Supplementary Figures

Supplementary Figure 1 | Library of artificial *As*LOV2-NES hybrids. Top: sequence logo derived from multiple sequence alignment of 58 experimentally

validated NESs (adapted from la Cour *et. al*, 2003)¹. Below: alignment of artificial *As*LOV2-NES hybrids variants to the wild type (wt) *As*LOV2 J α helix residues 539-551. The NES 8 variant (black rectangle) was used as lead candidate for generating the optimization library (NESs 11-33). Residues shaded in grey are identical to corresponding wt *As*LOV2 residues. Orange rectangles depict residues in NESs 11-33 that were altered as compared to the lead candidate NES 8.

Supplementary Figure 2 | Qualitative screen of *As*LOV2-NES hybrids in HEK 293T cells. (a) Schematic of the general construct used. Each specific construct carries a distinct J α helix/NES hybrid whose sequence is shown in Supplementary Fig. 1. NLS: cMyc^{P1A} NLS. CMV: immediate early cycomegalovirus promoter. (b)

Fluorescence microscopy images of cells transiently transfected with the indicated NLS-mCherry-AsLOV2-NES variant or a corresponding control construct bearing the wild type AsLOV2 domain (wt AsLOV2) prior to induction (- light) and after 15 min of illumination with blue light pulses (+ light). Scale bar, 20 μ m.

Supplementary Figure 3 | Estimation of NLS-mCherry-LEXY nuclear export half-time in HEK 293T. Cells expressing NLS-mCherry-LEXY were induced with blue light pulses for 15 min. Only the first 330 s after starting the light exposure are shown (mean \pm s.e.m, n = 22 cells, 3 independent experiments).

Supplementary Figure 4 | LEXY functions in different cell lines. HELA cells and murine Hepa 1-6 cells transiently transfected with NLS-mCherry-LEXY were incubated in the dark for 3 min, then induced with blue light for 15 followed by a 20 min recovery phase in the dark. Left: fluorescence microscopy images at the indicated time points. Scale bar, 20 μ m. Right: Quantification of relative nuclear localization over time (mean \pm SD, n = 14 cells, 2 independent experiments for HELA, and n= 24 cells, 3 independent experiments for Hepa 1-6).

Supplementary Figure 5 | Nuclear export can be induced repeatedly. (a) HEK 293T expressing NLS-mCherry-LEXY were incubated for 3 min in the dark, followed by two cycles of 15 min irradiation with blue light (indicated by the cyan box) and 20 min recovery in the dark (mean \pm SD, n = 10 cells, 2 independent experiments). (b) HELA cells expressing NLS-mCherry-LEXY were incubated for 3 min in the dark followed by blue light irradiation (indicated by the cyan box) and dark recovery phases as indicated. Single-cell traces from 4 individual cells derived from 2 independent experiments are shown.

Supplementary Figure 6 | Proteins of different type, size and origin can be exported with LEXY. (a) Scheme showing golden gate cloning strategy enabling easy tagging of proteins with mCherry-LEXY using the two indicated entry

vectors. CMV, immediate early cycomegalovirus promoter; ccdB, death gene; NLS, cMyc^{P1A} NLS. (**b**,**c**) Top: Schematic of general construct used. Middle: Fluorescence microscopy images of 293T cells transfected with the indicated pLEXY (**b**) or pNLS-LEXY (**c**) variants prior to induction (- light) and after 15 min of illumination (+ light). Bottom: Corresponding quantifications of the relative nuclear fluorescence over time (mean \pm SD; sample sizes (i.e. number of cells) are n = 7 for Nxt1, n = 8 for Acp1, Cre recombinase and LexA, n = 11 for Sox2 and p21, n = 10 for Nanog and Cox17 (in **b**) and n = 7 for Acp1, n = 8 for Sox2, Nxt1, Nanog and p21, n = 9 for Cox17 and LexA, n = 10 for Cre recombinase (in **c**)).

Supplementary Figure 7 | Effect of protein size and DNA-binding activity on export kinetics. 293T cells were transiently transfected with the indicated constructs and illuminated with blue light (mean \pm SD, n = 22 cells from 3 independent experiments for NLS-mCherry-LEXY, and n = 33 cells from 4 independent experiments for NLS-Cre-mCherry-LEXY; **P* < 0.05, ***P* < 0.01, ****P* < 0.001 by Welch's *t*-test).

