Supplemental Data. Bernsdorff et al. (2016). Plant Cell 10.1105/tpc.15.00496

Supplemental Figure 1. Identification of the sid2 ald1 (sid2-1 ald1) double mutant.

(A) PCR analysis of genomic DNA isolated from Col-0 and F2 *sid2 ald1* candidate lines to screen for *ALD1* T-DNA insertion a: Left genomic primer (LP) and right genomic primer (RP) primer, b: LP and left border T-DNA insertion primer (LB), c: RP and LB primer pair. M = 100 bp marker. Among others, lines #2, #4, #6, #13, #19, #23 were identified as homozygous for the insertion.

(B) Gradient PCR $(57 - 67^{\circ}C)$ using genomic DNA of Col-0 and *sid2-1*, employing the ICS1-FV primer site-specific for the wild-type *ICS1* sequence but not for the point-mutated *sid2-1* variant (in combination with ICS1-RV). 63.8°C was identified as annealing temperature specifically amplifying Col-0 but not *sid2-1* genomic DNA. H₂O served as a negative control. M = 100 bp marker.

(C) PCR analysis of genomic DNA isolated from Col-0, *sid2* and preselected F2 *sid2 ald1* candidate lines. The ICS1-FV/ICS1-RV primer pair and an annealing temperature of 64° C were used. M = 100 bp marker. Lines #6 and #51 (not shown) were identified as *sid2 ald1* double mutant lines homozygous for both mutations and further characterized (Suppl. Fig. 2; Fig. 1).

Supplemental Figure 2. Characterization of the sid2 ald1 double mutant.

(A) Schematic representation of the *ICS1* and *ALD1* genes $(5' \rightarrow 3')$. *ICS1* contains a putative plastid transit sequence (green) and a chorismate-binding domain (blue). The location of mutations in *sid2-2* and *sid2-1* are indicated with a red box and a red arrow, respectively (modified according to Wildermuth et al., 2001). In the scheme of the *ALD1* locus, the position of the T-DNA insertion (black triangle) of SALK_007673 is indicated. Boxes represent exons and spaces represent spliced introns.

(B) Multiple sequence alignment of Col-0, the positively PCR-tested F2 *sid2 ald1* candidates #6 (Suppl. Fig. 1) and #51, and *sid2-1*.

(C) Growth phenotypes of naïve 5-week-old Col-0, *ald1*, *sid2 ald1* and *sid2* plants. The *sid2 ald1* double mutant plants did not show any obvious morphological phenotype that distinguished them from wild-type, *ald1*, or *sid2* plants.

Supplemental Figure 3. Systemic acquired resistance assay with Col-0 and ics1 ics2 plants.

Lower (1°) leaves were infiltrated with either 10 mM MgCl₂ or Psm (OD₆₀₀ = 0.005) to induce SAR, and two days later, three upper leaves (2°) were challenge-infected with Psm (OD₆₀₀ = 0.001). Bacterial growth in upper leaves was assessed 3 days post 2° leaf-inoculation (n ≥ 7). Asterisks denote statistically significant differences between *Psm*-pre-treated and mock-control samples (***: P < 0.001; two-tailed *t* test). Seeds of *ics1 ics2* were sterilized and germinated on full MS medium containing 2 % sucrose (pH 5.7) before the seedlings were transferred to soil (Garcion et al., 2008).

Supplemental Figure 4. Principle component analysis of the normalized transcriptome data; 1st dimension 58.0 % of variation; 2nd dimension 15.7 % of variation.

The principle component analysis of all samples indicates that 58.0 % of the variation is treatment variation which separates the *Psm*-inoculated from the mock-infiltrated samples. The wild-type has the farthest separation followed by *sid2*. The separation in *ald1* is virtually non-existent. The second dimension is environmental variation between the two sets of independent experiments (SAR experiments 1 to 3 vs. SAR experiments 4 to 6) and comprises only 15.7 % of variation.

Supplemental Figure 5. MapMan visualization: the transcriptional SAR response in Col-0.

Overview of the changes in metabolism-related gene expression in distal (2°) leaves of Col-0 wild-type plants inoculated in 1° leaves with Psm (P) compared to Mock (M). Heat map representation indicates $\log_2 P/M$ -fold changes. Red (blue): Up-regulated (down-regulated) upon Psm inoculation.

Supplemental Figure 6. MapMan visualization: a diminished transcriptional SAR response exists in *sid2*. Overview of the changes in metabolism-related gene expression in distal (2°) leaves of *sid2* plants inoculated in 1° leaves with *Psm* (*P*) compared to Mock (M). Heat map representation indicates $\log_2 P/M$ -fold changes. Red (blue): Up-regulated (down-regulated) upon *Psm* inoculation.

Supplemental Figure 7. MapMan visualization: the transcriptional SAR response is absent in ald1.

Overview of the changes in metabolism-related gene expression in distal (2°) leaves of *ald1* plants inoculated in 1° leaves with Psm (P) compared to Mock (M). Heat map representation indicates $log_2 P/M$ -fold changes. Red (blue): Up-regulated (down-regulated) upon Psm inoculation.

Supplemental Figure 8. Percentage of SAR⁺ and SAR⁻ genes in additional gene classes/families.

(A) Major subclasses of receptor-like protein kinases. Classification according to Shiu et al. Plant Cell (2004) 16: 1220-34. Only subclasses consisting of more than 10 genes were considered. CRK: cystein-rich protein kinases; RLCK: receptor-like cytoplasmic kinases; LRR: leucine rich repeat kinases; WAKL: wall-associated kinases.

(B) Further gene families enriched in SAR⁺ genes. SPFH: stomatin/prohibitin/flotillin/HflK/C domain-containing genes; SAG: senescence-associated genes; FAD berberine: FAD berberine-type genes; VQ-motif: VQ motif-containing genes; PUB: plant U-box gene family.

(C) Other MapMan categories and gene families. Peroxidase: class III peroxidase gene family, Raes et al. Plant Physiol (2003) 133: 1051-71; monolignol: monolignol biosynthesis gene families, Tognolli et al. Gene (2002) 288: 129-38 (http://www.arabidopsis.org/).

Dashed vertical lines illustrate the percentage of SAR⁺ and SAR⁻ genes in the analyzed gene set (15239 genes). The number of genes in each category is given in brackets. Asterisks on right (left) bars indicate significant enrichment or depletion of gene categories in SAR⁺ (SAR⁻) genes (Fisher's exact test, P < 0.01).

Supplemental Figure 9.

SAR-associated defense priming – assay and definition.

(A) Experimental setup of the SAR priming assay.

