while

counting up to third-degree relatives.7 However,

the proportion of multiplex families is often not

reported, as is the case for the family-based

studies,41–43 contributing to the most recent

ADHD meta-analysis,6 which leaves the loss in po-

wer due to included multiplex families unknown,
4, 2016



but likely. In addition, in a number of families with

a first affected child, parents will stop having chil-

dren, so that a second affected child is never

observed. Our results are consistent with the sim-

plex versus multiplex and simulation results of

Klei et al. in analyses of ASD samples.44

(3) Assortative mating considerably decreases the SNP

heritability assessed from trio design compared

to screened control subjects also for small K

(Figure 1C), but it does not impact the power to

detect a single locus under a polygenic model,

because of the small proportions of variation ex-

plained by single loci (<1%). Assortative mating is

possibly common for psychiatric disorders22–25

and needs to be considered when interpreting SNP

heritability in general and for trio design in partic-

ular. These results and point (2) could explain why

lower SNP-based heritabilities were found in the

ADHD pseudocontrol samples from the Psychiatric

Genomics Consortium compared to case-control

samples (see Table S5 of Lee et al.).14

We also take the opportunity to re-emphasize that

parameterization of power in terms of genotype relative

risk can be misleading because the same RRBb operating

in common disease implies a much higher proportion of

variance explained by the locus compared to a locus oper-

ating in a less common disease. For example, when the risk

allele has frequency p ¼ 0.2 and effect size RRBb ¼ 1.1, the

locus explains 0.05%, 0.08%, and 0.13% of the variance in

disease liability for a disorder of frequency K ¼ 0.01, 0.05,

and 0.15, respectively. Hence, to detect a locus that ex-

plains the same proportion of variance in liability, much

larger samples are needed for common disorders (Figure 3).

For example, samples of n¼ 4,059 (50% case subjects, 50%

screened control subjects) are needed to detect a locus that

explains 0.5% of the variance in liability for a disorder

lifetime risk K ¼ 0.01 (RRBb ¼ 1.39), compared to samples

of n ¼ 9,181 when the disorder risk is K ¼ 0.15 (RRBb ¼
1.21). Similar arguments have been used to explain that

much larger GWAS samples are needed for MDD compared

to schizophrenia.45

To the best of our knowledge, the impact of the trio

design and use of unscreened control subjects on the

SNP heritability has not yet been addressed, but our power

analyses build upon a rich literature exploring the charac-

teristics of family-based association studies in the pre-

GWAS era. Ferreira et al. showed that the trio-based trans-

mission disequilibrium test (TDT) has less power when an

additional (non-genotyped) sibling is affected compared

to random families with one affected sibling.18 Li et al.,19

Risch and Teng,46 and Risch47 showed that case-control

studies are generally more powerful when case subjects

are from families with an additional affected sibling,

which is in line with our results (Figure 2B compared to

Figure 2A). Teng and Risch found that family-based ap-

proaches have less power than case-unrelated control stra-
The Americ
tegies for families with multiple affected siblings.20 Of

note, our paper focuses on the pseudocontrol trio design,

because this is how the trio design is typically applied in

GWASs; however, the TDT has often been applied for

candidate genes and could yield more power for rare disor-

ders as has been indicated by Laird et al.21 The power to

detect a locus with the use of unscreened control subjects

can readily be calculated with the online power calculator

of Purcell et al.33 or the Quanto software from Gauder-

man.48 Nevertheless, our study adds also to the current

literature on the power to detect a single locus, because

we directly compare pseudocontrol studies to screened

control studies for multiplex families and assortative mat-

ing. As expected, there is overall similarity between conse-

quences of design for the power to detect a single risk

variant and expected SNP heritability, but in this study

we have formalized these expectations and also shown

that such similarity does not hold when considering assor-

tative mating that impacts the estimated SNP heritability

but not in power to detect a single risk variant.

To conclude, we advise against the use of trio designs for

disorders with a polygenic genetic architecture, such as

psychiatric disorders, and we advise careful consideration

when using unscreened control subjects for prevalent dis-

orders, because these designs can result in an underesti-

mated SNP heritability and decreased power to detect an

associated risk allele.
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Figure S1. Pseudocontrols of random families with at least one affected proband case are equal to 

unscreened controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudocontrols of random families with at least one affected proband case are equal to unscreened 

controls (i.e. population mean) as displayed for the allele frequency of single loci of different effect-size 

(first two rows) and the mean genetic liability �(�) (population mean equals 0) for variable heritability ℎ��(bottom row) and different baseline population risk 	. The equivalence is exact and follows from the 

closed formulas provided in the R scripts, but is non-trivial to display in equations, because multiple 

sequential probabilities were needed to derive at the allele frequency and mean genetic liability in 

pseudocontrols. The equivalence can be understood intuitively by realizing that the non-transmitted 

alleles of random proband family are, in fact, part of the population background. 
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Figure S2. Power to detect a single SNP in trio-design and unscreened control studies, p=0.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect a single SNP with risk allele frequency 
 = 0.2 for case vs screened controls (solid 

grey line) and case vs pseudocontrol (dotted grey line). The allele frequencies of proband cases are 

displayed as the red solid line, the allele frequency of screened controls as the solid blue line, and the 

allele frequency of pseudocontrols in the dotted blue line. The allele frequencies of pseudocontrols 

from proband random families equal unscreened population controls, which is reflected by the 

horizontal blue dotted lines at 0.2 in Panel A. Note that the grey lines equal the solid and dotted lines 

in Main Figure 2; the unscreened controls are not displayed in the Supplemental Figures, because 

they will always have an allele frequency equal to the population frequency. 
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Figure S3. Power to detect a single SNP in trio-design and unscreened control studies, p=0.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The power is displayed for a risk allele with frequency p=0.6, and results indicate that the conclusions 

do not depend on the allele frequency (noting that in Figure S2 a locus with p=0.2 was displayed). See 

the legend of Figure S2 for details.  
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Figure S4. Power in trio design to detect SNP with underlying recessive effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect the additive effect a single SNP with risk allele frequency 
 = 0.2 with an underlying 

recessive effect for case vs screened controls (solid grey line) and case vs pseudocontrol (dotted grey 

line). The allele frequency of cases is displayed as the red solid line, the allele frequency of screened 

controls as the solid blue line, and the allele frequency of pseudocontrols in the dotted blue line.  Note 

that the ���� are being displayed for a larger range than in Figure S2 (1.9 > 1.18� = 1.39), i.e. an 

actual recessive allele results in less power given ����. 
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Figure S5. Power in trio design to detect SNP with underlying dominant effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect the additive effect a single SNP with risk allele frequency 
 = 0.2 with an actual 

dominant effect for case vs screened controls (solid grey line) and case vs pseudocontrol (dotted grey 

line). The allele frequency of cases is displayed as the red solid line, the allele frequency of screened 

controls as the solid blue line, and the allele frequency of pseudocontrols in the dotted blue line. Note 

that the ���� are being displayed for a smaller range than in Figure S2 (1.3 < 1.18� = 1.39), i.e. a 

dominant allele results in more power given ����. 
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Figure S6. Power to detect SNP in trios with unaffected parents  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect a single SNP with risk allele frequency 
 = 0.2 for cases vs pseudocontrols without 

conditioning on parents (solid grey line) and case vs pseudocontrol restricted to trios with unaffected 

parents (dotted grey line). The allele frequency of cases from trios without conditioning on parents is 

displayed as the red solid line, and the allele frequency of their pseudocontrols as the solid blue line. 

The allele frequency in cases from trios with unaffected parents is displayed as the red dotted line, 

and the allele frequency in their pseudocontrols as the dotted blue line. To summarize: solid=no 

selection on parents; dotted=unaffected parents; grey=power; red=allele frequency case; blue=allele 

frequency pseudocontrol. Note that the grey lines overlap, i.e. selecting trios with unaffected parents 

does not increase power in pseudocontrol studies. Furthermore, note that for 	 = 0.1 and 	 = 0.5 the 

allele frequencies are lower in trios from unaffected parents, but this difference is proportional for 

cases and pseudocontrol resulting in no power-difference.  
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Figure S7. Power to detect a risk variant from screened vs. unscreened controls studies  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power to detect a risk variant with risk allele frequency 
 = 0.2 for 10,000 proband cases vs 10,000 

screened controls (solid red line) and 10,000 proband cases vs respectively 10,000 unscreened 

controls (dotted line), 15,000 unscreened controls (short dashed), 20,000 unscreened controls (long 

dashed), and 50,000 unscreened controls (dot-dashed). 