Supplementary Figure 8 | Simultaneous light-control of nuclear import and export. (**a**) Schematic of a construct for co-expression of NES-GFP-LINuS and NLS-mCherry-LEXY. CMV, immediate early cytomegalovirus promoter. NES (N-terminal and constitutive), I κ B α NES. LINuS, light-inducible nuclear localization signal (biLINuS 2 variant)². 2A, T2A peptide. Green boxes indicate amino acid residues in LINuS that are altered as compared to the wild type *As*LOV2 J α helix (wt J α). Numbers show the position of the corresponding residues in the full-length *As*LOV2 domain. (**b**) Fluorescence microscopy images of HEK 293T transiently transfected with the construct in (**a**) before (- light) and after (+ light) illumination with blue light for 15 min. Scale bar, 20 µm. (**c**) Corresponding quantification of the relative nuclear fluorescence of the cells shown in **b** (mean ± SD, n = 25 cells from 3 independent experiments).

Supplementary Tables

#	Name	Backbone	Insert/expressed fusion protein	Promoter	NLS	AsLOV2- NES hybrid	Source
1	pEGFP-N1	/	EGFP	CMV	/	/	Clontech
2	pcDNA3.1 (+)		/	CMV	/	/	Invitrogen
3	pmCherry- N1	/	mCherry	CMV	/	/	Clontech
4	H2B-GFP	pEGFP-N1	H2B-GFP	CMV	/	/	kind gift from Geoff Wahl ³ (Addgene plasmid #11680)
5	pDonor	/	ccdB	/	/	/	Invitrogen
6	pRL-TK	/	renilla luciferase	ТК	/	/	Promega
7	pBluescript II SK	/	/	/	/	/	/
8	p53	/	wild type human p53	CMV	/	/	/
9	pDN34	pcDNA3.1 (-)	PKIt_NES-mCherry-AsLOV2- biLINuS2	CMV	AsLOV2- biNLS2	/	previous work by us ² (Addgene plasmid #61343)
10	pDN77	pcDNA3.1 (-)	IkBα_NES-mCherry-AsLOV2- biLINuS2	CMV	AsLOV2- biNLS2	/	previous work by us ² (Addgene plasmid #61347)
11	pDN100	pFR-Luc	firefly luciferase	4xLexA binding site dependent minimal promoter	/	/	previous work by us ²
12	pDN101	pcDNA3.1 (-)	NLS-mCherry-AsLOV2- biNLS2	CMV	сМус ^{Р1А}	/	This Work
13	pDN102	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	сМус ^{Р1А}	NES 1	This Work
14	pDN103	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	сМус ^{Р1А}	NES 2	This Work
15	pDN104	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 3	This Work
16	pDN105	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 4	This Work
17	pDN106	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 5	This Work
18	pDN107	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 6	This Work
19	pDN108	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 7	This Work
20	pDN109	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 8	This Work
21	pDN110	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 9	This Work
22	pDN111	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 10	This Work
23	pDN112	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 11	This Work
24	pDN113	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 12	This Work

