Towards Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving

Guido F. Pauli,^{*,†} Matthias Niemitz,[‡] Jonathan Bisson,[†] Michael W. Lodewyk,[§] Cristian Soldi,^{⊥,∥} Jared T. Shaw,[⊥] and Dean J. Tantillo,[⊥] Jordy M. Saya,[∇] Klaas Vos,[∇] Roel A. Kleinnijenhuis,[∇] Henk Hiemstra,[∇] Shao-Nong Chen,[†] James B. McAlpine,[†] David C. Lankin,[†] and J. Brent FriesenO

[†] Department of Medicinal Chemistry & Pharmacognosy and Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612, United States

[‡] PERCH Solutions Ltd.[,] Puijonkatu 24B5, 70110 Kuopio, Finland

[§] Physical Science Department, ^{Butte} College, Oroville, ^{California} 95965, United States

¹ Dept. of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States

Univ. Fed. de Santa Catarina, Campus de Curitibanos, Rod. Ulysses Gaboardi, Km 3, Curitibanos - SC, 89520-000, Brazil

^v Van't ^{Hoff} Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

^{OPhysical} Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 West Division Street, River Forest, Illinois 60305, United States

Supporting Information

TABLE OF CONTENTS

S1	Predicted coupling constants for the revised structure of aquatolide, 1b , displayed on a <i>I-correlation</i> map	S-3
S2	NMR Data (800 MHz) Isolated Aquatolide (1b) from Lodewyk et al. JACS 2012.	S-4
S 3	NMR Data Synthetic Aquatolide Using the Sample from Saya et al. Orgl. Lett. 2015	S-5

page

S1. Predicted coupling constants for the revised structure of aquatolide, 1b, displayed on a *J*-correlation map. This figure was adapted from the data from page S29 of Lodewyk, M. W.; Soldi, C.; Jones, P. B.; Olmstead, M. M.; Rita, J.; Shaw, J. T.; Tantillo, D. J. *J. Amer. Chem. Soc.* **2012**, *134*, 18550-18553.

δ	H-#	1	2	4a	4b	5a	5b	6	9	10	13	14	15
4.48	1		3	5	5	6	6	7	4	4	7	4	4
3.25	2	2.3254		4	4	5	5	6	3	4	6	5	5
2.50	4a	0.4581	-0.3956		2	3	3	4	5	4	6	6	6
2.02	4b	-0.0273	-0.0673	-15.7261		3	3	4	5	4	6	6	6
2.38	5a	0.0223	0.0021	1.8121	11.6851		2	3	6	5	5a	7	7
2.07	5b	0.0044	-0.0280	6.7326	13.0129	-20.9269		3	6	5	5a	7	7
5.84	6	-0.0077	0.1760	0.9081	-0.2494	3.4453	5.3638		5	6	4a	8	8
2.92	9	0.0670	-0.1190	-0.5521	-0.3150	-0.4070	-0.2731	-0.0002		3	5	5	5
2.64	10	1.8327	6.7667	-0.0503	-0.2801	-0.0022	-0.0575	0.0056	0.0735		6	4	4
1.86	13	-0.0021	0.0277	0.0115	-0.0185	2.8324	2.5084	1.8150	0.1372	0.0116		8	8
1.04	14	-0.0677	0.0898	0.0217	0.0477	-0.0051	0.0042	0.0021	-0.3778	-0.1962	0.0000		4
1.18	15	-0.1491	0.3876	0.0050	0.0016	0.0059	-0.0051	0.0047	0.0533	-0.1232	0.0000	0.5341	

S2. **NMR Data (800 MHz) Isolated Aquatolide (1b) from Lodewyk et al. JACS 2012**. ¹H NMR spectrum (Lorentzian-Gaussian window function with LB=(-)1.0 Hz and GF-0.10 Hz).

Raw NMR data: ¹H NMR FID (800 MHz), HiFSA PMS file: included in separate ZIP file.

S3. NMR Data Synthetic Aquatolide Using the Sample from Saya et al. Orgl. Lett. 2015. 900 MHz spectra: ¹H NMR (A), ¹³C NMR DEPT-135 (B), COSY (C), HSQC (D), and HMBC (E)

Raw NMR data: ¹H NMR FID (400 MHz), ¹H NMR FID (900 MHz), HiFSA PMS file: included in separate ZIP file.

Е