Table S1. Values of the Haseman Elston cross-product accounting for falsely classified controls  �����,� �����,� ��  �!�",� ��  �!�",� ℙ�� $�� 
1 1 0 0 ((1 − '())*+,-).)� 

'())*+,-1 − '())*+,- 

1 1 0 1 (1 − '())*+,-).'())*+,- −1 1 1 1 0 '())*+,-(1 − '())*+,-). −1 

1 1 1 1 '())*+,-�  
1 − '())*+,-'())*+,-  

1 0 1 0 '())*+,-(1 − '())*+,-)(1 − .) −1 

1 0 0 0 (1 − '())*+,-).(1 − '())*+,-)(1 − .) 
'())*+,-1 − '())*+,- 

0 1 0 1 (1 − '())*+,-)(1 − .)'())*+,- −1 

0 1 0 0 (1 − '())*+,-)(1 − .)(1 − '())*+,-). 
'())*+,-1 − '())*+,- 

0 0 0 0 ((1 − '())*+,-)(1 − .))� 
'())*+,-1 − '())*+,- 

 

To adjust the transformation from the heritability on the observed scale ℎ/0� to the liability scale ℎ/�� for a 

proportion . =  123456 789:;8451344 789:;845  of falsely classified controls, we closely followed the derivations of Golan 

et al, which we recommend for further reading (paragraphs 1.2 and 1.3 of their Supplemental 

Materials).
1
 The adjusted expected values of the cross-product <=> used for Haseman Elston-

regression follow from considering the true disease status ?@A*, and assumed disease status ?())*+,- 

with probabilities  

 ℙ(?@A*, = 1 & ?())*+,- = 1) = '())*+,-  ℙ(?@A*, = 1 & ?())*+,- = 0) = (1 − '())*+,-).   ℙ(?@A*, = 0 & ?())*+,- = 0) = (1 − '())*+,-)(1 − .)  

 

The 9 possible pairs, their probabilities ℙ�� and values of cross-product <=> are displayed in the Table. 

The expected values of C[<=>|?@A*,,=, ?@A*,,>] follow as: 

 

CG<=>H?@A*,,= = ?@A*,,> = 1] = ∑ ℙ��|J:;K6,LMJ:;K6,NMOP��|J:;K6,LMJ:;K6,NMO∑ ℙ��|J:;K6,LMJ:;K6,NMO = Q355KR6S(TUQ355KR6S)(TUV)W(Q355KR6SX(TUQ355KR6S)V)W   

CG<=>H?@A*,,= ≠ ?@A*,,>] = Q355KR6S(VUT)(Q355KR6SX(TUQ355KR6S)V)  CG<=>H?@A*,,= = ?@A*,,> = 0] = Q355KR6STUQ355KR6S  

 

Given these CG<=>H?@A*,,= , ?@A*,,>] the derivation of Golan et al can be followed with 'Z0�([ = '@A*, ='())*+,- + (1 − '())*+,-). to derive at the transformation of the observed to the liability scale as: ℎ/�� = ]W(TU])WQ(TUQ)(TUV)W^W ℎ/0__� , where ' = '())*+,-.



 

Table S2. Simulation of falsely classified controls 

Simulation parameters Haseman-Elston regression ℎ/0__�  ℎ/�� (assuming F=0) ℎ/�� (corrected for F) 

K ℎ�� P F   Mean SE   Mean SE   Mean SE 

Parameters of Major Depressive Disorder 

0.2 0.4 0.5 0 0.3048 0.0131 0.3983 0.0171 0.3983 0.0171 

0.2 0.4 0.5 0.1 0.2467 0.0112 0.3224 0.0146 0.3980 0.0180 

0.2 0.4 0.5 0.2   0.1834 0.0095   0.2396 0.0124   0.3744 0.0194 

0.2 0.4 0.25 0 0.2288 0.0062 0.3985 0.0107 0.3985 0.0107 

0.2 0.4 0.25 0.1 0.1795 0.0088 0.3127 0.0153 0.3861 0.0189 

0.2 0.4 0.25 0.2 0.1545 0.0055 0.2691 0.0096 0.4204 0.0150 

Parameters of Schizophrenia 

0.01 0.8 0.5 0 1.4699 0.0130 0.8113 0.0072 0.8113 0.0072 

0.01 0.8 0.5 0.005 1.4358 0.0116 0.7924 0.0064 0.8004 0.0065 

0.01 0.8 0.5 0.01   1.4096 0.0157   0.7780 0.0087   0.7938 0.0089 

0.01 0.8 0.25 0 1.0927 0.0055 0.8041 0.0040 0.8041 0.0040 

0.01 0.8 0.25 0.005 1.0829 0.0078 0.7969 0.0057 0.8049 0.0058 

0.01 0.8 0.25 0.01   1.0737 0.0049   0.7901 0.0036   0.8061 0.0037 

Additional parameter settings to further validate the derived equation 

0.2 0.8 0.5 0 0.6282 0.0182 0.8207 0.0238 0.8207 0.0238 

0.2 0.8 0.5 0.1 0.4964 0.0117 0.6485 0.0153 0.8006 0.0189 

0.2 0.8 0.5 0.2   0.4062 0.0076   0.5307 0.0100   0.8293 0.0156 

0.2 0.8 0.25 0 0.4608 0.0077 0.8028 0.0135 0.8028 0.0135 

0.2 0.8 0.25 0.1 0.3722 0.0061 0.6484 0.0107 0.8005 0.0132 

0.2 0.8 0.25 0.2   0.2956 0.0062   0.5150 0.0109   0.8047 0.0170 

0.01 0.4 0.5 0 0.7287 0.0108 0.4022 0.0059 0.4022 0.0059 

0.01 0.4 0.5 0.005 0.6993 0.0148 0.3859 0.0082 0.3898 0.0082 

0.01 0.4 0.5 0.01   0.7022 0.0132   0.3876 0.0073   0.3954 0.0074 

0.01 0.4 0.25 0 0.5395 0.0047 0.3970 0.0035 0.3970 0.0035 

0.01 0.4 0.25 0.005 0.5393 0.0076 0.3969 0.0056 0.4009 0.0057 

0.01 0.4 0.25 0.01   0.5375 0.0064   0.3956 0.0047   0.4036 0.0048 

 

To validate the Equation 3, ℎ/�� = ]W(TU])WQ(TUQ)(TUV)W^W ℎ/0__� , we performed a simulation study in line with Golan 

et al (Supplemental Materials paragraph 5.3).
1
 

1. MAFs of 10,000 SNPs in full linkage equilibrium were randomly sampled from `[0.05,0.5], and 

the effect sizes were randomly sampled from a(0, ℎ�� 10,000⁄ ).  

2. An individual was generated by  

a. Randomly assigning alleles with the probabilities given by the MAFs 

b. Standardizing the allele counts by (cddede fghij − 2 ∗ lm.)/o2lm.(1 − lm.). 

c. Assessing the genetic liability � as the product of the standardized allele counts with 

the effects 

d. Assessing the phenotypic liability d as � + � with � randomly drawn from a(0, 1 − ℎ��) 



e. Defining disease status ? = 1 for those with d > p with p the liability threshold 

corresponding to a proportion of 	 cases 

3. Step 2 was repeated until we obtained 2,000 cases, an additional . ∗ 2,000 cases which we 

labeled as controls, and  (1 − .) ∗ 2,000 true controls. The cases and controls were saved in a 

single ped-file.  

4. Plink was used to transform the ped-file to a bim-file,
2
 and GCTA

3
 to estimate the genetic 

relationship matrix and to perform cross-product Haseman-Elston regression with the “--

HEreg” option yielding ℎ/0__� . 

5. Steps 1-4 were repeated 10 times. The mean of these 10 point-estimates of the SNP-

heritability are displays, as well as their standard error (SE) estimated as their standard 

deviation divided by √10. 

6. The mean ℎ/0� was, first, transformed to the liability scale assuming . = 0 (i.e. with Equation 2, 

ℎ/�� = ]W(TU])WQ(TUQ)^W ℎ/0__� ), and second, with Equation 3, ℎ/�� = ]W(TU])WQ(TUQ)(TUV)W^W ℎ/0__� . Simulation illustrates 

that Equation 3 appropriately accounts for unscreened controls, because the actual simulated ℎ�� fall within the approximate 95% confidence interval of the mean ℎ/�� from simulation (mean ± 

1.96*SE).  