Supplementary Tab. 1: Plasmids used and developed in this study

Supplementary Tab. 1 continued

#	Name	Backbone	Insert/expressed fusion protein	Promoter	NLS	AsLOV2- NES hybrid	Source
25	pDN114	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 13	This Work
26	pDN115	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 14	This Work
27	pDN116	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 15	This Work
28	pDN117	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 16	This Work
29	pDN118	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 17	This Work
30	pDN119	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 18	This Work
31	pDN120	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 19	This Work
32	pDN121	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 20	This Work
33	pDN122	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 21	This Work
34	pDN123	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 22	This Work
35	pDN124	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 23	This Work
36	pDN125	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 24	This Work
37	pDN126	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 25	This Work
38	pDN127	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 26	This Work
39	pDN128	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 27	This Work
40	pDN129	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 28	This Work
41	pDN130	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 29	This Work
42	pDN131	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 30	This Work
43	pDN132	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	сМус ^{Р1А}	NES 31	This Work
44	pDN133	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 32	This Work
45	pDN134	pcDNA3.1 (-)	NLS-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 33	This Work
46	pDN135	pcDNA3.1 (-)	NLS-mCherry-(wild-type)AsLOV2	CMV	cMyc ^{P1A}	/	This Work
47	pDN136	pcDNA3.1 (-)	H2B-GFP-T2A-NLS-mCherry- AsLOV2-NES	CMV	сМус ^{Р1А}	NES 21	This Work
48	pDN137 (pLEXY)	pEGFP-N1	Bbsl x ccdB x Bbsl-mCherry- LEXY	CMV	/	NES 21	This Work
49	pDN138 (pNLS- LEXY)	pEGFP-N1	NLS- <i>Bbs</i> lxccdBx <i>Bbs</i> l-mCherry- LEXY	CMV	сМус ^{Р1А}	NES 21	This Work
50	pDN139	pEGFP-N1	NLS-ACP1-mCherry-AsLOV2- NES	CMV	cMyc ^{P1A}	NES 21	This Work
51	pDN140	pEGFP-N1	NLS-Sox2-mCherry-AsLOV2- NES	CMV	сМус ^{Р1А}	NES 21	This Work
52	pDN141	pEGFP-N1	NLS-Nanog-mCherry-AsLOV2- NES	CMV	cMyc ^{P1A}	NES 21	This Work
53	pDN142	pEGFP-N1	NLS-Nxt1-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 21	This Work
54	pDN143	pEGFP-N1	NLS-Cox17-mCherry-AsLOV2- NES	CMV	cMyc ^{P1A}	NES 21	This Work
55	pDN144	pEGFP-N1	NLS-p21-mCherry-AsLOV2-NES	CMV	cMyc ^{P1A}	NES 21	This Work
56	pDN145	pEGFP-N1	NLS-Cre_recombinase-mCherry- AsLOV2-NES	CMV	cMyc ^{P1A}	NES 21	This Work
57	pDN146	pEGFP-N1	NLS-LexA-mCherry-AsLOV2- NES	CMV	cMyc ^{P1A}	NES 21	This Work

Supplementary Ta	ab. 1 continued
------------------	-----------------

#	Name	Backbone	Insert/expressed fusion protein	Promoter	NLS	AsLOV2 -NES hybrid	Source
58	pDN147	pEGFP-N1	ACP1-mCherry-AsLOV2-NES	CMV	not present	NES 21	This Work
59	pDN148	pEGFP-N1	Sox2-mCherry-AsLOV2-NES	CMV	not present	NES 21	This Work
60	pDN149	pEGFP-N1	Nanog-mCherry-AsLOV2-NES	CMV	not present	NES 21	This Work
61	pDN150	pEGFP-N1	Nxt1-mCherry-AsLOV2-NES	CMV	not present	NES 21	This Work
62	pDN151	pEGFP-N1	Cox17-mCherry-AsLOV2-NES	CMV	not present	NES 21	This Work
63	pDN152	pEGFP-N1	p21-mCherry-AsLOV2-NES	CMV	not present	NES 21	This Work
64	pDN153	pEGFP-N1	Cre_recombinase-mCherry- AsLOV2-NES	CMV	not present	NES 21	This Work
65	pDN154	pEGFP-N1	LexA-mCherry-AsLOV2-NES	CMV	not present	NES 21	This Work
66	pDN155	pcDNA3.1 (-)	lkBα_NES-EGFP-biLlNuS2	CMV	as indicated	/	This Work
67	pDN156	pcDNA3.1 (-)	IkBα_NES-EGFP-biLINuS2- T2A-cMyc(P1A)_NLS-mCherry- LEXY	CMV	as indicated	as indicated	This Work
68	pDN157	pEGFP-N1	H2B-GFP-LEXY	CMV	/	NES 21	This Work
69	pDN158	pEGFP-N1	H2B-GFP-AsLOV2-NES27	CMV	/	NES 27	This Work
70	pDN159	pEGFP-N1	H2B-GFP-(wild-type)AsLOV2	CMV	/	/	This Work
71	pDN160	pcDNA3.1 (-)	NLS-mCherry-NES 17	CMV	cMyc ^{P1A}	/	This Work
72	pDN161 (pANY- entry)	pEGFP-N1	Bbsl x ccdB x Bbsl	CMV	/	/	This Work
73	pDN162	pEGFP-N1	LexATF-T2A-NLS-LexA- mCherry-LEXY	CMV	сМус ^{Р1А}	NES 21	This Work
74	pDN163	pEGFP-N1	LexATF-T2A-NLS-LexA-KRAB- mCherry-LEXY	CMV	cMyc ^{P1A}	NES 21	This Work
75	pDN164	pEGFP-N1	LexATF-T2A-NLS-mCherry- LEXY	CMV	cMyc ^{P1A}	NES 21	This Work
76	pPW1	pEGFP-N1	NLS-p53-mCherry-LEXY	CMV	cMyc ^{P1A}	NES 21	This Work
77	pPW2	pcDNA3.1 (+)	p53-mCherry	CMV	/	/	This Work
78	pPW3	pcDNA3.1 (+)	p53-NES-mCherry	CMV	/	/	This Work

