Supplementary Figures

Supplementary Fig. 1. Comparison of the number of genes, exons and genome size (in Mb) in 12 arthropod genomes (based on EnsemblGenomes release 12).

Supplementary Fig. 2. (a) Comparison of the number of genes and their average length in 12 arthropod genomes (based on EnsemblGenomes release 12). (b) Comparison of the number of exons and their average length in 12 arthropod genomes (based on EnsemblGenomes release 12).

Supplementary Fig. 3. (a) Comparison of the number of introns and their average length in 12 arthropod genomes (based on EnsemblGenomes release 12). (b) Comparison of the genome size and and average intron length in 12 arthropods genomes (based on EnsemblGenomes release 12).

Supplementary Fig. 4. BAC mapping to *I. scapularis* genome scaffolds.

Annotated scaffolds were mapped to 45 sequenced BACs to assess the level of representation in the current annotated assembly. (a): Nucmer alignments of all BACs (x axis) to IscW annotated scaffolds (y axis). (b, c and d): Individual BAC sequences represented in two or more IscW scaffolds (b), BAC sequence does not align significantly to any scaffold (b) and BAC sequence is represented by a single IscW scaffold (c). All mappings are shown in Supplementary Table 4.

Supplementary Fig. 5. Alignment of *Ixodes scapularis* Expressed Sequence Tag (EST) and cDNA sequences to IscaW1 scaffolds. The *I. scapularis* EST set, comprising 193,151 EST and cDNA sequences, was aligned to the IscaW1 scaffold sequences and assembled. EST sequences were utilized to generate high quality training sets and improve gene structures. ESTs assembled using PASA, were aligned to the core scaffolds representing the annotated genome. ESTs were also used to evaluate and capture potential genes in small contigs that were not initially included in the annotated scaffolds. EST hits to small contigs that are not part of the annotated scaffolds typically represent transcripts derived from transposable elements such as non-LTR type elements, and do not contain an open reading frame.

Supplementary Fig. 6. Functional analysis of the *lxodes scapularis* IscaW1 gene models showing the gene ontology results for: (a) Biological Process (b) Cellular

Component and (c) Molecular Function categories. Multi-level pie charts show all GO terms that exceed the cut-off value of 1,000 sequences. Numbers in parentheses indicate the total number of sequences assigned to a specific GO term.

Supplementary Fig. 7. Schematic showing the strategy employed for the identification of all LTR retrotransposons in the genome of *Ixodes scapularis*. b. Identification of LTR elements. b. Phylogenetic analysis. C. Identification of the number of copies of each LTR retrotransposon. Circles indicate databases used for searches. Rectangles indicate input/output files and. Programs used are written in bold beside arrows. See Supplementary text for details. CCD = Conserved Domain Database, RT = Retrotranscriptase; RH = Ribonuclease; INT = Integrase.

Supplementary Fig. 8. New Ty3/gypsy lineages in the genome of *Ixodes**scapularis.* Phylogenetic relationships between the Ty3/gypsy retrotransposons of *Ixodes scapularis* and insect genomes inferred by the NJ method and based on the conserved domains of RT, RnaseH, and INT⁵¹. Bootstrap values (1,000 replications) supporting the clusters of each lineage of the Ty3/gypsy family are shown. Names of Ty3/gypsy lineages are shown in capitals. Two new lineages (named Toxo and Squirrel; indicated by asterisk) are supported by bootstrap values of 99%. The phylogeny contains elements from *Ixodes scapularis* (red branches), *Drosophila melanogaster, Anopheles gambiae, Aedes aegypti*, and *Culex pipiens*. Non-insect representative elements in the phylogeny are the retrotransposons *Ty3* from the yeast *Saccharomyces cerevisiae, Cyclops* from the plant *Vicia faba*, and *Cer1* from the Nematoda *Caenorhabditis elegans*.