At day 0, a SAR-inductive Psm- or a mockcontrol (MgCl₂)-treatment was performed in 1° leaves. This was followed by a Psm-challenge or a mock-treatment of 2° leaves 48 h later. Defense responses (gene expression. metabolite analyses) in 2° leaves were assessed 10 h after the second treatment. All four possible combinations were compared: 1°mock / 2°-mock (control state), 1°-Psm / 2°mock (SAR induction, no pathogen challenge), 1°-mock / 2°-Psm (no SAR induction, pathogen challenge), and 1°-Psm / 2°-Psm (SAR induction and pathogen challenge).

(B) Definition of priming.

A particular defense response was defined as "primed", if the differences between the (1°-Psm / 2°-Psm)- and the (1°-Psm / 2°-mock)values were significantly larger than the differences between the (1°-mock / 2°-Psm)and the (1°-mock/ 2°-mock)-values, as determined by a two-sided Mann-Whitney U test (α = 0.005). Analogous definitions were used to assess the priming of pathogen- and SA-responses after exogenous Pip-treatment $(Pip/Psm - Pip/mock > H_2O/Psm - H_2O/mock)$ and (Pip/SA – Pip/mock > H_2O/SA H₂O/mock), respectively.

(C) Response gain due to priming.

To estimate quantitative differences between genotypes in the extent of priming of a response, we calculated the parameter "response gain due to priming" (prgain). The prgain-value reflects the gain of a response in a genotype if priming is activated.

XX(gt): mean of response values of a genotype (gt); X = M (Mock) or P (*Psm*).

 $\overline{XX}_n(gt)$: $\overline{XX}(gt)$ normalized to $\overline{MM}(wt)$, the mean of the wild-type (wt) mock/mock- values. mut: mutant.

Note that the values of all genotypes are normalized to $\overline{MM}(wt)$. Thus, $\overline{MM}_n(wt)$ of a dataset is always equal to 1.

The above description relates to biological SAR. The prgain-values for Pip-induced priming of *Psm*- or SA-responses were calculated analogously.

Supplemental Data. Bernsdorff et al. (2016). Plant Cell 10.1105/tpc.15.00496

Supplemental Figure 10. Graphs of Figure 6 with a linear scale for the y-axes instead of a log-scale.

Supplemental Figure 11. Graphs of Figure 7 with a linear scale for the y-axes instead of a log-scale.

Supplemental Figure 12. Graphs of Figure 8 with a linear scale for the y-axes instead of a log-scale.

_

Supplemental Figure 13. Pip-induced priming of salicylic acid biosynthesis requires functional FMO1.

(A) free salicylic acid.

(B) total salicylic acid (sum of free and glycosidic SA).

Plants were supplied with 10 ml of 1 mM Pip (= dose of 10 µmol) or with 10 ml of H₂O (control treatment) via the root system, and leaves challenge-inoculated with *Psm* or mock-infiltrated one day later. Defense responses in leaves were assessed 10 h after the challenge treatment. Values represent the mean \pm SD of three biological replicates from different plants. Each biological replicate consists of six leaves from two plants. A "P" above the bars representing Pip/*Psm*-treatments indicates defense priming, as assessed in analogy to SAR priming (see Supplemental Figure 9B). As a measure of the gain of a response due to priming, we calculated the prgain ("response gain due to priming") for each genotype with activated priming according to the formula given in Supplemental Figure 9C online. Prgain-values are given in brackets behind the priming indicator "P" and allow estimates about quantitative differences of the strength of priming between genotypes. The higher the prgain-value, the stronger the priming.

Supplemental Figure 14. Graphs of Figures 9A and 9B with a linear scale for the y-axes instead of a log-scale.

				mean expression value				fold-change (log ₂)				
	AGI	name	function	Col-0 M	Col-0 P	<i>sid2</i> M	sid2 P	<i>ald1</i> M	ald1 P	Col-0 <i>P</i> /M	sid2 P/M	ald1 P/M
Α	At1g57630	-	TIR-NBS-LRR protein	6	256	1	56	2	3	5.1*	4.9*	0.4
	At1g66090	-	TIR-NBS protein	10	212	4	21	9	26	4.3*	2.1*	1.4
	At4g11170	RMG1	TIR-NBS-LRR protein	1	34	0	2	0	1	4.1*	1.4*	0.7
	At5g41750	-	TIR-NBS-LRR protein	24	293	6	27	10	67	3.5*	2.1*	2.6
	At5g46520	VICTR	TIR-NBS-LRR protein	8	57	4	12	6	9	2.7*	1.5	0.5
В	At4g23210	CRK13	cysteine-rich protein kinase	7	174	2	26	0	2	4.5*	3.1*	1.1
	At4g04500	CRK37	cysteine-rich protein kinase	12	275	3	35	1	1	4.4*	3.1*	0.2
	At1g51890	-	receptor-like protein kinase	6	221	0	13	2	3	5.0*	3.4*	0.7
	At1g51800	IOS1	receptor-like protein kinase	7	88	1	6	1	2	3.5*	2.0*	0.3
	At4g33430	BAK1	receptor-like protein kinase	32	140	23	34	25	26	2.1*	0.6	0.0
	At5g20480	EFR	receptor-like protein kinase	6	28	6	10	2	1	2.0*	0.6	-0.6
	At3g21630	CERK1	receptor-like protein kinase	33	112	21	36	20	24	1.7*	0.7	0.2
	At5g46330	FLS2	receptor-like protein kinase	19	17	11	7	17	19	-0.1	-0.6	0.2
С	At1g01560	MPK11	MAP kinase	7	193	1	16	1	3	4.5*	3.1*	0.7
	At3g45640	MPK3	MAP kinase	109	601	70	152	75	138	2.5*	1.1	0.9
	At2g43790	MPK6	MAP kinase	43	118	34	41	43	50	1.5*	0.3	0.2
	At4g29810	MKK2	MAP kinase kinase	65	363	41	112	27	33	2.5*	1.4*	0.3
	At4g01370	MKK4	MAP kinase kinase	68	277	57	111	41	43	2.0*	0.9	0.1
	At3g46930	Raf43	MAP kinase kinase kinase	4	37	3	8	2	6	3.0*	1.1	1.1
	At5g66850	MAPKKK5	MAP kinase kinase kinase	32	178	23	28	29	34	2.4*	0.2	0.2
D	At1g76040	CPK29	Ca ²⁺ -dependent protein kinase	14	295	6	47	5	13	4.3*	2.8*	1.2
	At1g18890	CPK1	Ca2+-dependent protein kinase	33	256	21	48	22	31	2.9*	1.2	0.4
	At4g35310	CPK5	Ca2+-dependent protein kinase	23	126	13	30	19	28	2.4*	1.2	0.5
Е	At1g80840	WRKY40	WRKY transcription factor	4	169	2	11	3	46	5.0*	2.1*	3.4
	At5g13080	WRKY75	WRKY transcription factor	1	50	0	2	1	0	4.9*	1.4*	-0.1
	At5g64810	WRKY51	WRKY transcription factor	3	107	0	4	1	1	4.8*	2.2*	0.1
	At2g46400	WRKY46	WRKY transcription factor	18	419	5	79	6	23	4.4*	3.7*	1.7
	At4g23810	WRKY53	WRKY transcription factor	8	162	1	8	2	23	4.2*	2.0*	2.9
	At4g31800	WRKY18	WRKY transcription factor	15	233	6	15	4	16	3.8*	1.2	1.7
	At5g46350	WRKY8	WRKY transcription factor	3	46	1	5	2	2	3.7*	1.5*	0.2
F	At3g44350	NAC061	NAC transcription factor	2	69	0	6	0	1	4.5*	2.3*	0.2
	At5g22380	NAC090	NAC transcription factor	4	86	0	10	0	4	4.1*	3.1*	1.6
	At2g43000	NAC042	NAC transcription factor	3	57	0	4	1	1	3.9*	1.8*	-0.1
G	At1g22070	TGA3	TGA transcription factor	29	150	27	60	12	16	2.3*	1.1	0.4
	At5g06960	TGA5	TGA transcription factor	10	50	7	14	11	13	2.2*	0.9	0.2
	At5g65210	TGA1	TGA transcription factor	12	40	12	14	8	9	1.6*	0.3	0.3
Н	At1g64280	NPR1	transcriptional coactivator	39	121	31	55	20	26	1.6*	0.8	0.3
	At5g45110	NPR3	NPR1-like protein 3	25	234	16	31	6	14	3.2*	1.0	1.0
	At4g19660	NPR4	NPR1-like protein 4	32	85	26	36	6	6	1.4*	0.5	0.0