oligo #	Sequence 5'> 3'	NES introduced	
1	TTTTCGTCTCTGTGAGCAAGGGCGAGGAGGATAAC		
2	TTTTCGTCTCTCATGCTAGCCAGCTTGGGTCTCCCTATAGTG		
3	CATGGCCGCAGCAAAGCGCGTGAAGCTGGAC	,	
4	TCACGTCCAGCTTCACGCGCTTTGCTGCGGC	/	
5	TTTTCGTCTCTCAATATTTTCTGCAGTTTTCTTAATCAG		
6	TTTTCGTCTCTTAGCTCGAGCGGCCGCCACTGTGCTGGATATC		
7	ATTGACCTGGCACTGAAGGAGCTGCCCGACCTGAACCTG	NEC1	
8	GCTACAGGTTCAGGTCGGGCAGCTCCTTCAGTGCCAGGT	INEST	
9	ATTGACCTGGCACTGAAGGAGCTGCCCGACCTGGACCTGGAC	NECO	
10	GCTAGTCCAGGTCCAGGTCGGGCAGCTCCTTCAGTGCCAGGT	INE 32	
11	ATTGACGAGCTGCAGAAGGAGCTGCCCGACCTGAACCTG	NECO	
12	GCTACAGGTTCAGGTCGGGCAGCTCCTTCTGCAGCTCGT	INE 55	
13	ATTGACGAGATGGTGAAGGAGCTGCCCGACATCCGCCTG	NECA	
14	GCTACAGGCGGATGTCGGGCAGCTCCTTCACCATCTCGT	NE34	
15	ATTGACGAGATGGTGAAGGAGCTGCCCGACATCAACCTG	NECE	
16	GCTACAGGTTGATGTCGGGCAGCTCCTTCACCATCTCGT	INE 35	
17	ATTGACGAGCTGGTGAAGGAGCTGCCCGACATCCGCCTG	NESG	
18	GCTACAGGCGGATGTCGGGCAGCTCCTTCACCAGCTCGT	NES6	
19	ATTGACGAGATCGCAAAGGAGCTGCCCGACCTGAACCTGGAGAACCTGCAG	NEC7	
20	GCTACTGCAGGTTCCAGGTTCAGGTCGGGCAGCTCCTTTGCGATCTCGT	NE37	
21	ATTGACGAGCTGGCAAAGGAGCTGCCCGACCTGAACCTGGAC	NES8	
22	GCTAGTCCAGGTTCAGGTCGGGCAGCTCCTTTGCCAGCTCGT	NESO	
23	ATTGACGAGATCGCAAAGGAGCTGCCCGACGTGAACCTGGAC	NESO	
24	GCTAGTCCAGGTTCACGTCGGGCAGCTCCTTTGCGATCTCGT	INE 35	
25	ATTGACGAGATCGCAAAGGAGCTGCCCGACCTGAACCTGGAC	NES10	
26	GCTAGTCCAGGTTCAGGTCGGGCAGCTCCTTTGCGATCTCGT	NESIO	
27	ATTGACGAGCTGGCCAAGGAGCTGCCCGACCTGAACCTGGACAGC	NFS11	
28	GCTAGCTGTCCAGGTTCAGGTCGGGCAGCTCCTTGGCCAGCTCGT	NESTI	
29	ATTGACGAGCTGGCCAAGGAGCTGCCCGACCTGAACCTGGACAGCAGC	NES12	
30	GCTAGCTGCTGTCCAGGTTCAGGTCGGGCAGCTCCTTGGCCAGCTCGT	NESIZ	
31	ATTGACGAGCTGGCCAAGGAGCTGCCCGACCTGAACCTGGACAGCAGCGAC CTGAGC	NEC12	
32	GCTAGCTCAGGTCGCTGCTGTCCAGGTTCAGGTCGGGCAGCTCCTTGGCCAG CTCGT	NES13	
33	ATTGAGGAGCTGGCCAAGGAGCTGCCCGACCTGAACCTGGAC	NEC14	
34	GCTAGTCCAGGTTCAGGTCGGGCAGCTCCTTGGCCAGCTCCT	INE314	
35	ATTGACGAGCTGCTGAAGGAGCTGCCCGACCTGAACCTGGAC	NES1E	
36	GCTAGTCCAGGTTCAGGTCGGGCAGCTCCTTCAGCAGCTCGT	INESTO	

