

Supplemental Figure 1: Tentative scenario of genome evolution in Biscutella from the ancestral crucifer karyotype (ACK). (A) The ancestral proto-Calepineae karyotype (PCK; i.e. ancPCK; n = 8) presumably diverged from ACK through rearrangements involving chromosomes AK6 and AK8. This n = 8 genome has undergone the BI-m-WGD event leading to an ancestral mesotetraploid Biscutella genome (n = 16), altered by genome fractionation and descending dysploidies towards the modern diploidized genomes of *Biscutella* species with n = 9, 8, and 6. In the extended lineage II, the ancPCK has undergone chromosome rearrangements leading to the origin of PCK and tPCK genomes (n = 7). (B) Chromosome rearrangements underlying the origin of ancestral genomes of ancPCK/Biscutella (n = 8), PCK (n = 7) and tPCK (n = 7) from the older ACK genome (n = 8). Biscutella chromosome Bv5 (O1/P1/W1/R1) and several ACK-like genomic block associations link the modern *B. laevigata* genome with both the ACK (n = 8) and the ancestor of the PCK (n = 7). A reciprocal translocation between ACK-specific chromosomes AK6 and AK8 led to the origin of AK6/8 chromosome present in Biscutella as well as in PCK and tPCK. Subsequent rearrangements involving chromosomes AK8/6. AK5 and AK2 led to the further differentiation of PCK. and tPCK genome, respectively, t: translocation, ipe: pericentric inversion, ipa: paracentric inversion.

GB A:₋5.46% retained duplicates	GB M:- 4.72% retained duplicates
sel	
dupl - an monorment of marked	duplh_r_n_n
dens	dens
GB B: 4.45% retained duplicates	GB N: 5.24% retained duplicates
sel - ••••••••••••••••••••••	sel - minimi minimi minimi
dupl _ mr. l. M. M. r. mr. M_	dupl - howmen monsteller
dens -	dens -
GB C: 4.39% retained duplicates	GB O: 4.64% retained duplicates
sel - millin	sel - "" "
dupl - Mrvi - Murrah	dupl
dens	dens -
GB D: 4.29% retained duplicates	GB P: 3.70% retained duplicates
sel	sel - ····
duplM	dupllmk
dens	dens - www
GB E: 6.11% retained duplicates	GB Q: 7.14% retained duplicates
dopo =	
GB F:_4.78% retained duplicates	GB R:_5.11% retained duplicates
sel	sel
dupl	dupl - man m Mm M and M M M M
dens	dens
GB G: 7.69% retained duplicates	GB S:_4.67% retained duplicates
sel "	sel
dupl	dupl
dens - man	dens -
	- $ -$
GB H: 4.87% retained duplicates	GB 1: 4.71% retained duplicates
sel	
	dupi - Lr. Mar
dens	dens
GB I: 4.85% retained duplicates	GB U: 5.64% retained duplicates
sel - "" III III II	sel
dupl _ Mr. lon_rn_n	dupi - MMM_r_M_mmm_~Mr.ML
dens	dens
GB J: 4.94% retained duplicates	GB V: 7.56% retained duplicates
sel - m min in min in min in min	sel
dupl - mmm mm m hr inn	dupl - rmlhhhhm
dens -	dens - Martin
GB K: 6.35% retained duplicates	GB W: 6.69% retained duplicates
	dupl _ Manna Manna
dens m	dens
GB L:_7.52% retained duplicates	GB X:_6.95% retained duplicates
sel - ·····	sel
	_

sel sel dupl - mm/Lhl dens - d

Supplemental Figure 2: Transcriptome data of *Biscutella leavigata* along each genomic block (GB)A to X. The density of transcripts (dens) and of retained duplicates (dupl) was computed in sliding windows of 40 Arabidopsis genes. Evidence of soft (light red) to strong (dark red) purifying selection (sel) based on the K_a/K_s ratio is indicated for each retained duplicate. % retained duplicates is the proportion of unigenes present in the transcriptome that showed evidence of BI-m-duplicates.

Supplemental Figure 3: Distribution of synonymous substitutions (K_s and root-square transformed K_s) between pairs of duplicated transcripts in Buckler Mustards (*Biscutella laevigata* subsp. *laevigata*; 2n = 4x = 36). The curves represent a mixture of normal distributions fitted to the overall K_s distribution of transcripts larger than 450 bp with $0 \le K_s \le 2$. Mixture models on both root-squared K_s and K_s yielded similar results. The table (Table 1) presents means and standard errors of significant peaks based on K_s after 100 bootstrap computations.