Supplemental Figure 15. The transcriptional SAR response: activation of multiple stages of defense signaling. Expression values of selected genes.

Selected genes among (A) resistance proteins, (B) receptor-like protein kinases, (C) MAP kinase cascade members, (D) calcium-dependent protein kinases, (E) WRKY transcription factors, (F) NAC transcription factors, (G) TGA transcription factors, and (H) NPR1 and paralogues.

The mean of the expression values of the RNA-seq analyses are depicted. Samples originate from distal leaves of Psm (P)-inoculated or mock (M)-treated Col-0, *sid2*, or *ald1* plants at 48 HAI. Log₂-transformed P/M-ratios (fold-changes) are depicted, and asterisks indicate significant changes (FDR < 0.01). The log₂ P/M-ratios are highlighted according to their values as follows:

/	0-		0 0		0				
log D/M	> 5 0	4.9 to	3.9 to	2.9 to	1.9 to	0.9 to	-1.0 to	-2.0 to	< 20
$\log_2 P/W$	≥ 5.0	4.0	3.0	2.0	1.0	-0.9	-1.9	-2.9	≤ -3.0

-

(A)	Experiment	Treatment1	Treatme	ent2	Phenot	уре		
	A	Mock	Mock		1.56			
	A	Mock	Mock		0.46			
	A	Mock	Mock		0.97			
	A	Mock	Psm		27.21			
	A	Mock	Psm		147.60			
	A	NOCK	Psm		57.77			
	A	PSM	NOCK		57.09 37.49			
	A	PSIII	Mock		37.48			
	A A	Pem	Dem		11.09 203 08			
	A	Psm	Psm		402 47			
	A	Psm	Psm		278.32			
	B	Mock	Mock		1.56			
	В	Mock	Mock		1.14			
	В	Mock	Mock		0.31			
	В	Mock	Psm		239.44			
	В	Mock	Psm		152.13			
	В	Mock	Psm		176.21			
	В	Psm	Mock		241.64			
	В	Psm	Mock		328.27			
	В	Psm	NOCK		/16.20	<u> </u>		
	В	PSM	Psm		1238.1	U e		
	B	Pem	Psm		1606 5	0 0		
	<u>C</u>	Mock	Mock		0.94	0		
	C	Mock	Mock		0.90			
	Č	Mock	Mock		1.16			
	C	Mock	Psm		137.05			
	С	Mock	Psm		186.87			
	С	Mock	Psm		234.39			
	С	Psm	Mock		17.70			
	C	Psm	Mock		28.02			
	C	Psm	Mock		19.39			
	C	Psm	Psm		/40.93			
	C	Psm	Psm		455.76			
	C	F 5111	F 5111		551.50			
ANO	/A results			SumSq		Df	F value	Pr(>F)
	Treatment1			127064	7	1	93.0036	9.93*10 ⁻¹⁰
	Treatment2			119733	2	1	87.6374	1.76*10 ⁻⁰⁹
	Experiment			923292		2	33.7897	1.05*10 ⁻⁰⁷
	Treatment1:Tre	atment2		415170)	1	30.3879	1.14*10 ⁻⁰⁵
	Treatment1:Exp	periment		739373	1	2	27.0588	7.07*10 ⁻⁰⁷
	Treatment2:Exp	periment		189701		2	6.9425	0.004178
	Treatment1:Tre	atment2:Experim	nent	93249		2	3.4126	0.04962
	Residuals			327896	i	24		

Supplemental Table 1. Linear model-based analysis of the SAR-associated priming response in Col-0 plants to estimate treatment and experimental effect terms.

(A) Phenotype: relative *FMO1* transcript levels.

An analysis of variance (ANOVA) was performed with the depicted data ("object1") from three independent experiments (A, B, and C), each consisting of three biological replicate samples per treatment type, using the R statistical package and the command:

"Anova(Im(Phenotype~Treatment1+Treatment2+Experiment+Treatment1*Treatment2+Treatment1*Ex periment+Treatment2*Experiment+Treatment1*Treatment2*Experiment, data=object1),type=2)". SAR priming was assessed as described in Fig. 6 and Supplemental Fig. 11.

Treatment1: effect term for treatment of 1° leaves (Mock or *Psm*); Treatment2: effect term for the

subsequent treatment of 2° leaves (Mock or *Psm*); Treatment2: effect term for the

Treatment1*Treatment2: effect term for the interaction of treatments ("Priming").

Experiment: Term reflecting variation between experiments; Experiment*Treatmentx: Term reflecting experimental impact on effect of treatment x; Experiment*Treatment1*Treatment2: Term reflecting experimental influence on treatment interaction.