Supplementary Tab. 2: Oligonucleotide sequences

Supplementary Tab. 2 continued

oligo #	Sequence 5'> 3'	NES introduced	
37	ATTGACGAGCTGGCCAAGCTGCTGCCCGACCTGAACCTGGAC	NES16	
38	GCTAGTCCAGGTTCAGGTCGGGCAGCAGCTTGGCCAGCTCGT	NESTO	
39	ATTGACGAGCTGGCCAAGGCCCTGCCCGACCTGAACCTGGAC	NEC17	
40	GCTAGTCCAGGTTCAGGTCGGGCAGGGCCTTGGCCAGCTCGT	NEST/	
41	ATTGACGAGCTGGCCAAGGAGCTGGAGGACCTGAACCTGGAC	NEC10	
42	GCTAGTCCAGGTTCAGGTCCTCCAGCTCCTTGGCCAGCTCGT	NESTO	
43	ATTGACGAGCTGGCCAAGGAGCTGGCCGACCTGAACCTGGAC	NEC10	
44	GCTAGTCCAGGTTCAGGTCGGCCAGCTCCTTGGCCAGCTCGT	INES19	
45	ATTGACGAGCTGGCCAAGGAGCTGCCCGACCTGGACCTGGAC	NECOO	
46	GCTAGTCCAGGTCCGGGCAGCTCCTTGGCCAGCTCGT	NE320	
47	ATTGACGAGCTGCTGAAGGAGCTGGCCGACCTGAACCTGGAC	NEC21	
48	GCTAGTCCAGGTTCAGGTCGGCCAGCTCCTTCAGCAGCTCGT	NE321	
49	ATTGACGAGCTGGCCAAGGAGCTGGCCGACCTGGACCTGGAC	NECOO	
50	GCTAGTCCAGGTCCAGGTCGGCCAGCTCCTTGGCCAGCTCGT	INE322	
51	ATTGACGAGCTGGCCAAGCTGCTGGAGGACCTGGACCTGGAC	NECOO	
52	GCTAGTCCAGGTCCAGGTCCTCCAGCAGCTTGGCCAGCTCGT	NES23	
53	ATTGACGAGCTGGCCAAGCTGCTGGCCGACCTGGACCTGGAC	NECOA	
54	GCTAGTCCAGGTCCAGGTCGGCCAGCAGCTTGGCCAGCTCGT	NES24	
55	ATTGAGGAGCTGGCCAAGCTGCTGCCCGACCTGAACCTGGAC	NES25	
56	GCTAGTCCAGGTTCAGGTCGGGCAGCAGCTTGGCCAGCTCCT		
57	ATTGAGGAGCTGGCCAAGGCCCTGCCCGACCTGAACCTGGAC	NES26	
58	GCTAGTCCAGGTTCAGGTCGGGCAGGGCCTTGGCCAGCTCCT	INE320	
59	ATTGAGGAGCTGGCCAAGGAGCTGGCCGACCTGAACCTGGAC	NECOZ	
60	GCTAGTCCAGGTTCAGGTCGGCCAGCTCCTTGGCCAGCTCCT	INES27	
61	ATTGACGAGCTGCTGAAGCTGCTGCCCGACCTGAACCTGGAC	NECOO	
62	GCTAGTCCAGGTTCAGGTCGGGCAGCAGCTTCAGCAGCTCGT	INE326	
63	ATTGACGAGCTGCTGAAGGCCCTGCCCGACCTGAACCTGGAC	NES20	
64	GCTAGTCCAGGTTCAGGTCGGGCAGGGCCTTCAGCAGCTCGT	INES25	
65	ATTGACGAGCTGGCCAAGCTGCTGGCCGACCTGAACCTGGAC	NESOO	
66	GCTAGTCCAGGTTCAGGTCGGCCAGCAGCTTGGCCAGCTCGT	NE350	
67	ATTGACGAGCTGGCCAAGGCCCTGGCCGACCTGAACCTGGAC	NEC21	
68	GCTAGTCCAGGTTCAGGTCGGCCAGGGCCTTGGCCAGCTCGT	INE 301	
69	ATTGACGAGCTGGCCAAGCTGCTGCCCGACCTGGACCTGGAC	NEC32	
70	GCTAGTCCAGGTCCAGGTCGGGCAGCAGCTTGGCCAGCTCGT	INLJJZ	
71	ATTGACGAGCTGGCCAAGGCCCTGCCCGACCTGGACCTGGAC	NEC33	
72	GCTAGTCCAGGTCCAGGTCGGGCAGGGCCTTGGCCAGCTCGT	INES33	