Supplemental Table 1: Sequenced cDNA libraries of *Biscutella laevigata* subsp *leavigata*, using Roche 454 GS FLX Titanium and SOLiD 5500 xl

Organs	Individuals ["]	Number of
		reads
Leaves & roots	Ab	270,469
Leaves & roots	Ca	17,123,098
Leaves & roots	Bj	20,662,107
Leaves	Ab	16,621,814
Leaves	Ab	14,131,769
Roots	Bd	10,182,227
Roots	Bd	35,266,604
	Organs Leaves & roots Leaves & roots Leaves Leaves Leaves Roots Roots	OrgansIndividuals'Leaves & rootsAbLeaves & rootsCaLeaves & rootsBjLeavesAbLeavesBdRootsBdRootsBd

*Selected from Parisod & Christin, 2008, New Phytologist 178: 436–447

Supplemental Table 2: Iterative hybrid assembly of cDNA libraries detailed in Table S1 to infer the *Biscutella laevigata* subsp *laevigata* transcriptome, with summary statistics of resulting contigs.

				<u>^</u>	^
Assembly	lotal	Number of	Largest	Coverage	Coverage
step	number of	large	contig	long	short
	contigs	contigs ^a	(bp) ^b	reads ^{b,c}	reads ^{b,c}
1	404,105	15,772	3,692	4.75	24.64
2	402,172	20,036	5,402	4.31	25.29
3	333,770	16,874	4,118	4.96	10.45
4	347,677	22,214	6,236	4.06	18.03
5	313,668	22,711	4,305	4.06	12.18
6	1,134,879	24,462	5,282	3.71	15.83

^aLarger than 1000 bp

^bAmong contigs assembled during the corresponding step

^cMean coverage of long and short reads produced by Roche 454 and SOLiD, respectively

Supplemental Table 3: Overall retention bias of *Biscutella laevigata* transcripts highlighted by a selection of significantly (α = 0.05) over-represented GO categories among unigenes that did not group in gene families (with negative odds-ratios) vs that presented several transcripts (with positive odds-ratios) in gene families.

GO-slim	Log(odds ratio)
DNA recombination	-2.31
DNA dependent DNA replication	-2.22
DNA repair	-0.79
response to DNA damage stimulus	-0.75
DNA metabolic process	-0.6
response to light stimulus	0.53
response to temperature stimulus	0.64
response to UV	0.81
response to osmotic stress	0.9
response to metal ion	0.95
defense response to fungus	0.95
response to salt stress	0.96
response to high light intensity	0.98
response to UVB	1.1
regulation of photosynthesis	1.41
regulation of photosynthesis light reaction	1.66
photoinhibition	2.22
postreplication repair	2.44

()
\geq	
4	
ſ	1
<u>د</u>	-
ď)
Ē	5
5	
ç)
2	2
ſ	•
"	2
7	
.9	2
7	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
+	;
	2
C,	)
2	2
.C	)
C	5
ì	:
1	÷.
5	
$\overline{\mathbf{A}}$	
-	•
C	ת
Ē	
÷	;
2	2
Ľ	
ç	2
C	2
<u>v</u>	2
,ď	)
Ľ	
2	5
7	Ś
_	
τ	5
π	5
4	
Å	<u> </u>
5	2
2	?
Ċ	)
- 5	5
Ē	
π	5
$\rightarrow$	<b>.</b>
<u>د</u>	-
ď	)
<u>ч</u>	-
- i	
5	5
C	5
innci	5
cruci	5
l cruci	555
ral cruci	
tral cruci	
stral cruci	
estral cruci	
cestral cruci	
ncestral cruci	
ancestral cruci	
s ancestral cruci	
te ancestral cruci	
the ancestral cruci	
f the ancestral cruci	
of the ancestral cruci	
s of the ancestral crucit	
is of the ancestral cruci	
sks of the ancestral cruci	
ocks of the ancestral cruci	
locks of the ancestral cruci	
blocks of the ancestral cruci	
blocks of the ancestral cruci	
ic blocks of the ancestral cruci	
mic blocks of the ancestral cruci	
mic blocks of the ancestral cruci	
nomic blocks of the ancestral cruci	
shomic blocks of the ancestral cruci	
the ancestral cruci	
Genomic blocks of the ancestral cruci	
. Genomic blocks of the ancestral cruci	
<ol> <li>Genomic blocks of the ancestral crucity</li> </ol>	
<ol> <li>4. Genomic blocks of the ancestral crucit</li> </ol>	
le 4. Genomic blocks of the ancestral cruci	
ble 4. Genomic blocks of the ancestral cruci	
able 4. Genomic blocks of the ancestral cruci	
Table 4. Genomic blocks of the ancestral cruci	
Table 4. Genomic blocks of the ancestral cruci	
al Table 4. Genomic blocks of the ancestral cruci	
tal Table 4. Genomic blocks of the ancestral cruci	
ntal Table 4. Genomic blocks of the ancestral cruci	
ental Table 4. Genomic blocks of the ancestral cruci	
nental Table 4. Genomic blocks of the ancestral cruci	
mental Table 4. Genomic blocks of the ancestral cruci	
temental Table 4. Genomic blocks of the ancestral cruci	
olemental Table 4. Genomic blocks of the ancestral cruci	
unlemental Table 4. Genomic blocks of the ancestral cruci	
unnlemental Table 4. Genomic blocks of the ancestral cruci	
Supplemental Table 4. Genomic blocks of the ancestral cruci	