SumSq: type II-sum of squares. Df: degrees of freedom. Pr(>F): P-value associated with a corresponding F value.

(B) Exper	iment Tre	eatment1	Treatmer	nt2	Pheno	type		
A	Мо	ck	Mock		1.2			
A	Mo	ck	Mock		0.7			
A	Mo	ck	Mock		1.1			
A	Mo	ck	Psm		4.1			
A	Mo	CK	Psm		18.9			
A	Mo	CK	Psm		16.6			
A	PSI	m	NOCK		21.1			
A	PSI	m	IVIOCK		16.7			
A	PSI	11 m	IVIOCK Dom		15.8			
A 		m	Dom		65.2			
A 		m	Pom		12/13			
	No	n ck	Mock		1 01			
B	Mo	ck	Mock		1 19			
B	Mo	ck	Mock		0.80			
B	Mo	ck	Psm		11.24			
B	Mo	ck	Psm		9.55			
В	Мо	ck	Psm		16.59			
В	Psi	m	Mock		56.98			
В	Psi	m	Mock		51.22			
В	Psi	m	Mock		54.44			
В	Psi	m	Psm		220.84	ł		
В	Psi	m	Psm		174.70)		
B	Psi	m	Psm		195.29)		
С	Mo	ck	Mock		0.54			
С	Mo	ck	Mock		1.12			
C	MO	CK	NOCK		1.35			
		CK	PSIII		29.01			
	IVIO Mo	CK ok	PSIII		00.07			
C	Pei	m	Mock		50 11			
C	Psi	m	Mock		44 16			
Č	Psi	m	Mock		39.46			
č	Psi	m	Psm		292.02	2		
Č	Psi	m	Psm		343.28	3		
С	Psi	m	Psm		237.15	5		
ANOVA resul	ts			SumS	q	Df	F value	Pr(>F)
Treatr	nent1			94985		1	232.523	7.59*10 ⁻¹⁴
Treatr	nent2			68426		1	167.506	2.57*10 ⁻¹²
Exper	iment			26172		2	32.035	1.68*10 ⁻⁰⁷
Treatr	nent1:Treatmer	nt2		36996		1	90.566	1.28*10 ⁻⁰⁹
Treatr	nent1:Experime	ent		15705		2	19.223	1.04*10 ⁻⁰⁵
Treatr	nent2:Experime	ent		17744		2	21.719	4.13*10 ⁻⁰⁶
Treatr	nent1:Treatmer	nt2:Experimen	t	8210		2	10.049	0.0006753
Resid	uals	•		9804		24		

Supplemental Table 1. (B) Phenotype: relative ALD1 transcript levels.

(C)	Experiment	Treatment1	Treatme	ent2 F	Phenotype		
	А	Mock	Mock	().91		
	A	Mock	Mock	().94		
	A	Mock	Mock		1.14		
	A	Mock	Psm	7	7.20		
	A	Mock	Psm	ç	9.80		
	A	Mock	Psm	5	5.94		
	A	Psm	Mock	1	7.69		
	A	Psm	Mock		10.54		
	A	Psm	NOCK	,	12.34		
	A	PSIII	PSm				
	A A	PSIII Psm	PSIII Psm	4	23.14		
	В	Mock	Mock		1.17		_
	В	Mock	Mock		1.03		
	В	Mock	Mock	(08.0		
	В	Mock	Psm	3	34.68		
	В	Mock	Psm	3	31.41		
	В	Mock	Psm	3	32.70		
	В	Psm	Mock		196.09		
	В	Psm	Mock		183.71		
	В	Psm	Mock	2	232.66		
	В	Psm	Psm	4	132.95		
	В	Psm	Psm	Ę	524.47		
	B	Psm	Psm	5	512.16		_
	C	Mock	Mock	().71		
	C	Mock	Mock	, ,	1.58		
	C	MOCK	Mock	().70		
		IVIOCK Moole	PSm		10.85		
		NOCK Moole	PSm		1.40		
	C	Dem	Mock		13.90		
	C	Dem	Mock		00.79		
	C	Pem	Mock		13 73		
	C C	Psm	Psm	ş	38.83		
	Č	Psm	Psm	e	50.36		
	Ċ	Psm	Psm		70.05		_
ANO	VA results			SumSa	Df	F value	Pr(>F)
	Trootmont1			154017	1	400.79	< 2 2*10 ⁻¹⁶
	Treatment?			40060	1	126.244	~ 2.2 10 2 20*10 ⁻¹¹
	Treatmentz			42202	1	130.344	2.20 10
	Experiment			207991	2	335.501	< 2.2*10
	Treatment1:Tre	atment2		24514	1	79.084	4.62*10
	Treatment1:Exp	periment		178702	2	288.257	< 2.2*10
	Treatment2:Exp	periment		36871	2	59.475	5.02*10
	Treatment1:Tre	atment2:Experim	nent	25189	2	40.632	1.97*10 ⁻⁰⁸
	Residuals			7439	24		

Supplemental Table 1. (C) Phenotype: relative SAG13 transcript levels.

-

(D)	Experiment	Treatment1	Treatmo	ent2	Phenot	уре		
	A	Mock	Mock		1.28			
	A	Mock	Mock		0.53			
	A	Mock	Mock		1.19			
	A	Mock	Psm		2.99			
	A	Mock	Psm		6.92			
	A	MOCK	Psm		7.07			
	A	PSIII	NOCK		2.40			
	A	PSIII	Mook		3.42			
	Δ	Psm	Pem		3.24 15 50			
	Δ	Pem	Pem		13.00			
	Δ	Psm	Psm		18.54			
	B	Mock	Mock		1 33			
	B	Mock	Mock		0.77			
	B	Mock	Mock		0.91			
	В	Mock	Psm		11.09			
	В	Mock	Psm		12.01			
	В	Mock	Psm		9.45			
	В	Psm	Mock		15.07			
	В	Psm	Mock		13.83			
	В	Psm	Mock		9.79			
	В	Psm	Psm		72.00			
	В	Psm	Psm		64.85			
	B	Psm	Psm		57.37			
	C	Mock	Mock		0.79			
		IVIOCK	NOCK		1.31			
		IVIOCK Mook	IVIOCK		0.90			
	C	Mock	Dem		9.33			
	C	Mock	Dem		18.04			
	C.	Psm	Mock		15.35			
	C C	Psm	Mock		11 82			
	Č	Psm	Mock		8.37			
	Č	Psm	Psm		52.59			
	С	Psm	Psm		75.30			
	С	Psm	Psm		35.84			
ANO\	/A results			SumSq		Df	F value	Pr(>F)
	Treatment1			4245.2		1	101.9153	4.08*10 ⁻¹⁰
	Treatment2			4487		1	107,7206	2.37*10 ⁻¹⁰
	Experiment			1799.9	:	2	21.6053	4.30*10 ⁻⁰⁶
	Treatment1:Trea	atment2		1631.8		1	39.1741	1.81*10 ⁻⁰⁶
	Treatment1:Expe	eriment		1166.4	:	2	14.0011	9.34*10 ⁻⁰⁵
	Treatment2:Expe	eriment		849.4		2	10.1964	0.0006234
	Treatment1:Trea	atment2:Experime	ent	445.2	:	2	5.3443	0.0120307
	Residuals	•		999.7	:	24		

Supplemental Table 1. (D) Phenotype: relative GRXS13 transcript levels.

