Supplemental Figure 1

Supplemental Figure 1. Visible phenotypes of the two *dgd1* mutant alleles. Plants were grown for 35 days on a 16 h light/8 h dark cycle. The inserts show close-up views of the two *dgd1* mutants.

Supplemental Figure 2

Supplemental Figure 2. Level of expression of genes, mutations of which result in ectopic lignification. Wild-type and *dgd1-1* mutant plants were grown for 10 days on MS plates, then were harvested for total RNA isolation. Gene expression levels were analyzed by quantitative RT-PCR and normalized to *UBQ10* gene expression in the same sample, then expression in the *dgd1-1* mutant was expressed as a fold value compared to the wild type. Values are means \pm SD of four independent plant batches.

Supplemental Figure 3

Supplemental Figure 3. The dgd1 phenotypes are not caused by activation of auxin or ethylene signaling. (A) GUS staining of wildtype and *dgd1-1* plants containing the auxin-responsive DR5-GUS reporter transgene. The whole seedlings (top panels) and crosssections of inflorescence stems (bottom panels) were from 17- or 35day-old plants, respectively. (B) Visible phenotypes of 39-day-old wild-type, *ein2* single mutant, *dqd1-1* single mutant and dgd1-1 ein2 double mutant plants. (C) Expression of ethylene-responsive genes. Plants were grown for 10 days on MS plates, then expression of the ethylene-responsive genes EBP and ETR2 was analyzed by quantitative RT-PCR and expressed relative to UBQ10 gene expression. Values are means ± SD of three technical replicates.

Supplemental Table 1. Lipid composition of the wild-type and various mutant plants. Plants were grown on a 16 h light/8 h dark cycle for 10 days on MS plates, then were moved to soil for another 10 days. The means ± SEM for at least three independent plant batches are shown. Values are relative peak area (%). MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; PG, phosphatidylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; PI, phosphatidylinositol; SQDG, sulphoquinovosyldiacylglycerol; L-MGDG, Lyso-MGDG; L-DGDG, Lyso-DGDG; L-PG, Lyso-PG; L-PC, Lyso-PC; L-PE, Lyso-PE; L-PI, Lyso-PI; DAG, diacylglycerol; TAG, triacylglycerol.

	wild	d~d1 1	dgd1-2	coi1-30	coi1-30	aos	aos	aos
	type	aga1-1			dgd1-1		dgd1-1	dgd1-2
MGDG	33.5±8.3	28.4±3.8	24.0±3.4	30.6±5.6	31.0±5.4	30.5±8.9	29.1±3.5	31.9±4.3
DGDG	6.2±1.4	0.5±0.2	0.4±0.04	6.1±1.0	0.6±0.1	5.8±1.2	0.5±0.1	0.5±0.2
PG	27.2±4.7	33.5±2.3	36.6±2.4	28.5±3.2	31.6±1.2	28.7±4.0	30.5±0.5	31.8±2.3
PC	11.2±3.8	9.0±6.3	13.9±1.3	12.8±3.8	13.3±4.2	12.8±4.4	14.8±3.0	12.2±4.3
PE	16.6±1.8	22.2±3.8	19.2±5.4	16.6±1.1	18.6±1.5	17.2±1.3	19.5±0.6	18.2±1.0
PS	0.11±0.01	0.12±0.03	0.10±0.03	0.10±0.03	0.10±0.02	0.13±0.05	0.12±0.03	0.12±0.04
PI	0.33±0.02	0.39±0.05	0.29±0.10	0.26±0.10	0.29±0.05	0.24±0.11	0.22±0.09	0.29±0.03
SQDG	2.4±0.6	3.0±0.6	3.1±0.4	2.6±0.8	2.2±1.2	2.5±0.7	3.2±0.5	2.8±1.0
L-MGDG	0.14±0.11	0.07±0.01	0.04±0.02	0.10±0.07	0.11±0.08	0.06±0.07	0.07±0.05	0.10±0.09
L-DGDG	0.67±0.10	0.99±0.17	0.81±0.14	0.72±0.10	0.83±0.12	0.69±0.09	0.82±0.11	0.72±0.11
L-PG	0.05±0.03	0.14±0.13	0.07±0.05	0.02±0.02	0.07±0.08	0.03±0.01	0.04±0.02	0.07±0.09
L-PC	0.09±0.03	0.11±0.01	0.09±0.02	0.06±0.02	0.09±0.02	0.07±0.01	0.08±0.01	0.08±0.02
L-PE	0.08±0.03	0.09±0.00	0.07±0.01	0.05±0.02	0.07±0.02	0.06±0.01	0.06±0.01	0.06±0.02
L-PI	0.005±0.001	0.006±0.003	0.005±0.001	0.003±0.001	0.005±0.001	0.005±0.001	0.004±0.000	0.004±0.002
DAG	0.49±0.15	0.62±0.14	0.58±0.19	0.55±0.18	0.77±0.07	0.46±0.24	0.48±0.23	0.60±0.28
TAG	0.87±0.21	0.60±0.12	0.56±0.19	0.93±0.37	0.42±0.06	0.73±0.28	0.42±0.07	0.60±0.20