 

 

 

 

 

 



 Table S3. Analytical derivation of genetic liabilities in trios versus simulation 

Screened controls Case Pseudo control Case | sib aff Ps contr | sib aff 

Method 	 ℎ�� r� s�(�) �(�)   s�(�) �(�)   s�(�) �(�)   s�(�) �(�)   s�(�) �(�) 

Sim 0.001 0.8 0 0.7932 -0.0027 0.2052 2.6945 0.8059 -0.0014 0.2134 2.9642 0.6400 0.9853 

Ana 0.001 0.8 0 0.7933 -0.0027   0.2034 2.6937   0.8000 0.0000   0.2133 2.9529   0.6347 0.9788 

Sim 0.001 0.8 0.5 0.9450 -0.0058 0.2259 2.8185 0.9360 0.4686 0.2415 3.1014 0.7186 1.4582 

Ana 0.001 0.8 0.5 0.9451 -0.0058   0.2250 2.8182   0.9396 0.4697   0.2381 3.0970   0.7162 1.4595 

Sim 0.001 0.4 0 0.3982 -0.0013 0.2502 1.3461 0.3991 0.0003 0.2417 1.6929 0.3489 0.5700 

Ana 0.001 0.4 0 0.3983 -0.0013   0.2508 1.3468   0.4000 0.0000   0.2384 1.7045   0.3622 0.5674 

Sim 0.001 0.4 0.5 0.4377 -0.0017 0.2688 1.4265 0.4392 0.1287 0.2519 1.8069 0.3818 0.7377 

Ana 0.001 0.4 0.5 0.4377 -0.0017   0.2668 1.4286   0.4386 0.1299   0.2506 1.8200   0.3896 0.7484 

Sim 0.01 0.8 0 0.7596 -0.0216 0.2218 2.1327 0.7996 -0.0004 0.2342 2.3623 0.6462 0.7870 

Ana 0.01 0.8 0 0.7595 -0.0215   0.2220 2.1322   0.8000 0.0000   0.2344 2.3578   0.6432 0.7813 

Sim 0.01 0.8 0.5 0.8914 -0.0350 0.2488 2.2414 0.9403 0.3723 0.2674 2.4906 0.7281 1.1794 

Ana 0.01 0.8 0.5 0.8913 -0.0350   0.2492 2.2423   0.9403 0.3737   0.2642 2.4889   0.7282 1.1733 

Sim 0.01 0.4 0 0.3899 -0.0109 0.2552 1.0664 0.4015 -0.0012 0.2451 1.3546 0.3632 0.4459 

Ana 0.01 0.4 0 0.3899 -0.0108   0.2555 1.0661   0.4000 0.0000   0.2437 1.3561   0.3637 0.4513 

Sim 0.01 0.4 0.5 0.4270 -0.0128 0.2720 1.1315 0.4375 0.1025 0.2571 1.4517 0.3905 0.5990 

Ana 0.01 0.4 0.5 0.4271 -0.0129   0.2723 1.1323   0.4386 0.1029   0.2568 1.4509   0.3916 0.5965 

Sim 0.1 0.8 0 0.6157 -0.1558 0.2682 1.4039 0.8004 -0.0003 0.2844 1.5857 0.6633 0.5286 

Ana 0.1 0.8 0 0.6157 -0.1560   0.2682 1.4040   0.8000 0.0000   0.2818 1.5844   0.6615 0.5261 

Sim 0.1 0.8 0.5 0.7104 -0.1982 0.3073 1.4969 0.9420 0.2497 0.3265 1.7023 0.7538 0.8060 

Ana 0.1 0.8 0.5 0.7102 -0.1984   0.3071 1.4968   0.9419 0.2495   0.3208 1.6993   0.7530 0.8035 

Sim 0.1 0.4 0 0.3539 -0.0780 0.2670 0.7020 0.3998 0.0000 0.2567 0.9043 0.3668 0.3016 

Ana 0.1 0.4 0 0.3539 -0.0780   0.2671 0.7020   0.4000 0.0000   0.2562 0.9040   0.3671 0.3009 

Sim 0.1 0.4 0.5 0.3851 -0.0873 0.2859 0.7480 0.4392 0.0677 0.2724 0.9727 0.3971 0.4003 

Ana 0.1 0.4 0.5 0.3851 -0.0873   0.2858 0.7483   0.4387 0.0680   0.2713 0.9721   0.3961 0.3997 

 



Legend to Table S3. 

We validated the analytical estimations (see Supplemental Methods) of the mean genetic liabilities �(�) with a simulation study. The heritability ℎ��, phenotypic 

correlation between parents r�, the population disease frequency 	, and corresponding threshold p were defined as described in the main text. Hereby, the 

variance-covariance matrix of the genetic liabilities of the parents was defined as 

 

 ∑t�+, �uv = w ℎ�� r�ℎ��ℎ��r�ℎ��ℎ�� ℎ�� x 

 

with yZ = ℎ��y� = ℎ��. Subsequently, the genetic liabilities of the mothers and fathers were randomly drawn from this bivariate normal distribution. The genetic 

liabilities of the first and second sibling were independently defined as �) = T� �+ + T� �u + �A,)=-*(�, where �A,)=-*(� represent Mendelian variation and was 

randomly drawn from the normal distribution with mean 0 and variation 
T� yZ.

4
 The phenotypes d of the siblings were than independently defined as d) = �) + �), 

with �) randomly drawn from a(0,1 − ℎ��). To conclude, the genetic liability of the complement f1 of the first sibling z1 was defined as �_T = �+ + �u − �)T. In 

this manner, d)T, �)T, d)�, �)�, �+ , �u and �_T were defined for 10{ families. We note that the value of s�(�)) thus simulated was in line with previous theoretical 

derivations yZ + T� rZyZ.
4,5

 The respective variances, covariances and means were estimated from this simulation study and were in line with the theoretically 

derived values (see Table S3). Simulations were performed in R.
6
 



Table S4. Heuristic prediction of assessed heritability in trios versus simulation 

     
ℎ/�� screened control 

 
ℎ/�� pseudocontrol  

Simulation parameters 
 

Simulation   

 
Simulation   	 ℎ�� sib aff r�   Mean SE Pred. ℎ/��   Mean SE Pred. ℎ/�� 

0.3 0.8 Y 0 
 

0.9885 0.0225 0.9864 
 

0.2182 0.0196 0.2331 

0.3 0.8 N 0.5 
 

0.9741 0.0155 0.9833 
 

0.3303 0.0139 0.3221 

0.3 0.8 Y 0.5   1.2126 0.0113 1.2214   0.1452 0.0129 0.1736 

0.1 0.8 Y 0 
 

0.9888 0.0122 0.9957 
 

0.3613 0.0158 0.3682 

0.1 0.8 N 0.5 
 

0.9418 0.0152 0.9447 
 

0.5001 0.0129 0.5114 

0.1 0.8 Y 0.5   1.2115 0.0105 1.1839   0.2822 0.0107 0.2638 

0.01 0.8 Y 0 
 

0.9899 0.0069 0.9764 
 

0.4249 0.0073 0.4287 

0.01 0.8 N 0.5 
 

0.8810 0.0096 0.8945 
 

0.6054 0.0067 0.6022 

0.01 0.8 Y 0.5   1.1072 0.0045 1.0987   0.3135 0.0057 0.2985 

0.3 0.4 Y 0 
 

0.6153 0.0127 0.5913 
 

0.1397 0.0213 0.1491 

0.3 0.4 N 0.5 
 

0.4643 0.0162 0.4640 
 

0.2154 0.0180 0.1860 

0.3 0.4 Y 0.5   0.6995 0.0210 0.6957   0.1438 0.0132 0.1362 

0.1 0.4 Y 0 
 

0.6435 0.0140 0.6340 
 

0.2257 0.0118 0.2391 

0.1 0.4 N 0.5 
 

0.4539 0.0086 0.4591 
 

0.3002 0.0104 0.3043 

0.1 0.4 Y 0.5   0.7240 0.0117 0.7379   0.1998 0.0083 0.2154 

0.01 0.4 Y 0 
 

0.6531 0.0056 0.6445 
 

0.2952 0.0059 0.2824 

0.01 0.4 N 0.5 
 

0.4507 0.0075 0.4524 
 

0.3573 0.0043 0.3655 

0.01 0.4 Y 0.5   0.7451 0.0057 0.7391   0.2604 0.0093 0.2518 

 

To formally get from the �(�) (Table S3) of cases and controls to the SNP-heritability ℎ/�� that would be 

assessed is non-trivial, because no normal distribution thresholds exist to define the pseudocontrols or 

the probands with an additional affected sibling (which form a non-random subset of all cases not 

defined by a specific threshold). ℎ/�� was therefore heuristically derived and validated with a simulation 

study of individual level SNP-data. In short, for any baseline disease frequency 	, a unique set of p, |, 

and } can be found such that 	 equals '(d > p|d~a(0,1)), | the height of the standard normal 

distribution at p, and } = |/	 the mean d of cases, which results in a mean � in cases of }ℎ��. We 

numerically inverted this equation in R to find an unique equivalent-	 matching the difference between �(�_(),) − �(�(�),*-0)_0[@A0�). The equivalent-	, corresponding equivalent-| and Equation 3 yields the 

heritability that would be assessed with Haseman-Elston regression (Pred. ℎ/��), and was validated with 

simulation study: 

1. Following Golan et al,
1
 the MAFs of 10,000 SNPs in full linkage disequilibrium were randomly 

sampled from `[0.05,0.5], and the effect sizes were randomly sampled from a(0, ℎ�� 10,000⁄ ).  