-

(E)	Experiment	Treatment1	Treatme	ent2	Pheno	уре		
	A	Mock	Mock		1.78			
	A	Mock	Mock		0.46			
	A	Mock	Mock		0.76			
	A	Mock	Psm		6.77			
	A	Mock	Psm		18.15			
	A	Mock	Psm		13.46			
	A	Psm	Mock		10.96			
	A	Psm	Mock		25.25			
	A	Psm	MOCK		7.12			
	A	PSIII	PSm		94.79			
	A	PSIII Psm	PSIII Psm		102.51			
	B	Mock	Mock		1.30			
	В	Mock	Mock		0.87			
	В	Mock	Mock		0.83			
	В	Mock	Psm		8.55			
	В	Mock	Psm		6.90			
	В	Mock	Psm		7.25			
	В	Psm	Mock		30.99			
	В	Psm	Mock		31.74			
	В	Psm	Mock		30.83			
	В	Psm	Psm		174.19			
	В	Psm	Psm		138.25			
	B	Psm	Psm		135.69			
	C	Mock	Mock		1.38			
	C	Mock	Mock		0.69			
	C	NOCK	MOCK		0.92			
		IVIOCK Maak	PSm		6.00			
		IVIOCK Mook	PSIII		0.// 10.60			
	C	Dem	Mock		10.02			
	C	Pem	Mock		28 15			
	C	Psm	Mock		22 15			
	Č	Psm	Psm		168.92			
	Ċ	Psm	Psm		139.62			
	C	Psm	Psm		89.31			
ANO	/A results			SumSo	4	Df	F value	Pr(>F)
	Treatment1			43407		1	200.7128	3.74*10 ⁻¹³
	Treatment2			25575		1	118,2605	9.33*10 ⁻¹¹
	Experiment			2092		2	4.8378	0.01717
	Treatment1:Treatment1	atment2		18251		- 1	84.3928	2.51*10 ⁻⁰⁹
	Treatment1:Exp	periment		2810		2	6.496	0.005562
	Treatment2:Exp	periment		549		2	1.2699	0.299061
	Treatment1:Tre	atment2:Experim	nent	919		2	2.1249	0.141373
	Residuals	-		5190		24		

Supplemental Table 1. (E) Phenotype: relative ARD3 transcript levels.

_

(F)	Experiment	Treatment1	Treatme	ent2	Phenotype		
	A	Mock	Mock		0.69		
	A	Mock	Mock		0.59		
	A	Mock	Mock		1.73		
	A	Mock	Psm		2.52		
	A	Mock	Psm		10.92		
	A	Mock	Psm		5.18		
	A	Psm	Mock		25.09		
	A	Psm	Mock		32.40		
	A	PSM	NOCK		18.52		
	A	PSIII	PSm	:	20.11		
	A	PSIII Psm	PSIII Psm		42.00 73.62		
	В	Mock	Mock		1.09		_
	В	Mock	Mock		0.99		
	В	Mock	Mock		0.91		
	В	Mock	Psm		6.09		
	В	Mock	Psm	;	3.46		
	В	Mock	Psm		4.01		
	В	Psm	Mock	1	222.72		
	В	Psm	Mock		193.26		
	В	Psm	Mock		190.60		
	В	Psm	Psm	:	259.30		
	В	Psm	Psm		278.54		
	B	Psm	Psm		235.25		
	C	Mock	Mock		1.23		
	C	Mock	Mock		0.98		
	C	Mock	Mock		0.79		
		IVIOCK Maak	Psm		7.95		
		IVIOCK Maak	PSIII		4.29		
	C	NOCK	PSIII Mook		1.20		
	C	Pem	Mock		100.07 50.76		
	C	Dem	Mock		00 75		
	C.	Psm	Psm		192 60		
	Č	Psm	Psm		261 71		
	Ċ	Psm	Psm		243.62		_
ANO	VA results			SumSa	Df	F value	Pr(>F)
/	Trootmont1			176074	1	715.67	$< 2.2 \times 10^{-16}$
	Treatment			16500	· I 4	60.770	~ 2.2 IU
	Treatment2			15523	1	62.776	3.74*10
	Experiment			53865	2	108.912	9.13*10
	Treatment1:Tre	eatment2		12179	1	49.252	2.95*10 ⁻⁰⁷
	Treatment1:Ex	periment		54714	2	110.63	7.71*10 ⁻¹³
	Treatment2:Ex	periment		5571	2	11.264	0.0003548
	Treatment1:Tre	eatment2:Experim	nent	5393	2	10.905	0.0004275
	Residuals			5935	24		

Supplemental Table 1. (F) Phenotype: relative PR1 transcript levels.