Supplemental Table 2. Primers used for quantitative RT-PCR and genotyping.

Primers for quantitative RT-PCR

Gene name	ATG number		Primer sequence	Reference			
UBQ10	414~05000	Fw	TCC GGA TCA GCA GAG GCT TA				
	At4g05320	Rv TCA GAA CTC TCC ACC TCA AG					
VSP1	At5g24780	Fw	GGG CGT ACT GGT CGT GGT TA				
		Rv	TCC CGA GTT CCA AGA GGT TTT				
	At5g44420	A+E ~ 4 4 4 0 0	A+E ~ 4 4 4 0 0	Fw	TGT TCT CTT TGC TGC TTT CGA CGC		
PDF1.2		Rv	TGT GTG CTG GGA AGA CAT AGT TGC				
	A+0~45140	Fw	GCC ATT GAG TTG ACT TGT CC	Grebner et al., 2013			
	At3g45140	Rv	CAC TTA GTT GTC TAT TTG CCG C				
EBP	At3g16770	Fw	CTG GGG TTT CTA TTC CAC CTC				
		Rv	CCT TCT TCA CTG CCT CCT CTT				
CTD0	At3g23150			TGA TCC AAA CTC ATC TCT TTC AGA			
EIR2		Rv	TTT ATA GCT AAA ACC GGA GAA ACA A				
CasA2	ALE - 0 E 1 70	A+E = 0.E 1.70	A+E = 0.5 1.70	A+5 -05470	Fw	CCA GAT TGA GAG AGA TTC AGA GAG T	
CesA3	AloguoT70	Rv	AAA CGT CGG AAT AGT TCA AAT CA				
oDE1 1	At5g47880	A+F = 47000	Fw	ACT GCC TTT GAT TCC GAG GA			
enr I-I		Rv	GCG ATG GTG AGG ATT TGA TTG				
EL D1	At1g05850	Fw	TGC CTT ACC CAT TTA CTG GAA				
ELP1		Rv	GGG TGG TTC AAG AGA TCA GC				
	At2g44745	Fw	GGT GGT TAA TGA TGA TCA GGA GA				
		Rv	TTC CAC TAT TTG ATC TCC ACC A				
	At1g12840	Attat 0040		CGT GTC GCA GAT AAT TTC AGG			
DEIS		Rv	CAC TTT GTT CAA AAT CAC GGA CT				
CDK29	At5g66210	Fw	TTG AGG ATG ACG ATT ACG TCT ATA TT				
CPR20		At5g66210		GGA GTA CCG ATT ACC TTT CTT GG			
1.022	At1g17420	Fw	TCC CTG CCG ATC TAA	Grobpor et al 2012			
		Rv	GTT TGG GAC GTA GCC A	Grebher et al., 2013			
LOX4	At1g72520	Fw	GCT TGC TTA GAT ACG ACA CT	Grobber et al. 2012			
		At1g/2520	AUG/2520	Al1g/2520	• Allg/2520	LUA4 ALIG/2520 R	
LOX6	AT1g67560	Fw	CGA AGA TTC CAC TGA CAC CA				
		Rv	TCG GAA GGT AGG CAT GGT T				
AOC1	AT3g25760	Fw	AACTCCGGTACCACCGTCTA				
		Rv	GGCTTAAGCGCCTTAGCTTC				
AOC2	AT3g25770	AT2025770 Fw		AATTAGATCGACACAGCCCCAAG	Stonzol et al. 0010		
		Rv	CCGAGACCGAACATTAAGCTGA				
АОС3	AT3g25770	AT3g25770	AT3g25770	Fw	CGAAGGAGATAGAAACAGTCCAGC	Stopzel et al. 0010	
				A13g25770	A13g25770	AT3g25770	Rv