2. An individual was generated by  

a. Randomly assigning alleles with the probabilities given by the MAFs 

b. Standardizing the allele counts by (cddede fghij − 2 ∗ lm.)/o2lm.(1 − lm.). 



c. Assessing the genetic liability � as the product of the standardized allele counts with 

the effects 

d. Assessing the phenotypic liability d as � + � with � randomly drawn from a(0, 1 − ℎ��) 

e. Defining disease status ? = 1 for those with d > p with p the liability threshold 

corresponding to a proportion of 	 cases 

3. Assortative mating r� was simulated following  

a. The genotypes and phenotypes of 600 men d+,[ and 600 women d�0+,[ were 

simulated 

b. A vector y was simulated as y = r�d+,[ + a(0,1 − r��) so that fg�(d+,[, y) =
fg�(d+,[, y)/(s�R69s�) = fg�(d+,[, r�d+,[)/(1s�) = r�/�s�4�R69� + 1 − r�� = r�  

c. Subsequently, the d�0+,[ were ordered in line with y thereby ensuring fg�(d+,[, d�0+,[) = r� 
4. For the 600 pair of spouses, families were generated as follows 

a. Kid-1 got one random allele from the father and one from the mother for all of the 

10,000 loci. Subsequently, d and disease status ? were generates as described 

above.  

b. The genetic complement of Kid-1 was formed by the non-transmitted alleles of the 

parents 

c. Kid-2 was generated as Kid-1 

5. Affected proband (Kid-1) were selected as cases. Depending on the type of families 

simulated, we additionally conditioned on ?]=-U� = 1. 

6. Unaffected Kid-1’s were selected as screened controls. 

7. Step 2-6 were repeated until 2,000 cases and 2,000 screened controls were collected 

8. Cross-product Haseman-Elston regression yielded the ℎ/0__�  for case vs screened controls and 

case vs pseudocontrols, which were than transformed to the liability scale with ℎ/�� =
ℎ/0__� ]W(TU])WQ(TUQ)^W 

9. Steps 1-8 were repeated 10 times for the different setting of 	, ℎ��, and r�. The mean of these 

10 point-estimates of the SNP-heritability are displays, as well as their standard error (SE) 

estimated as their standard deviation divided by √10. 

10. The heuristically predicted ℎ/�� are within or very close to the ballpark 95% confidence interval 

of the mean ℎ/�� from simulation (mean ± 1.96*SE), which justifies the use of this heuristic 

approach for Main Figure 1. 

 

 

 



Table S5. Analytical derivation of allele frequencies in trios versus simulation 

Genotype relative risk 
Random families  

with at least one affected sibling Second sibling affected 
Second sibling aff. 
Parents unaffected 

Assortative  
mating parents 

Method Bb BB 
 

Case Scr control Ps control 
 

Case Ps control 
 

Case Ps control 
 

Case Scr control Ps control 

K=0.01; p=0.2 

Sim 1.00 2.25 
 

0.2381 0.1996 0.1995 
 

0.2723 0.2163 
 

0.2718 0.2155 
 

0.2596 0.1995 0.2052 

Ana 1.00 2.25 
 

0.2381 0.1996 0.2000 
 

0.2695 0.2205 
 

0.2688 0.2199 
 

0.2593 0.1994 0.2056 

Sim 1.50 2.25 
 

0.2727 0.1993 0.2000 
 

0.3159 0.2316 
 

0.3141 0.2303 
 

0.2865 0.1980 0.2110 

Ana 1.50 2.25 
 

0.2727 0.1993 0.2000 
 

0.3171 0.2358 
 

0.3161 0.2349 
 

0.2862 0.1991 0.2109 

Sim 2.25 2.25 
 

0.3106 0.1989 0.2002 
 

0.3671 0.2512 
 

0.3660 0.2502 
 

0.3167 0.2012 0.2165 

Ana 2.25 2.25 
 

0.3103 0.1989 0.2000 
 

0.3663 0.2475 
 

0.3652 0.2466 
 

0.3169 0.1988 0.2169 

K=0.01; p=0.8 

Sim 1.00 2.25 
 

0.8890 0.7991 0.8001 
 

0.9174 0.8424 
 

0.9167 0.8413 
 

0.8909 0.7982 0.8128 

Ana 1.00 2.25 
 

0.8889 0.7991 0.8000 
 

0.9179 0.8446 
 

0.9174 0.8437 
 

0.8907 0.7991 0.8131 

Sim 1.50 2.25 
 

0.8571 0.7995 0.8004 
 

0.8767 0.8267 
 

0.8763 0.8261 
 

0.8634 0.7992 0.8085 

Ana 1.50 2.25 
 

0.8571 0.7994 0.8000 
 

0.8788 0.8283 
 

0.8784 0.8278 
 

0.8637 0.7994 0.8085 

Sim 2.25 2.25 
 

0.8181 0.7998 0.7998 
 

0.8233 0.8107 
 

0.8233 0.8104 
 

0.8294 0.8001 0.8029 

Ana 2.25 2.25 
 

0.8182 0.7998 0.8000 
 

0.8241 0.8086 
 

0.8239 0.8085 
 

0.8295 0.7997 0.8028 

K=0.3; p=0.2 

Sim 1.00 2.25 
 

0.2381 0.1836 0.2000 
 

0.2696 0.2206 
 

0.2415 0.1956 
 

0.2593 0.1730 0.2055 

Ana 1.00 2.25 
 

0.2381 0.1837 0.2000 
 

0.2695 0.2205 
 

0.2403 0.1943 
 

0.2593 0.1736 0.2056 

Sim 1.50 2.25 
 

0.2727 0.1688 0.2000 
 

0.3171 0.2358 
 

0.2733 0.1980 
 

0.2861 0.1644 0.2109 

Ana 1.50 2.25 
 

0.2727 0.1688 0.2000 
 

0.3171 0.2358 
 

0.2732 0.1980 
 

0.2862 0.1628 0.2109 

Sim 2.25 2.25 
 

0.3104 0.1527 0.2000 
 

0.3663 0.2475 
 

0.3152 0.2068 
 

0.3169 0.1539 0.2169 

Ana 2.25 2.25 
 

0.3103 0.1527 0.2000 
 

0.3663 0.2475 
 

0.3148 0.2060 
 

0.3169 0.1514 0.2169 

K=0.3; p=0.8 

Sim 1.00 2.25 
 

0.8889 0.7619 0.8000 
 

0.9178 0.8445 
 

0.8953 0.8062 
 

0.8908 0.7609 0.8131 

Ana 1.00 2.25 
 

0.8889 0.7619 0.8000 
 

0.9179 0.8446 
 

0.8958 0.8066 
 

0.8907 0.7602 0.8131 

Sim 1.50 2.25 
 

0.8571 0.7755 0.8000 
 

0.8787 0.8283 
 

0.8622 0.8055 
 

0.8637 0.7719 0.8085 

Ana 1.50 2.25 
 

0.8571 0.7755 0.8000 
 

0.8788 0.8283 
 

0.8621 0.8056 
 

0.8637 0.7726 0.8085 

Sim 2.25 2.25 
 

0.8183 0.7922 0.8000 
 

0.8242 0.8086 
 

0.8184 0.8021 
 

0.8294 0.7893 0.8028 

Ana 2.25 2.25 
 

0.8182 0.7922 0.8000 
 

0.8241 0.8086 
 

0.8184 0.8026 
 

0.8295 0.7876 0.8028 

 



Legend to Table S5. 

We checked the analytical estimations (described in Supplemental Methods) of allele frequencies with a simulation study. Genotypes were simulated by first 

randomly assigning each parent two alleles with frequency 
 = '(�) of the risk allele �. Then, genotypes of the first and second siblings were defined by 

assigning them a single random allele from both of their parents. The genotypes of the pseudocontrols were defined as the two alleles of the parents not 

transmitted to the first sibling. Disease status was randomly assigned to parents, siblings, with a probability of disease per genotype of '(Disease|Genotype) 

(see Witte et al for details)
7
. Families with the first sibling affected were selected as proband families with the first sibling serving as the proband case. 

Assortative mating was simulated as the non-random mating fraction � = 0.3 (see Supplemental Methods section 2.4 for details), which correspond to a 

spouse-correlation at the locus of 0.3 (note that this unrealistic large value is merely to validate theory, because assortative mating will have no impact on 

allele frequency as for a phenotypic spouse-correlation of 0.3 a locus explaining 1% of variance would have a spouse-correlation of only 0.3 ∗ 0.01 = 0.003). 

We simulated 10{ families and compared allele frequencies in different types of cases, controls, and pseudocontrols to the algebraic estimates. Results 

displayed in this Table validate the analytical estimations described in the Supplemental Methods that were used to make the relevant Figures and Tables. 