(G)	Experiment	Treatment1	Treatme	ent2 Phe	notype		
	А	Mock	Mock	0.02	2		
	A	Mock	Mock	0.05	5		
	A	Mock	Mock	0.03	3		
	A	Mock	Psm	0.67	/		
	A	Mock	Psm	0.59)		
	A	Mock	Psm	0.70)		
	A	Psm	Mock	0.31			
	A	Psm	NOCK	0.60)		
	A	PSM	IVIOCK	0.21			
	A	PSIII	PSIII	3.30)		
	A	Psm	Psm	4.31	1		
	В	Mock	Mock	0.23	3		
	В	Mock	Mock	0.09)		
	В	Mock	Mock	0.13	3		
	В	Mock	Psm	1.32	2		
	В	Mock	Psm	1.82	2		
	В	Mock	Psm	0.92	2		
	В	Psm	Mock	0.72	2		
	В	Psm	Mock	0.44	1		
	В	Psm	Mock	0.78	3		
	В	Psm	Psm	9.48	3		
	В	Psm	Psm	18.7	⁷ 8		
	В	Psm	Psm	17.1	11		
	C	Mock	NOCK	0.12	2		
		IVIOCK Maak	IVIOCK	0.06)		
		IVIOCK Mook	IVIOCK Dom	0.10	5		
	C	Mock	Pom	0.00) 1		
	C	Mock	Pem	0.76	+ 5		
	C	Psm	Mock	0.70	2		
	Č	Psm	Mock	0.00	7		
	Č	Psm	Mock	0.30)		
	Č	Psm	Psm	5.47	7		
	С	Psm	Psm	7.20)		
	С	Psm	Psm	7.56	6		
ANO	√A results			SumSg	Df	F value	Pr(>F)
	Treatment1			130 122	1	62 808	3 73*10 ⁻⁰⁸
	Treatment?			182 115	1	82 218	3.21*10 ⁻⁰⁹
	Evperiment			62 445	2	14 096	8 9/*10 ⁻⁰⁵
	Treatment1.Tre	atment2		115 813	<u>د</u> 1	52 285	1 80*10 ⁻⁰⁷
	Treatment1.Ev	neriment		48 466	2	10 04	0 0004108
	Treatment?:Ev	neriment		54 402	2	12 301	0.000-190
	Treatment1.Tre	periment atment2.Exnerim	nent	<u>44</u> 751	2	10 102	0.0002103
	Dooiduclo			52 164	24	10.102	0.0000000
	Residuais			53.101	24		

Supplemental Table 1. (G) Phenotype: Camalexin levels ($\mu g g^{-1} FW$).

(H)	Experiment	Treatment1	Treatme	ent2	Pheno	otype		_
	А	Mock	Mock		1.15			_
	Α	Mock	Mock		1.19			
	A	Mock	Mock		0.85			
	A	Mock	Psm		2.03			
	A	Mock	Psm		2.95			
	A	Mock	Psm		3.03			
	A	Psm	Mock		3.27			
	A	Psm	Mock		2.26			
	A	Psm	Mock		3.29			
	A	Psm	Psm		15.92			
	A	Psm	Psm		15.13			
	<u>A</u>	Psm	Psm		14.45			_
	В	Mock	Mock		0.67			
	В	Mock	MOCK		0.84			
	В	Mock	Mock		0.49			
	В	Mock	Psm		6.22			
	В	MOCK	Psm		5.58			
	В	Моск	Psm		6.55			
	В	PSM	IVIOCK Maak		3.90			
	В	PSIII	NOCK		3.49			
	В	PSIII	IVIOCK		3.11			
	D	PSIII	PSIII		11.04			
	D	Pom	Pom		12 12			
	<u>с</u>	Mock	Mock		0.67			-
	C C	Mock	Mock		0.84			
	C	Mock	Mock		0.04			
	C	Mock	Psm		6.22			
	C	Mock	Psm		5.58			
	C	Mock	Psm		6.55			
	Č	Psm	Mock		3.89			
	Č	Psm	Mock		3.52			
	Č	Psm	Mock		3.10			
	Č	Psm	Psm		11.04			
	C	Psm	Psm		11.60			
	С	Psm	Psm		13.12			
ANO	/A results			SumSo	7	Df	F value	Pr(>F)
	Treatment1			250.43	5	1	681.7015	< 2.2*10 ⁻¹⁶
	Treatment2			432.02		1	1175.9988	< 2.2*10 ⁻¹⁶
	Experiment			0.07		2	0.0907	0.9136
	Treatment1:Trea	tment2		68.53		1	186.5489	8.20*10-13
	Treatment1:Expe	eriment		16.45		2	22.3828	3.27*10 ⁻⁰⁶
	Treatment2:Expe	eriment		0		2	0.0008	0.9992
	Treatment1:Trea	tment2:Experime	nt	29.27		2	39.8436	2.37*10 ⁻⁰⁸
	Residuals			8.82		24		

Supplemental Table 1. (H) Phenotype: Total salicylic acid levels (µg g⁻¹ FW).

(A)	Experiment	Treatment1	Treatme	ent2	Phenotype	9	
	A	H2O	Mock		1.05		
	A	H2O	Mock		0.95		
	A	H2O	Mock		1.00		
	A	H2O	Psm		124.84		
	A	H2O	Psm		57.83		
	A	H2U Din	PSM Mook		112.75		
	A	Pip	Mock		2.05		
	Δ	Pin	Mock		2.35		
	A	Pip	Psm		494.69		
	A	Pip	Psm		438.20		
	А	Pip	Psm		455.22		
	В	H2O	Mock		0.71		
	В	H2O	Mock		1.26		
	В	H2O	Mock		1.03		
	В	H2O	Psm		38.71		
	В	H2O	Psm		47.94		
	В	H2O	Psm		52.67		
	В	Pip Din	Mook		9.73		
	D	Pip Din	Nock		1.24		
	B	Pip	Dem		363 50		
	B	Pin	Psm		234 22		
	B	Pip	Psm		211.57		
	С	HŻO	Mock		1.07		
	С	H2O	Mock		1.08		
	С	H2O	Mock		0.86		
	C	H2O	Psm		43.16		
	C	H2O	Psm		54.51		
	C	H2O Dia	Psm		62.09		
		Pip Din	NOCK		10.13		
	C	Pip	Mock		21 /0		
	C	Pin	Psm		596.04		
	Č	Pip	Psm		753.22		
	C	Pip	Psm		458.27		
	/A results			SumSa	Df	F value	Pr(>F)
ANO	Treatment ¹			242601	1	122.2220	2 77*10 ⁻¹¹
	Treatment			542091	1	133.2030	2.77 IU
				55/3/4	. 1	216.7811	1.63*10
	Experiment			47633	2	9.2631	0.001044
	Treatment1:Trea	atment2		304055	5 1	118.2569	9.33*10
	Treatment1:Exp	eriment		41682	2	8.1057	0.002043
	Treatment2:Exp	eriment		44528	2	8.6592	0.001475
	Treatment1:Trea	atment2:Experim	ent	38511	2	7.4891	0.002969
	Residuals			61707	24		

Supplemental Table 2. Linear model-based analysis of the pipecolic acid-induced priming response in Col-0 plants to estimate treatment and experimental effect terms.

(A) Phenotype: relative *FMO1* transcript levels.

An analysis of variance (ANOVA) was performed with the depicted data ("object1") from three independent experiments (A, B, and C), each consisting of three biological replicate samples per treatment type, using the R statistical package and the command:

"Anova(Im(Phenotype~Treatment1+Treatment2+Experiment+Treatment1*Treatment2+Treatment1*Ex periment+Treatment2*Experiment+Treatment1*Treatment2*Experiment, data=object1),type=2)". Pip-induced priming was assessed as described in Fig. 8.