Gene name	ATG number		Primer sequence	Reference		
AOC4	AT1g13280	Fw	GCCGTTCTCGTAAGCGTAATGT	Stenzel et al., 2012		
		Rv	GGAGTTCACGCGCTTAAATCC			
AOS	AT5g42650	Fw	CACCGGCGTTAGTCAAATCT			
		Rv	CCGGCGGATTCTAAGAAAA			
PLA-la2	At2g31690	A+0~21600	a At2=21600	Fw	TGAGGACAGTGACAATGTTGCATTA	
		Rv	CACGGCATTGGACCAATACATC			
PLA-Iβ2	At4g16820	444~10000	Fw	GTAATAACGGGAGAAGTCC	See et al. 2000	
		A14916820		CCGTCGACTAAGTGCAAG	3e0 et al., 2009	
PLA-Ιγ1	At1g06800	Att =00000	Fw	GCGAGTTGGGAACATTCG		
		Rv	CTCAACACCTTCACTCCCAAT			
PLA-Ιγ2	At2g30550	Fw	CGAGAGTTGGGAACGTTAGG			
		Rv	CTCTCATCACTTTCACTCCCAAT	Seo et al., 2009		
PLA-Ιγ3	At1g51440		Fw	GTTTCAGTTTCAGAAGTATGTG		
		Rv	CTCTTCTCTGCTTCTTCGTC	5eo et al., 2009		
DGL	AT1g05800	AT4 - 05000		Fw	GGCGGTTAATGAAGACAATTTTGGCGGC	
		Rv	ATGCCGCATTGGTCGCTGCGTTTGTAAA			
DAD1	AT2g44810	Fw	GATAACGTTAAGATGACAGCG	See at al. 2000		
		Rv	GTGGCCACATTGATGCTG	5e0 et al., 2009		

Primers for genotyping

Mutant name	Mutant line number	Primer sequence		
coi1-30		LP	TGG ACC ATA TAA ATT CAT GCA GTC	
	SALK_030046	RP	CTG CAG TGT GTA ACG ATG CTC	
dgd1-2	SAIL_851_G12	LP	CAT TAT GAT GGT GGG TTT TGG	
		RP	TCG CTT TTG TGT TTA GCC ATC	

Supplemental References

- Grebner, W., Stingl, N.E., Oenel, A., Mueller, M.J., and Berger, S. (2013). Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol 161, 2159-2170.
- Seo, Y.S., Kim, E.Y., Kim, J.H., and Kim, W.T. (2009). Enzymatic characterization of class I DAD1-like acylhydrolase members targeted to chloroplast in Arabidopsis. FEBS Lett 583, 2301-2307.
- Stenzel, I., Otto, M., Delker, C., Kirmse, N., Schmidt, D., Miersch, O., Hause, B., and Wasternack, C. (2012). ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. J Exp Bot 63, 6125-6138.