 



Supplemental Methods 

 

1. Derivation of genetic liabilities in trio design 

The mean genetic liabilities (breeding values) �(�) and their variances were subsequently derived for 

random families (Section 1.1), families with one affected sibling (Section 1.2), and families with two 

affected siblings (Section 1.3). Therefore, variance-covariance matrices were derived for these 

family’s phenotypic liabilities and genetic liabilities. The mean genetic liability of screened controls in 

the offspring generation was derived in Section 1.4. The analytical estimates of the mean genetic 

liabilities and their variances were validated with a simulation study (Table S3). In Table S4, the 

derived mean genetic liabilities are used to heuristically predict the SNP-based heritability that would 

be assessed with Haseman Elston-regression, which is again validated with a simulation study.  

 

Consider a complex disease with a population frequency 	 and heritability ℎ�� in the parental 

population. Define phenotype d to represent the underlying liability for disease with variance y� = 1 (the 

choice for y� is arbitrary, but conveniently set to 1). The variance of genetic liabilities � equals yZ = y�ℎ�� = ℎ��, while the environmental variance equals y� = y� − yZ = 1 − ℎ��. Assuming that the 

parents have a phenotypic correlation of r� ≥ 0, the genetic correlation follows as rZ = ℎ��r� (page 175 

of Falconer and Mackay)
8
 and the genetic covariance as rZyZ. 

 

1.1 Variances and covariances of genetic liabilities in random families 

Consider families with a mother (�), father (�), first sibling (z1), second sibling (z2) and the 

pseudocontrol of the first sibling (interchangeably referred to as the complement of the first sibling, f1). 

Their genetic liability values are denoted with �+ , �u, �)T, �)�, respectively. The variance of genetic 

liabilities in the siblings equals s�(�)T) = s�(�)�) = s�(�)) = s� �T� �+ + T� �u� + yA,)=-*(�, where 

yA,)=-*(� represents Mendelian variation. Bulmer (page 175)
4
 proved that yA,)=-*(� = T� yZ, which gives 

s�(�)) = s� �T� �+� + s� �T� �u� + 2s �T� �+ , T� �u� + T� yZ = yZ + T� rZyZ. In addition, Bulmer showed that 

the variation of non-genetic effects (E) is not effected by assortative mating, which gives the 

phenotypic variation of the siblings as s�(d)T) = s�(d)�) = s�(d)) = s�(�) + �)) = s�(�)) + s�(�)) =s�(�)) + y�. Keeping in mind that s(�, �) = 0 per definition, gives s(d), �)) = s�(�)), as well as s(d)T, �)�) = s(d)�, �)T) = s(�)T, �)�) = s �T� �u + T� �+ , T� �u + T� �+� = s �T� �u, T� �u� + s �T� �u , T� �+� +
s �T� �+ , T� mu� + s �T� �+, T� �+� = T� yZ + T� rZyZ. The variance of the genetic liabilities in the parents 

equals s�(�+) = s�(�u) = yZ, and the covariance between fathers and mother equals st�+ , �uv =rZyZ. The covariance between the siblings and their parents subsequently follows as s(�+ , d)) =st�u, d)v = s(�+ , �)) = st�u , �)v = s ��u , T� �+ + T� �u� = s ��u , T� �+� + s ��u , T� �u� = T� yZ + T� rZyZ. For 

the complement of the first sibling, the following covariances are found:  

 



• s(�_T, d)T) = s(�_T, �)T) = st�++�u − �)T, �)Tv = s(�+ , �)T) + st�u, �)Tv − s�(�)T) = yZ +rZyZ − yZ − T� rZyZ = T� rZyZ, and   

• s(�_T, d)�) = s(�_T, �)�) = st�++�u − �)T, �)�v = (�+ , �)�) + st�u, �)�v − s(�)T, �)�) = yZ +rZyZ − T� yZ − T� rZyZ = T� yZ + T� rZyZ, and  

• s(�_T, �+) = st�_T, �uv =  st�++�u − �)T, �uv = st�+ , �uv + s�t�uv − st�)T, �uv = rZyZ +yZ − T� yZ − T� rZyZ = T� yZ + T� rZ , and finally 

• s�(�_T) = s�t�++�u − �)Tv = s� ��+ + �u − T� �+ − T� �u − �A,)=-*(�� = s� �T� �+ , T� �u� +
(−1)�s�(�A,)=-*(�) = yZ + T� rZyZ 

 

By this, all element were derived of ∑(d)T, �)T, d)�, �)�, �+ , �u, �_T), the 7x7 variance-covariance matrix 

of random families. The means of d)T, �)T, d)�, �)�, �+ , �u and �_T all equal zero, noting that assortative 

mating does not change the mean genetic liability, because � �T� �+ + T� �u + �A,)=-*(�� = � �T� �+� +
� �T� �u� + �(�A,)=-*(�), also when s �T� �+ , T� �u� > 0. 

 

1.2 Variances and covariances of genetic liabilities in families with at least one affected sibling 

Assortative mating increases the variances of the phenotype d from the parental to the offspring 

generation with 
T� rZyZ. The increase in y� results in a higher disease frequency in the offspring 

generation, because the liability threshold p remains the same. In order to estimate the reduction in 

variance in the affected siblings (assume z1 to be affected), the offspring population was first 

described in terms of the standard normal distribution, and than transformed back to the parental 

scale. The new disease frequency 	0uu)�A=[� follows from '(� > p | �~a(0, os�(d)))), and gives the 

mean phenotypic value of the affected siblings z1 on the standardized liability scale as }0uu)�A=[� =|0uu)�A=[�/	0uu)�A=[�, where |0uu)�A=[� is the height of the standard normal distribution a(0,1) at 

threshold p0uu)�A=[� with 	0uu)�A=[� = 't� > p0uu)�A=[� H �~a(0,1)). Bulmer showed (page 153)
4
 that the 

reduction of variation in affected siblings on the standardized liability scale equals �0uu)�A=[� =}0uu)�A=[�(}0uu)�A=[� − p0uu)�A=[�), and the variance reduction on the parental liability scale thus equals � = �0uu)�A=[� s�(d))⁄ . Tallis showed that given normality of � and d in the family members, the new 

variances and covariances are given by s(�, �|z1 c��efje�) = s(�, �) − �s(�, d)T)s(�, d)T), where � 

and � represent all pairwise combinations of d)T, �)T, d)�, �)�, �+ , �u and �_T.
9
 By this, all element are 

defined of ∑td)T, �)T, d)�, �)�, �+ , �u , �_T H z1 c��efje�), the 7x7 variance-covariance matrix of families 

with one affected sibling. Given these variances and covariances, the means were derived as follows.  

 

• �(d)T|z1 c��) = }0uu)�A=[�os�(d))  

• �(�)T|z1 c��) = {s�(�)T)/s�(d)T)} ∗ �(d)T|z1 c��)   
• �(d)�|z1 c��) = {s(d)T, d)�)/s�(d)T)} ∗ �(d)T|z1 c��)   
• �(�)�|z1 c��) = {s(�)T, �)�)/s�(�)T)} ∗ �(�)T|z1 c��)   



• �(�+|z1 c��) = �t�uHz1 c��v = ¡(T� yZ + T� rZyZ) s�(�))¢ £ ∗ �(�)T|z1 c��), noting that 
T� yZ +

T� rZyZ is the part of s�(�)) following from the parents contribution 
T� �u + T� �+.  

• �(�_T|z1 c��) = �(�+|z1 c��) + �t�uHz1 c��v − �(�)T|z1 c��) 

 

1.3 Variances and covariances of genetic liabilities in families with two affected siblings 

To derive variances and covariances within families with two affected siblings, we take the estimates 

of families with one affected sibling as starting point. However, in order to apply Tallis’ method to 

account of reduction in variance when selecting for an affected sibling, � and d need to be normally 

distributed in all family members. The distribution of d in the first sibling z1 is evidentially non-normal, 

because he is affected. Nevertheless, the distributions of � and d in the other family members are 

approximately normally distributed, which was illustrated by simulation (not shown) and can be 

intuitively understood as follows. The first sibling is affected when d)T exceeds the threshold p. 