Treatment1: effect term for pre-treatment of plants (H_2O or Pip); Treatment2: effect term for the subsequent treatment of leaves (Mock or *Psm*).

Treatment1*Treatment2: effect term for the interaction of treatments ("Priming").

Experiment: Term reflecting variation between experiments; Experiment*Treatmentx: Term reflecting experimental impact on effect of treatment x; Experiment*Treatment1*Treatment2: Term reflecting experimental influence on treatment interaction.

SumSq: type II-sum of squares. Df: degrees of freedom. Pr(>F): P-value associated with a corresponding F value.

(B)	Experiment	Treatment1	Treatme	ent2	Phenoty	pe	
	А	H2O	Mock		0.45		
	A	H2O	Mock		1.54		
	A	H2O	Mock		1.01		
	A	H2O	Psm		21.42		
	A	H2O	Psm		16.66		
	A	H2O	Psm		23.67		
	A	Pip	Mock		11.00		
	A	Pip	Mock		13.53		
	A	Pip	Mock		20.39		
	A	Рір	Psm		111.24		
	A	Pip	PSM		92.73		
	<u>A</u>		PSM		125.75		
	В	H2O	IVIOCK Mook		1.10		
	D		Mook		0.92		
	D		Dom		15.02		
	B	H2O	Pom		10.95		
	B	H2O	Pem		16.44		
	B	Pin	Mock		3 58		
	B	Pin	Mock		2.13		
	B	Pin	Mock		5 75		
	B	Pip	Psm		50.52		
	B	Pip	Psm		41.10		
	В	Pip	Psm		42.96		
	С	H2O	Mock		1.17		
	С	H2O	Mock		1.03		
	С	H2O	Mock		0.80		
	С	H2O	Psm		7.78		
	С	H2O	Psm		4.98		
	С	H2O	Psm		12.07		
	С	Pip	Mock		10.61		
	С	Pip	Mock		19.24		
	C	Pip	Mock		17.40		
	C	Pip	Psm		107.43		
	C	Pip	Psm		114.60		
	C	Рір	Psm		97.17		
ANO	/A results			SumSe	q D [.]	f F value	e Pr(>F)
	Treatment1			15388	1	410.643	3 < 2.2*10 ⁻¹⁶
	Treatment2			17987	.7 1	480.019	9 < 2.2*10 ⁻¹⁶
	Experiment			2786.8	8 2	37.184	4.45*10 ⁻⁰⁸
	Treatment1:Trea	tment2		8557.2	2 1	228.35	6 9.24*10 ⁻¹⁴
	Treatment1:Expe	eriment		2934.4	2	39.154	2.78*10 ⁻⁰⁸
	Treatment2:Expe	eriment		1374.7	2	18.343	1.46*10 ⁻⁰⁵
	Treatment1:Trea	tment2:Experime	ent	1432.6	6 2	19.115	1.08*10 ⁻⁰⁵
	Residuals			899.4	24	1	

Supplemental Table 2. (B) Phenotype: relative ALD1 transcript levels.

-

(C)	Experiment	Treatment1	Treatme	ent2	Phenot	уре		
	A	H2O	Mock		0.61			
	A	H2O	Mock		0.86			
	A	H2O	Mock		1.53			
	A	H2O	Psm		6.52			
	A	H2O	Psm		8.88			
	A	H2O	Psm		7.21			
	A	Pip	Mock		13.97			
	A	Pip	Mock		9.15			
	A	Pip	Mock		14.91			
	A	Pip	Psm		51.64			
	A	Pip	Psm		27.18			
	<u>A</u>	Pip	Psm		35.32			
	В	H2O	Mock		0.74			
	В	H2O	IVIOCK		0.85			
	В	H2O	NOCK		1.41			
	В	H2O	Psm		3.16			
	В	HZO	PSM		3.74			
	В	HZU	PSM		3.19			
	В	PIP	IVIOCK		3.79			
	D	Pip	Mook		1.95			
	D	Pip	Dom		4.41			
	D D	Pip Din	PSIII		21.0Z			
	B	Pip	Dem		12.75			
	<u> </u>		Mock		0.62			
	C	H2O	Mock		1 40			
	C	H2O	Mock		0.98			
	Č	H2O	Psm		12.03			
	C	H2O	Psm		6.48			
	C	H2O	Psm		9.83			
	Č	Pip	Mock		5.03			
	Ċ	Pip	Mock		2.64			
	C	Pip	Mock		2.85			
	C	Pip	Psm		29.78			
	С	Pip	Psm		36.85			
	С	Pip	Psm		64.38			
				0.00			F . 1	
ANO	VA results			SumSo	7	Dī	F value	Pr(>F)
	Treatment1			2182.9)1	1	48.5717	3.31*10 ⁻⁰⁷
	Treatment2			2257.0	4	1	50.2212	2.52*10 ⁻⁰⁷
	Experiment			620.11		2	6.899	0.0042944
	Treatment1:Trea	itment2		909.73	5	1	20.2422	0.0001484
	Treatment1:Experiment			321.96	;	2	3.5819	0.0435227
	Treatment2:Expe	eriment		436.37	•	2	4.8548	0.0169623
	Treatment1:Trea	tment2:Experime	ent	182.39)	2	2.0292	0.1533831
	Residuals			1078.6	51 .	24		

Supplemental Table 2. (C) Phenotype: relative PR1 transcript levels.

-

(D)	Experiment	Treatment1	Treatme	ent2	Pheno	type		
	А	H2O	Mock		0.07			
	А	H2O	Mock		0.23			
	A	H2O	Mock		0.14			
	A	H2O	Psm		0.78			
	A	H2O	Psm		0.63			
	A	H2O	Psm		1.09			
	A	Pip	Mock		0.24			
	A	Pip	Mock		0.27			
	A	Pip	Mock		0.13			
	A	Pip	Psm		4.44			
	A	Pip Dia	Psm		4.10			
	<u>A</u>		PSIII		3.88			
	В		NOCK		0.01			
	D		Mook		0.12			
	D		Dom		0.02			
	B	H2O	Dem		0.19			
	B	H2O	Pem		0.35			
	B	Pin	Mock		0.40			
	B	Pin	Mock		0.20			
	B	Pin	Mock		0.02			
	B	Pin	Psm		3.05			
	B	Pip	Psm		5.31			
	B	Pip	Psm		4.93			
	С	H2O	Mock		0.30			_
	С	H2O	Mock		0.23			
	С	H2O	Mock		0.13			
	С	H2O	Psm		1.05			
	С	H2O	Psm		0.58			
	С	H2O	Psm		0.85			
	С	Pip	Mock		0.49			
	С	Pip	Mock		0.73			
	С	Pip	Mock		0.66			
	C	Pip	Psm		10.96			
	C	Pip	Psm		8.78			
	С	Рір	Psm		14.80			
	/A results			SumSe	r	Df	E value	Pr(>F)
					1			= = = + + e = ⁻¹⁰
	reatment1			88.1/2	2	1	95.713	7.53*10 ¹³
	reatment2			105.47	3	1	114.493	1.29^{10}
Experiment			31.89		2	17.308	2.22*10 ⁰⁰	
Treatment1:Treatment2			75.864		1	82.352	3.16*10 ^{°°°}	
Treatment1:Experiment			26.314		2	14.282	8.21*10 ⁻⁰³	
	Treatment2:Expe	eriment		24.026		2	13.041	0.0001467
	Treatment1:Trea	tment2:Experime	ent	22.913		2	12.436	0.0001967
	Residuals			22.109		24		