Ancestral chromosome (ACK)	Arahidonsis thaliana	Ganomic block		Bloc	-k hordare		
	chromosome		BAC clone	GenBank Accessio	n BAC	clone Ge	enBank Accession
	AT1	A	T25K16	AC007323	- F18	014	AC025808
AK1	AT1	в	F6F9	AC007797	- F12	K21	AC023279
	AT1	ပ	F2J6	AC009526	- T6F	122	AC009894
CAN	AT1	Δ	F13N6	AC058785	- T12I	P 18	AC010852
	AT1	ш	T23K8	AC007230	- F23	3A5	AC011713
	AT3	ш	T4P13	AC008261	- MM	/L2	AB025639
AK3	AT2	U	F16J10	AC007289	- T25I	N22	AC005693
	AT2	т	T10F5	AC007063	- F5H	14	AC006234
277	AT2	_	F7024	AC007142	- T9J	122	AC002505
AN4	AT2	7	F18A8	AC003105	- T8	13	AC002337
	AT2	¥	F 219	AC005560	- F3C	11	AC007167
- - 	AT3		K 9122	AP000599	- T4	A2	AP002066
	AT3	Μ	T10D17	<u>AL353865</u>	- F3	A4	AL132978
	AT3	N	F24M12	<u>AL132980</u>	- F16	MZ	AL138648
	AT4	0	F6N15	AF069299	- T1	J1	AF128393
9 X C	AT4	Ч	T3H13	<u>AF128396</u>	- T4	C9	AL080318
	AT5	Ø	K8E10	AB025618	- T8V	117	AF296835
	AT5	Ж	F7J8	<u>AL137189</u>	- T6C	121	AL090689
	AT5	S	F 5H8	<u>AB025605</u>	- MPI	K23	<u>AB020748</u>
AK7	AT4	Т	T1P17	AL049730	- F18	3A5	AL035528
	AT4	n	T6K21	<u>AL021889</u>	- T5J	17	AL035708
	AT5	Λ	MBD2	<u>AB008264</u>	- MG	C1	<u>AB028612</u>
AK8	AT5	M	K 16F 13	<u>AB024025</u>	- K9E	318	AB015471
	AT5	×	MUF9	<u>AB011483</u>	- K9	61	<u>AB013390</u>

## Supplemental Data. Geiser et al. (2016). Plant Cell 10.1105/tpc.16.00791

## Supporting Analysis: Phylogenetics of gene pairs under whole genome duplications (WGDs)

Phylogenetic trees for a subset of the analyzed genes confirm that pairs of *Biscutella* transcripts are predominantly derived from the  $\alpha$ -WGD and the BI-m-WGD events.

Duplicated transcripts from *Biscutella laevigata* (BI) and their orthologs from *Arabidopsis thaliana* (At) and the outgroup *Cleome spinosa* (Cs: GenBank LIBEST_024987) were grouped into gene families and analyzed following the same procedure as detailed in Material and Methods. Among gene families including transcripts from all three species, corresponding ML trees containing BI-duplicates analyzed here were pruned for duplicates showing a maximum Ks=0.9 to focus on loci investigated here. Bayesian inferences were performed in MRBAYES 3.2.2 (http://mrbayes.sourceforge.net/) on 159 of the resulting families including one transcript from Cs and at least one transcript from At and two from BI. Using Cs as an outgourp, two independent analyses with four sequentially heated chains (temperature set at 0.02) were run for 10 million generations. The initial 20% of sampled trees were discarded (burn-in) and a tree was sampled every 5000 generations to compute the maximum clade credibility tree. Resulting topologies were sorted, taking uncertainty into account, with the R package APE (http://ape-package.ird.fr).

Under the multispecies coalescent and a rooted species tree topology ((BI,At),Cs), the coalescence ages for BI-m-duplicates (BI-1 and BI-2) is expectedly shallower than the speciation of At. Gene evolution under recurrent WGDs thus leads to trees including a topology congruent with the one of the species tree. Among collected trees, this topology occured twice when all  $\alpha$ - and m-duplicates have been retained (Figure A). Loss of specific duplicates from BI will always lead to trees including this topology (referred to as Topology A). Gene families showing a discrepant topology were further examined. Only differential retention of  $\alpha$ -duplicates between At and BI lead to discordant topologies such as ((BI1,At),BI2),Cs) that match our hypothesis (referred to as Topology B; Figure B). The majority of analyzed gene families (72.3%) presented such topologies congruent with recurrent WGDs. Remaining trees presented variable topologies (an example in Figure C) and revealed genes having unlikely evolved strictly under WGDs. Such cases are collectively referred to as Topology C.



Table: Proportions of the 159 gene families showing phylogenetic trees congruent with the three main topologies presented in the figure and matching the hypothesis of recurrent WGDs

	Number of congruent trees	Proportion	Matching hypothesis
Topology A	86	54.1%	
Topology B	29	18.2 %	72.3%
Topology C	44	27.7%	