However, because d)T is the sum of �)T and �)T and because �)T and �)T are independent, the 

violation of normality in �)T|)T (uu is less than in d)T|)T (uu. In addition, the covariances between �)T|)T (uu 

and � and d in the other family members are considerably smaller than 1. Hence, the distribution of � 

and d in all family members but sibling z1 are approximately normally distributed. Furthermore, note 

that the first and second sibling have equal genetic characteristics when they are both selected to be 

affected (except for their covariance with the complement, but this characteristic is not needed for this 

study). The variances and covariances are thus given by  

 s(�, � | z1 c��efje� & z2 c��efje�) =s(�, � | z1 c��efje�) − ��s(�, d)�| z1 c��efje�)s(�, d)�| z1 c��efje�),  

 

where � and � take all pairwise combinations of d)�, �)�, �+ , �u and �_T. The variance reduction �� is 

derived analoguously as �. The disease frequency in the second siblings 	)� | )T (uu,_@,- follows from '(� > p | �~a(�(d)�|z1 c��), os�(d)�|z1 c��efje�))), and gives the mean phenotypic value of the 

affected siblings z2 on the standardized liability scale as })� | )T (uu,_@,- = |)� | )T (uu,_@,-/	)� | )T (uu,_@,-, 

where |)� | )T (uu,_@,- is the height of the standard normal distribution a(0,1) at threshold p)� | )T (uu,_@,- 

with 	)� | )T (uu,_@,- = 't� > p)� | )T (uu,_@,-  H �~a(0,1)). The reduction of variation in affected second 

siblings on the standardized liability scale equals �)� | )T (uu,_@,- = })� | )T (uu,_@,-(})� | )T (uu,_@,- −p)� | )T (uu,_@,-), and the variance reduction on the parental liability scale thus equals �� = �)� | )T (uu,_@,- s�(d)�|z1 c��efje�)⁄ . This defines ∑td)�, �)�, �+ , �u , �_T H z1 & z2 c��efje�), the 5x5 

variance-covariance matrix of families with two affected siblings (leaving out the first sibling z1). Given 

this variance-covariance matrix, the means were derived as: 

 

• �(d)�| z1 & z2 c��) = �(d)�| z1 c��) + })� | )T (uu,_@,-os�(d)�| z1 c��efje�)  



• �(�)�| z1 & z2 c��) =�(�)�| z1 c��) + {})� | )T (uu,_@,-os�(d)�| z1 c��efje�)} ∗s�(�)�| z1 c��efje�) s�(d)�| z1 c��efje�)⁄   

• �(�+|z1 & z2 c��) = �t�uHz1 & z2 c��v =�t�uHz1 c��v + ¤ ∗ {T� s�(�+|z1 c��) + T� s(�+ , �u|z1 c��)}/{s�(�)�|z1 c��)}, with ¤ =
�(�)�| z1 & z2 c��) − �(�)�| z1c��), while noting that 

T� s�(�+|z1 c��) + T� st�+ , �uHz1 c��v +
T� yA,)=-*(� = s�(�)�|z1 c��). 

• �(�_T| z1 & z2 c��) = �(�+| z1 & z2 c��) + �t�uH z1 & z2 c��v − �(�)T| z1 & z2 c��), where �(�)T| z1 & z2 c��) = �(�)�| z1 & z2 c��). 

 

1.4 Genetic liabilities of screened controls 

Screened controls were selected from the offspring generation, i.e. after one generation of assortative 

mating. In order to apply the useful properties of the standard normal distribution, the liability scale 

was inverted to regard controls as ‘cases’, and later transformed back to the original scale of d in the 

parental generation. The population frequency of screened controls in the offspring generation is 	)_A,,[,- _0[@A0�) = 1 − 	0uu)�A=[�, which gives })_A,,[,- _0[@A0�) and �)_A,,[,- _0[@A0�) as described 

previously in Section 1.2. The variation of genetic liabilities follows as s�(�)_A,,[,- _0[@A0�)) = s�(�)) −{�)_A,,[,- _0[@A0�) s�(d))⁄ } ∗ s(d), �)) ∗ s(d), �)), and the mean as �(�)_A,,[,- _0[@A0�)) = −1 ∗ {s�(�)T)/s�(d)T)} ∗ })_A,,[,- _0[@A0�)os�(d)), where the term is multiplied by −1 to transform the mean back to the 

original parental liability scale of d.  



2. Derivation of a single SNP’s risk allele frequency in trio design 

First, the risk allele frequencies were analytically derived for screened controls, cases, and cases with 

unaffected parents (‘cases’ and ‘probands’ are used interchangeably) (Section 2.1). Second, risk allele 

frequencies were derived for cases with affected siblings by applying the first set of derived 

frequencies and by considering IBD-sharing between cases and their siblings (Section 2.2). Third, all 

acquired estimates were applied to estimate risk allele frequencies in pseudocontrols (Section 2.3). 

Next we consider the impact of assortative mating (Section 2.4). To conclude, analytical derivations 

were validated with a simulation study (Table S5).  

 

2.1 Risk allele frequencies in screened controls, cases, and cases with unaffected parents 

This Section closely follows the work of Witte et al.
7
 Assume the complex disease of interest has a 

population frequency '(D) = 	, and the locus of interest has risk allele B with frequency '(B) = 
, 

and non-risk allele b with frequency '(b) = 1 − 
 = §. Given Hardy-Weinberg Equilibrium (HWE), the 

genotype frequencies are '(bb) = §�, '(�¨) = 2
§, and '(BB) = 
�. Under a multiplicative risk model 

with relative risk of the heterozygote ©, the risk of disease given genotype '(D|G) can be expressed as '(D|bb) = �ªª, '(«|�¨) = �ªª©, and '(D|BB) = �ªª©�, with �ªª the disease risk in subjects with 

genotype ¨¨. The probabilities of genotypes in cases is given by '(G|D) = '(D|G)'(G)/'(D), that is '(bb|D) = �ªª§�/	, '(Bb|D) = �ªª©2
§/	, and '(BB|D) = �ªª©�
�/	. Affected individuals, thus, 

have a risk allele frequency of 
_(), = '(BB|D) + T�  '(Bb|D). Analogously, the probabilities of 

genotypes in unaffected individuals (i.e., screened controls, sc) are given by 
(bb|ND) = (1 − �ªª)§�/(1 − 	), '(Bb|ND) = (1 − �ªª©)2
§/(1 − 	), and '(BB|ND) = (1 − �ªª©�)
�/(1 − 	), and they have a 

risk allele frequency of 
)_ = '(BB|ND) + T�  '(Bb|ND), and non-risk allele frequency §)_ = 1 − 
)_. The 

offspring of unaffected parents will have genotype frequencies '(G | parents unaffected) of '(bb|pu) =§)_� , '(Bb|pu) = 2
)_§)_, and '(BB|pu) = 
)_� , noting that HWE is re-established after one generation. 

Assuming no correlation between genotype and family environment, the '(D|G) in offspring of 

screened controls are equal to '(D|G) in the baseline population. The probabilities of genotypes in 

cases (proband) with unaffected parents, therefore, equal '(bb|D, pu) = �ªª§)_� /'(D|pu), '(Bb|D, pu) = �ªª©2
)_§)_/'(D|pu), and '(BB|D, pu) = �ªª©�
)_� /'(D|pu), with '(D|pu) = �ªª§)_� +�ªª©2
)_§)_ + �ªª©�
)_� . Note that all can be expressed in terms of 
, § = 1 − 
, 	, and © by realizing 

that 	 =  ∑ '(«|�)'(�) =Z §��ªª + 2
§�ªª© + 
��ªª©�, and thus �ªª = 	/(§� + 2
§© + 
�©�). To take 

account of dominance effect, substitute © with ���ª and ©� with ���� in the above. 

 

2.2 Risk allele frequencies in proband with an affected sibling  

To estimate the risk allele frequency in cases (proband) with affected siblings, the combined 

probabilities of genotypes in cases and their siblings is required: 

 

²(�_(),, �)=ª) = ²(�_ , �)) = ³ '(¨¨, ¨¨) '(¨¨, �¨) '(¨¨, ��)'(�¨, ¨¨) '(�¨, �¨) '(�¨, ��)'(��, ¨¨) '(��, �¨) '(��, ��)´ 

 



The rows of ²(�_ , �)) thus correspond to the three possible genotypes of cases and the columns to 

the three possible genotypes of their siblings. ²(�_ , �)) is the sum of four matrices: ²(�_ , �)| µ�« = 0), ²(�_ , �)| µ�« = 1(¨)), ²(�_ , �)| µ�« = 1(�)), and ²(�_, �)| µ�« = 2), all weighted by 0.25 =²(µ�« = 0) = ²(µ�« = 1)/2 = ²(µ�« = 2). To illustrate, the three row elements of ²(�)| �_ =�¨, µ�« = 1(�)) follow from basic Mendelian reasoning as '(�) = ¨¨| �_ = �¨, µ�« = 1(�)) = 0 ∗§1¶|Z7·�ª (the probability that the IDB-allele is ¨ equals 0; the probability that the non-IBD allele is ¨ 

depends on its frequency in the non-transmitted alleles from the parents given �_ = �¨), '(�) =�¨| �_ = �¨, µ�« = 1(�)) = 1 ∗ §1¶|Z7·�ª, and '(�) = ��| �_ = �¨, µ�« = 1(�)) = 1 ∗ 
1¶|Z7·�ª 

respectively, where 
1¶|Z7 represents the frequency of � in the non-transmitted alleles from parents 

given �_, and §1¶|Z7 = 1 − 
�|Z7 the frequency of ¨. Note that 
1¶|Z7 equals 
�(A,[@) when the parental 

generation is in HWE, however when the parents are unaffected they are not in HWE and derivation of 
1¶|Z7 is slightly more elaborate (described in Appendix A). When IBD=0, the genotypes �) depend on 

the distribution of the non-transmitted genotypes, which is also described in Appendix A. In this 

manner, the four matrices ²(�)| �_ , µ�«) are defined as: 