Supplemental Table 2. (D) Phenotype: Camalexin levels (µg g⁻¹ FW).

Experiment	Treatment1	Treatme	ent2 Ph	enotype		
A	H2O	Mock	1.5			
A	H2O	Mock	0.2			
A	H2O	Mock	1.3			
A	H2O	SA	58	5.1		
A	H2O	SA	330	5.0		
A	H2O	SA	62	5.5		
A	Pip	NOCK	11	1.5		
A	Pip	IVIOCK	114	4.4		
A	Pip	IVIOCK	10.	5.7 70 1		
A	Fip	SA	12	10.1		
A	Pip	SA	129	90.2 91.4		
В	H2O	Mock	0.9			
В	H2O	Mock	1.4			
В	H2O	Mock	0.7			
В	H2O	SA	220	50.9		
В	H2O	SA	210	55.2		
В	H2O	SA	22	53.5		
В	Pip	Mock	144	43.6		
В	Pip	NOCK	80	3.6		
В	PIP	IVIOCK	13	10.4		
B	Pip Din	SA	84 79	19.1		
B	Pip	SA SA	10	0.1 073 0		
<u>C</u>	H2O	Mock	0.7	915.9		
C	H2O	Mock	0.7			
C	H2O	Mock	1 7			
č	H2O	SA	22	79		
Č	H2O	SA	49	7.1		
Ċ	H2O	SA	669	9.6		
C	Pip	Mock	51.	5		
С	Pip	Mock	180	0.6		
С	Pip	Mock	47.	0		
С	Pip	SA	30	71.4		
С	Pip	SA	11:	21.0		
C	Pip	SA	170	65.3		
ANOVA results			SumSq	Df	F value	Pr(>F)
Treatment1			38776567	1	21.2372	0.0001124
Treatment2			64364518	1	35.2512	3.98*10 ⁻⁰⁶
Experiment			70169530	2	19.2153	1.04*10 ⁻⁰⁵
Treatment1:Tr	eatment2		23220994	1	12.7177	0.0015636
Treatment1:Experiment			35112399	2	9.6152	0.0008572
Treatment2:Experiment			46415765	2	12.7105	0.000172
Treatment1:Tr	eatment2:Experim	ent	19049097	2	5.2164	0.0131481
Residuals			43821113	24		

Supplemental Table 3. Linear model-based analysis of the amplification of salicylic acidinduced *PR1* expression by pipecolic acid in Col-0 plants to estimate treatment and experimental effect terms. Phenotype: relative *PR1* transcript levels.

An analysis of variance (ANOVA) was performed with the depicted data ("object1") from three independent experiments (A, B, and C), each consisting of three biological replicate samples per treatment type, using the R statistical package and the command:

"Anova(Im(Phenotype~Treatment1+Treatment2+Experiment+Treatment1*Treatment2+Treatment1*Experiment+Treatment2*Experiment, data=object1),type=2)".

Pip- and SA-treatments were performed as described in Fig. 9.

Treatment1: effect term for pre-treatment of plants (H_2O or Pip); Treatment2: effect term for the subsequent treatment of leaves (Mock or SA).

Treatment1*Treatment2: effect term for the interaction of treatments ("Priming").

Experiment: Term reflecting variation between experiments; Experiment*Treatmentx: Term reflecting experimental impact on effect of treatment x; Experiment*Treatment1*Treatment2: Term reflecting experimental influence on treatment interaction.

SumSq: type II-sum of squares. Df: degrees of freedom. Pr(>F): P-value associated with a corresponding F value.

Primer name	Primer sequence (5' to 3')	Usage		
ald1-fw	TTACGATGCATTTGCTATGACC	Left primer; genotyping of sid2-1 ald1		
ald1-rv	TTTTAAATGGAACGCAAGGAG	Right primer; genotyping of sid2-1 ald1		
ICS1-FW	GTATATGTGACAGAGTTGTTGTC	Sequencing primer		
LB	TGGTTCACGTAGTGGGCCATC	T-DNA Left Border primer		
ALD1-FW	GTGCAAGATCCTACCTTCCCGGC	qRT-PCR		
ALD1-RV	CGGTCCTTGGGGTCATAGCCAGA	qRT-PCR		
ARD3-FW	CATGGACTTATGTGAGGTGTG	qRT-PCR		
ARD3-RV	ACATCAAAGTATCCACTTCCTG	qRT-PCR		
<i>FMO1-</i> FW	TCTTCTGCGTGCCGTAGTTTC	qRT-PCR		
FMO1-RV	CGCCATTTGACAAGAAGCATAG	qRT-PCR		
ICS1-FV	GCAAGAGTGCAACATCTATATTCTC	qRT-PCR; genotyping of sid2-1 ald1		
ICS1-RV	CACAAACAGCTGGAGTTGGA	qRT-PCR; genotyping of sid2-1 ald1		
<i>PR-1-</i> FW	GTGCTCTTGTTCTTCCCTCG	qRT-PCR		
<i>PR-1-</i> RV	GCCTGGTTGTGAACCCTTAG	qRT-PCR		
SAG13-FV	GCGACAACATAAGGACGA	qRT-PCR		
SAG13-RV	CTTCATTTGCTTCTCCAACAC	qRT-PCR		
GRXS13-FV	GGTTGAGATTGGTGAAGAAGAC	qRT-PCR		
GRXS13-RV	GCCATTAATATGAGCAGCCA	qRT-PCR		
<i>PTB-</i> FW	GATCTGAATGTTAAGGCTTTTAGCG	qRT-PCR; reference gene		
<i>PTB-</i> RV	GGCTTAGATCAGGAAGTGTATAGTCTCTG	qRT-PCR; reference gene		

Supplemental Table 4. List of primers used in this study.