Supplementary Tab. 2 continued

oligo #	Sequence 5'> 3'	NES introduced
73	ATTGATGAGGCGGCAAAAGAACTTCCAGATGCTAATTTG	
74	GCTACAAATTAGCATCTGGAAGTTCTTTTGCCGCCTCAT	
75	TTTTCGTCTCTAACATGCGGTGACGTCGAGGAGAATCCTGGCCCAGGCGCCGCAGCA AAGCGCGTGAAGCTG	
76	TTTTCGTCTCATGCCAGAGCCAGCGAAGTCTGC	
77	TTTTCGTCTCTTGTTAGCAGACTTCCTCTGCCCTCTCCACTGCCCTTGTACAGCTCGTC CATGCCGAGAGTG	
78	TTTTCGTCTCGAATTCCGCCACCATGAAGTCTTCCGCGTGGATCCGGCTTAC	
79	TTTTCGTCTCGAATTCCGCCACCATGGCCGCAGCAAAGCGCGTGAAGCTGGACATGAA GTCTTCCGCGTGGATC	
80	TTTTCGTCTCTCACTGGCTGTGTATAAGGGAGCCTGAC	
81	TTTTCGTCTCTGTGAGCAAGGGCGAGGAGGATAACATG	
82	TTTTCGTCTCCTTTCTGCATTACGGGGCCGTC	
83	AAAACGTCTCCGAAAACCATGGGCTGGGAGGCCTC	
84	TTTTCGTCTCTGGCCGCTCGAGCTAGTCCAGGTTCAGGTC	
85	TTTTGCTAGCATGCCCAGCACCCGGATCCAGCAGCAGCTGGGCCAGCTGACCCTGGA GAACCTGCAGGTGAGCAAGGGCGAGGAGCTGTTCAC	
86	TTTTGCGGCCGCCTACTTGTACAGCTCGTCCATG	/
87	TTTTCGTCTCCGAGCTAGTCCAGGTTCAGGTCGGCCAGCTCCTTC	
88		
89	TTTTCGTCTCTCGAGCGGCCGCCACTGTGCTGGATATC	
90	TTTTCGTCTCTGGTGGAAGTGAGGGAGTCATGCTGATTAAG	
91	TTTTCGTCTCTCACCTGAACCTCCAGATCCACCCTTGTACAGCTCGTCCATG	
92	GGACTCAGATCTCGAGCTCAAGC	
93	TAGAGTCGCGGCCGCTCGAGTCATTGTCTTCACTGGCTGTGTATAAGGGAG	
94	TTTTAACGTCTCACATGGAGGAGCCGCAGTCAGATCCTAG	
95	TTTTCGTCTCTCACGTCTGAGTCAGGCCCTTCT	
96	TTTTAAGCTTATGGAGGAGCCGCAGTCAGATC	
97	TTTAGGATCCTCCACCTCCGTCTGAGTCAGGCCCTTCTG	
98	TTTTGGAGGATCCGTGAGCAAGGGCGAGGAGGATAACATGG	
99	TTTTGGAGGTGGAGGATCCATGTTAGCCTTGAAATTAGCAGGTCTTGATATCGTGAGCA AGGGCGAGGAGG	
100	TTTTCTCGAGTTACTTGTACAGCTCGTCCATGCCGCCGGTG	

Supplementary Note 1

Details on LEXY engineering by "Ja helix topping"