 

²(�)| �_ , µ�« = 0) = ³ '(ap = ¨¨|�_ = ¨¨) '(ap = �¨|�_ = ¨¨) '(ap = ��|�_ = ¨¨)'(ap = ¨¨|�_ = �¨) '(ap = �¨|�_ = �¨) '(ap = ��|�_ = �¨)'(ap = ¨¨|�_ = ��) '(ap = �¨|�_ = ��) '(ap = ��|�_ = ��)´   

 

²(�)| �_ , µ�« =  1(¨)) = ³2§1¶|Z7·ªª 2
1¶|Z7·ªª 0§1¶|Z7·�ª 
1¶|Z7·�ª 00 0 0´ 

 

²(�)| �_ , µ�« = 1(�)) = ³0 0 00 §1¶|Z7·�ª 
1¶|Z7·�ª0 2§1¶|Z7·�� 2
1¶|Z7·��´ 

 

²(�)| �_ , µ�« = 2) = ¸1 0 00 1 00 0 1¹ 

 

First, the allele frequency in cases with an affected sibling and random parents (in HWE) was derived, 

where 
1¶ = 
 irrespective of �_. Furthermore, define the diagonal matrix with the genotype 

probabilities in cases, and the diagonal matrix with the probabilities on an affected sibling given the 

siblings genotype as follows 

 ²(�_) = diagt'(�|«)v = diag('(¨¨|«), '(�¨|«), '(��|«)), and ²(» = m��efje�|�)) = diagt'(«|�)v = diag('(«|¨¨), '(«|�¨), '(«|��)) 

 

Now estimate the combined genotype probabilities of cases and their sibling 

 ²(G¼, G½·¾¿¿À¼ÁÀÂ|IBD) = ²(G¼) ∗ ²(�)| �_ , µ�«) ∗ ²(» = m��efje�|G½), (Eq 1) and 



²t�_ , �)·Äuu,_@,-v = Å 0.25 ∗ ²tG¼, G)·Äuu,_@,-HIBDvÆ�Ç  

  

Because of the ascertainment on cases the elements of ²(�_ , �)) do not add up to 1. Hence, ²t�_(), , �È·Äuu,_@,-|fcze, » = m��efje�v = ²(�_ , �))/ ∑ ²(�_ , �)). The rows of ²t�_(), , �È·Äuu,_@,-|fcze, » = m��efje�v add up to '(�_ = bb|fcze, » = m��efje�), '(�_ = Bb|fcze, » =m��efje�), and '(�_ = BB|fcze, » = m��efje�) respectively. This defines the risk allele frequency in 

cases with an affected sibling as 
_(), | È·Äuu,_@,- = '(�_ = BB|fcze, » = m��efje�) + T�  '(�_ =Bb|fcze, » = m��efje�). Second, the allele frequency in cases with an affected sibling and unaffected 

parents was derived analoguously but with 
1¶ depending on �_ (see Appendix A in Section 2.5), and 

with ²(�_) = diagt
(�|«, 
c�eijz hic��efje�)v. 
 

2.3 Risk allele frequencies in pseudocontrols 

Pseudo-control (pc) genotypes are the genomic complement genotypes from both parents not 

transmitted to their offspring. Allele frequencies in pseudocontrols depend on the genotypes of the 

cases selected, on the genotypes and disease statuses of the siblings and their IBD sharing with the 

cases. The genotype probabilities in pseudocontrols 'tG�_HIBD, G¼, G½) were estimated as follows and 

the sum of these 4 ∗ 3 ∗ 3 = 36 probabilities for a specific GË¼ weighted by the probabilities of the 

genotypes in cases and controls and their IBD-sharing, gives '(GË¼).  

 

Define the matrices ²tG�_HIBD, �_ , �)) which has rows defined by genotypes of the cases and columns 

defined by the genotypes of the siblings 

 

Ì 'tG�_HIBD, G¼ = ¨¨, G½ = ¨¨) 'tG�_HIBD, G¼ = ¨¨, G½ = �¨) 'tG�_HIBD, G¼ = ¨¨, G½ = ��)'tG�_HIBD, G¼ = �¨, G½ = ¨¨) 'tG�_HIBD, G¼ = �¨, G½ = �¨) 'tG�_HIBD, G¼ = �¨, G½ = ��)'tG�_HIBD, G¼ = ��, G½ = ¨¨) 'tG�_HIBD, G¼ = ��, G½ = �¨) 'tG�_HIBD, G¼ = ��, G½ = ��)Í 

 

Given the parental genotype frequencies '(�� = ¨¨), '(�� = �¨) and '(�� = ��), these 3 t��_v ∗4 (µ�«) = 12 matrices follow from basic Mendelian reasoning and are displayed in Appendix B 

(Section 2.6). With these matrices the values of '(GË¼ = ¨¨), '(GË¼ = �¨), and '(GË¼ = ��) are 

separately estimated by 

 

²(��_|G¼, G½, fcze, » = m��efje�) = Å 0.25 ∗ ²(G¼, G½·¾¿¿À¼ÁÀÂ|IBD) ∘ ²tG�_HIBD, �_ , �))Æ�Ç  

²tGË¼v = Å ²(��_|G¼, G½, fcze, » = m��efje�) 
 

Where ∘ represent the Hadamard product of two matrices (i.e., when m = � ∘ Ï, than c=> = =̈> ∗ f=>). 

The probabilities '(GË¼ = ¨¨), '(GË¼ = �¨), and '(GË¼ = ��) do not add up to 1, because they are 

defined in terms of the full population. Therefore, 'tGË¼ | fcze, » = m��efje�v equal '(GË¼)/



∑ '(GË¼)ÐÑÒ . This yields the risk allele frequency in pseudocontrols from cases with affected siblings as 


�_ | È·Äuu,_@,- =  'tGË¼ = ��v + T� '(GË¼ = �¨).  

 

The following variations yield the estimation for the other sets of pseudocontrols. (i) To estimate 
�_ 

(without conditioning on affected siblings), replace ²(G¼, G½·¾¿¿À¼ÁÀÂ|IBD) by ²(G¼, G½|IBD) by 

substituting the diagonal matrix ²(» = m��efje�|�)) in the above for the identity matrix Ó. (ii) To 

estimate 
�_|Q·*[(uu,_@,-, adjust the parental genotype probabilities accordingly (no longer in HWE) 

and set ²(�_) = diagt
(�|«, 
c�eijz hic��efje�)v. (iii) To estimated 
�_|È·Äuu,_@,- & Q·*[(uu,_@,-, 

combine the substitutions described in (i) and (ii). 

 

2.4 Assortative mating 

The impact of assortative mating on a single locus is expressed as the non-random mating fraction � 

of parents with similar genotypes. The next generation has the following frequencies
8
  

 ²(�_ = ¨¨| czzg�jcj}�e �cj}iÔ 
c�eijz) = (1 − �)§� + �(§� + T� 
§), ²(�_ = �¨| czzg�jcj}�e �cj}iÔ 
c�eijz) = (1 − �)2
§ + �
§, and ²(�_ = ��| czzg�jcj}�e �cj}iÔ 
c�eijz) = (1 − �)
� + �(
� + T� 
§), 

 

when the parental generation is in HWE, and with 
 the parental frequency of � and § of ¨. The 

genotype probabilities of affected siblings are given by ²(G|D, c. �. 
c�eijz) = '(D|G)'(G|c. �.  
c�eijz)/'(D) analoguous to Section 2.1. Substituting these as ²(G¼) in Eq 1 in 

Section 2.2 

 ²(G¼, G½|IBD, c. �. 
c�eijz) = ²(G¼) ∗ ²(�)| �_, µ�«) ∗ Ó, 

 

and following the other steps in Sections 2.1 and 2.2 gives the frequencies of cases and 

pseudocontrol of parents with assortative mating (not selecting of disease-status of parents or 

siblings). Note that assortative mating changes the probabilities of the combined genotypes of parents, 

which is described in Appendix A (Section 2.5). 

 

2.5 Appendix A: allele and genotype frequencies of non-transmitted alleles 

When the parents are unaffected, they are not in HWE, in which case the non-transmitted allele and 

genotype frequencies are dependent on the case’s (proband’s) genotype �_. These non-transmitted 

allele and genotype frequencies are needed to derive the combined probabilities of genotypes in 

cases and their sibling ²(�_ , �)). (Note that these non-transmitted alleles are not the pseudocontrols of 

interest.) Suppose the genotypes in the parents have frequencies '(�� = ¨¨), '(�� = �¨) and '(�� = ��). The distribution of the genotypes of pairs of parents with a genotype correlation (non-

random mating fraction) � is given by  

 



²t�u(@Õ,A�+0@Õ,Av =

Ö
×××
×××
×Ø

'(�u = ¨¨, �+ = ¨¨) '(�u = ¨¨, �+ = �¨)'(�u = ¨¨, �+ = ��)'(�u = �¨, �+ = ¨¨)'(�u = �¨, �+ = �¨)'(�u = �¨, �+ = ��)'(�u = ��, �+ = ¨¨)'(�u = ��, �+ = �¨)'(�u = ��, �+ = ��)Ù
ÚÚÚ
ÚÚÚ
ÚÛ

=

Ö
×××
×××
××
Ø (1 − �)'t�� = ¨¨v't�� = ¨¨v + �'t�� = ¨¨v(1 − �)'t�� = ¨¨v'(�� = �¨)(1 − �)'t�� = ¨¨v'(�� = ��)(1 − �)'t�� = �¨v'(�� = ¨¨)(1 − �)'t�� = �¨v't�� = �¨v + �'t�� = �¨v(1 − �)'t�� = �¨v'(�� = ��)(1 − �)'t�� = ��v'(�� = ¨¨)(1 − �)'t�� = ��v'(�� = �¨)(1 − �)'t�� = ��v't�� = ��v + �'t�� = ��vÙ

ÚÚÚ
ÚÚÚ
ÚÚ
Û

 

 

The distributions of the genotypes of pairs of parents conditional on their offspring �_ are proportional 

to the pairwise multiplications of the probability of these parental genotypes times the probability of 

getting offspring with �_, that is 

 ²Üt�u(@Õ,A�+0@Õ,A|�_ = ¨¨v = ²t�u(@Õ,A�+0@Õ,Av*(1  0.5  0  0.5  0.25  0  0  0  0)¶ ²Üt�u(@Õ,A�+0@Õ,A|�_ = �¨v = ²t�u(@Õ,A�+0@Õ,Av ∗ (0  0.5  1  0.5  0.5  0.5  1  0.5  0)¶ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ��v = ²t�u(@Õ,A�+0@Õ,Av ∗ (0  0  0  0  0.25  0.5  0  0.5  1)¶ 

 

The probabilities of non-transmitted (NT) genotypes are proportional to the sum of the combined 

parental genotypes resulting in this NT genotype, that is 

 ²Ü(ap = ¨¨|�_ = ¨¨) = (1  0  0  0  0  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ¨¨v ²Ü(ap = �¨|�_ = ¨¨) = (0  1  0  1  0  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ¨¨v ²Ü(ap = ��|�_ = ¨¨) = (1  0  0  0  0  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ¨¨v ²Ü(ap = ¨¨|�_ = �¨) = (0  1  0  1  0  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = �¨v ²Ü(ap = �¨|�_ = �¨) = (0  0  1  0  1  0  1  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = �¨v ²Ü(ap = ��|�_ = �¨) = (0  0  0  0  0  1  0  1  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = �¨v ²Ü(ap = ¨¨|�_ = ��) = (0  0  0  0  1  0  0  0  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ��v ²Ü(ap = �¨|�_ = ��) = (0  0  0  0  0  1  0  1  0) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ��v ²Ü(ap = ��|�_ = ��) = (0  0  0  0  0  0  0  0  1) ∗ ²Üt�u(@Õ,A�+0@Õ,A|�_ = ��v 

 

Scaling gives the exact probabilities of the NT genotypes: '(ap = ¨¨|�_ = ¨¨) = 'Ý(ap = ¨¨|�_ = ¨¨)/ �'Ý(ap = ¨¨|�_ = ¨¨) + 'Ý(ap = �¨|�_ = ¨¨) + 'Ý(ap = ��|�_ = ¨¨)� etc. The 

allele frequencies 
1¶|Z7 follow directly from the NT genotype frequencies.  

 

 

2.6 Appendix B: pseudocontrol genotypes conditional on IBD, Gc and Gs 

Define the matrices ²tG�_HIBD, �_ , �)) as  

 



Ì 'tG�_HIBD, G¼ = ¨¨, G½ = ¨¨) 'tG�_HIBD, G¼ = ¨¨, G½ = �¨) 'tG�_HIBD, G¼ = ¨¨, G½ = ��)'tG�_HIBD, G¼ = �¨, G½ = ¨¨) 'tG�_HIBD, G¼ = �¨, G½ = �¨) 'tG�_HIBD, G¼ = �¨, G½ = ��)'tG�_HIBD, G¼ = ��, G½ = ¨¨) 'tG�_HIBD, G¼ = ��, G½ = �¨) 'tG�_HIBD, G¼ = ��, G½ = ��)Í 

 

Given the parental genotype frequencies '(�� = ¨¨), '(�� = �¨) and '(�� = ��), these 3 ∗ 4 = 12 

matrices follow from basic Mendelian reasoning. Note that IBD=0 (between cases and their siblings) 

indicates that the pseudocontrol shares both alleles with the sibling; IBD=1 indicates that the 

pseudocontrol shares the non-IBD allele with the sibling; and IBD=2 indicates that the pseudocontrol 

and sibling share no alleles. Alleles in the pseudocontrols not shared with the sibling come from the 

parents with the probabilities derived in Appendix A (Section 2.5). The ²tG�_HIBD) are thus defined as: 

 

²tG�_ = ¨¨HIBD = 0) = ¸1 0 01 0 01 0 0¹ 

²tG�_ = ¨¨HIBD = b) = ³§1¶|Z7·ªª 0 0§1¶|Z7·�ª 0 0§1¶|Z7·�� 0 0´ 

²tG�_ = ¨¨HIBD = B) = ³§1¶|Z7·ªª §1¶|Z7·ªª 0§1¶|Z7·�ª §1¶|Z7·�ª 0§1¶|Z7·�� §1¶|Z7·�� 0´ 

²tG�_ = ¨¨HIBD = 2) = ³ '(ap = ¨¨|�_ = ¨¨) '(ap = ¨¨|�_ = ¨¨) '(ap = ¨¨|�_ = ¨¨)'(ap = ¨¨|�_ = �¨) '(ap = ¨¨|�_ = �¨) '(ap = ¨¨|�_ = �¨)'(ap = ¨¨|�_ = ��) '(ap = ¨¨|�_ = ��) '(ap = ¨¨|�_ = ��)´ 

²tG�_ = �¨HIBD = 0) = ¸0 1 00 1 00 1 0¹ 

²tG�_ = �¨HIBD = b) = ¸
1¶|Z7·ªª §1¶|Z7·ªª §1¶|Z7·ªª
1¶|Z7·�ª §1¶|Z7·�ª §1¶|Z7·�ª
1¶|Z7·�� §1¶|Z7·�� §1¶|Z7·��¹ 

²tG�_ = �¨HIBD = B) = ¸
1¶|Z7·ªª 
1¶|Z7·ªª §1¶|Z7·ªª
1¶|Z7·�ª 
1¶|Z7·�ª §1¶|Z7·�ª
1¶|Z7·�� 
1¶|Z7·�� §1¶|Z7·��¹ 

²tG�_ = �¨HIBD = 2) = ³ '(ap = �¨|�_ = ¨¨) '(ap = �¨|�_ = ¨¨) '(ap = �¨|�_ = ¨¨)'(ap = �¨|�_ = �¨) '(ap = �¨|�_ = �¨) '(ap = �¨|�_ = �¨)'(ap = �¨|�_ = ��) '(ap = �¨|�_ = ��) '(ap = �¨|�_ = ��)´ 

²tG�_ = ��HIBD = 0) = ¸0 0 10 0 10 0 1¹ 

²tG�_ = ��HIBD = b) = ³0 
1¶|Z7·ªª 
1¶|Z7·ªª0 
1¶|Z7·�ª 
1¶|Z7·�ª0 
1¶|Z7·�� 
1¶|Z7·��´ 

²tG�_ = ��HIBD = B) = ³0 0 
1¶|Z7·ªª0 0 
1¶|Z7·�ª0 0 
1¶|Z7·��´ 

²tG�_ = ��HIBD = 2) = ³ '(ap = ��|�_ = ¨¨) '(ap = ��|�_ = ¨¨) '(ap = ��|�_ = ¨¨)'(ap = ��|�_ = �¨) '(ap = ��|�_ = �¨) '(ap = ��|�_ = �¨)'(ap = ��|�_ = ��) '(ap = ��|�_ = ��) '(ap = ��|�_ = ��)´ 
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