The idea behind LEXY is to photocage an NES in the J α helix, so that it is exposed and able to interact with CRM1 receptors only in the lit state. The possibility to photocage short peptides in the J α helix of the AsLOV2 domain has been shown by several groups^{2, 4-7}. In all these cases, the specific peptide to be caged was either directly appended to the end of a truncated AsLOV2 Ja helix^{2, 6, 7} or embedded within the helix^{2, 4, 5}, thereby replacing a continuous stretch of AsLOV2 residues by the sequence to be caged. In contrast, we used the wild type $AsLOV2 J\alpha$ helix itself as starting scaffold and applied synthetic biology principles to progressively introduce known, NES-like features while highly preserving the native J α helix composition. We term this approach "J α helix topping" to signify that the J α helix is "topped up" with a new characteristic (an NES in this case). To this end, we first investigated the distribution of non-charged, hydrophobic residues naturally present within the wild type AsLOV2 Ja helix. We found that the wild type Ja helix carries a pattern of hydrophobic residues (A542-L546-A549-L551) matching that of the mammalian NES consensus sequence (L-x(2,3)-[LIVFM]-x(2,3)-L-x-[LI])¹ considerably well (Supplementary Fig. 1). Next, we introduced up to four point mutations into the J α helix in order to adapt several helix residues – in particular A542 and A549 - to corresponding hydrophobic residues present in wellstudied NESs (HIV REV⁸, IkB α^9 , p53¹⁰ or PKI¹¹ NES) or to preferred (i.e. frequent) amino acids as derived from a previously reported NES sequence alignment¹ of 58 experimentally validated NESs (Supplementary Fig. 1, NES sequence logo and NES 1-10). The resulting ten *As*LOV2-NES hybrids were screened by qualitatively investigating the nucleocytoplasmic translocation of NLS-mCherry-*As*LOV2-NES fusion constructs in human embryonic kidney (HEK 293T) cells upon pulsatile blue light irradiation using an epifluorescence microscope (Supplementary Fig. 2a,b; NES 1-10). We found modest, but significant light-induced nuclear export only for the construct harbouring NES 8, which contains four leucines representing an ideal NES consensus (Supplementary Figs. 1 and 2b).

Using NES 8 as lead candidate, we then constructed a second (optimization) library (Supplementary Figs. 1 and 2b; NES 11-33) by adapting single or multiple residues in NES 8 to preferred residues derived from the NES sequence alignment¹, while leaving the four leucines representing the NES consensus (L542, L546, L549 and L551) untouched. We also included three *As*LOV2-NES hybrids (NES11-13) carrying an elongated C-terminus.

Supplementary References

- 1. la Cour, T. et al. NESbase version 1.0: a database of nuclear export signals. *Nucleic Acids Res* **31**, 393-396 (2003).
- 2. Niopek, D. et al. Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells. *Nature communications* **5**, 4404, doi:10.1038/ncomms5404 (2014).
- 3. Kanda, T., Sullivan, K.F. & Wahl, G.M. Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. *Curr Biol* **8**, 377-385 (1998).
- 4. Lungu, O.I. et al. Designing photoswitchable peptides using the AsLOV2 domain. *Chemistry & biology* **19**, 507-517 (2012).
- 5. Yi, J.J., Wang, H., Vilela, M., Danuser, G. & Hahn, K.M. Manipulation of endogenous kinase activity in living cells using photoswitchable inhibitory peptides. *ACS Synth Biol* **3**, 788-795 (2014).
- 6. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. *Nature methods* **9**, 379-384 (2012).
- 7. Yumerefendi, H. et al. Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation. *PloS one* **10**, e0128443, doi: 10.1371/journal.pone.0128443 (2015).
- 8. Fischer, U., Huber, J., Boelens, W.C., Mattaj, I.W. & Luhrmann, R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. *Cell* **82**, 475-483 (1995).
- 9. Johnson, C., Van Antwerp, D. & Hope, T.J. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. *EMBO J* **18**, 6682-6693 (1999).
- 10. Stommel, J.M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. *EMBO J* **18**, 1660-1672 (1999).
- 11. Hauer, J.A., Barthe, P., Taylor, S.S., Parello, J. & Padilla, A. Two well-defined motifs in the cAMP-dependent protein kinase inhibitor (PKIalpha) correlate with inhibitory and nuclear export function. *Protein Sci* **8**, 545-553 (1999).