Supplementary Fig. 9. Ixodes scapularis gene orthology and homology across Arthropoda. Orthologous and homologous relations between *I. scapularis* genes and those from other sequenced arthropods were examined using orthologous groups delineated across 87 arthropod species from www.OrthoDB.org²⁵ (release 8). About 30% of *I. scapularis* genes have recognizable orthologs in all or almost all of the representative species selected from nine different arthropod lineages (green fractions, at least 13 of the 14 species - single-copy or with duplications). A further ~30% of I. scapularis genes are less widely conserved across Arthropoda (blue fractions, present in 2-12 of the 14 species, or present in at least one of the 73 other arthropods). Of the remaining *I. scapularis* genes with no identifiable orthology, about half exhibit homology (e-value <1e-05) to genes from the other 86 arthropods or to other *I. scapularis* genes (yellow fractions, homology to other arthropod genes or homology only to other genes in the same genome). The two chelicerates show very similar fractions of genes that currently have no significant homologs in other arthropod genomes, so-called "orphan" genes. The major fractions of the two chelicerate species' gene sets are labeled with the corresponding percentages of their total gene counts.

3	null + + + + + + + + + + + + + + + + + +	a la
AD Smith	Mitochondrial genome of <i>Ixodes scapularis</i>	CON3 mad3
FrnL Innel	14,535 bp	4 Spou
57,000	COB nado nad4L nad4	/*

Ixodes scapularis and other non-Australasian Ixodes ticks (family Ixodidae)

 $cox1 cox2 KD atp8 atp6 cox3 Gnad3 ARN S_1 E F nad5 H nad4 nad41 TP nad6 cob S_2 nad1 L_2 L_1 rrnL V rrnS CR I QM nad2 WC Y$

Australasian Ixodes ticks (family Ixodidae)

 $cox1 \ cox2 \ KD \ atp8 \ atp6 \ cox3 \ G \ nad3 \ A \ R \ N \ S_1 \ E \ \underline{F} \ \underline{nad5 \ Hnad4} \ \underline{nad41} \ T \ \underline{P} \ \underline{nad6} \ cob \ \underline{S_2} \ \underline{nad1 \ L_2 \ L_3} \ \underline{C_2^R} \ \underline{rrnL \ V} \ \underline{rrnS} \ \underline{C_{\#1}^R} \ I \ \underline{O} \ Mnad2 \ \underline{WC \ Y} \ \underline{V} \ \underline{V}$

Metastriate ticks (family Ixodidae)

cox1 cox2 KD atp8 atp6 cox3 G nad3 A R NS1E nad1 L2 rrnL V rrnS CR 1 Q F nad5 H nad4 nad4L T P nad6 cob S2 L1 CR 2 CM nad2 WY

Soft ticks (family Argasidae) and nuttalliellid ticks (family Nuttalliellidae)

cox1 cox2 KD atp8 atp6 cox3 G nad3 A R N S E F nad5 H nad4 nad41 T P nad6 cob S nad1 L, L, rnL V rnS CR I Q M nad2 WC Y

Putative ancestor of insects and crustaceans

cox1 L₂ cox2 KD atp8 atp6 cox3 G nad3 A R N S₁ E F nad5 H nad4 nad4L T P nad6 cob S₂ nad1 L, rrnL V rrnS CR I Q M nad2 W C Y

Putative ancestor of arthropods

cox1 cox2 KD atp8 atp6 cox3 G nad3 A R N S E F nad5 H nad4 nad4L T P nad6 cob S, nad1 L, L, rnL V rnS CR 1 Q M nad2 W	W <u>C</u> Y
---	--------------

Supplementary Fig. 10. The organization of the mitochondrial genome of *Ixodes scapularis* (a), and comparison of mitochondrial gene arrangement between *I. scapularis* and other ticks and arthropods (b). (a) Genes are shown as boxes and were drawn approximately to scale. Arrows indicate the orientation of transcription.

Protein-coding and rRNA genes are abbreviated as *atp6* and *atp8* (for ATP synthase subunits 6 and 8), *cox1-3* (for cytochrome c oxidase subunits 1-3), *cob* (for cytochrome b), *nad1-6* and *4L* (for NADH dehydrogenase subunits 1-6 and 4L), and *rrnL* and *rrnS* (for large and small rRNA subunits). tRNA genes are shown with the single-letter abbreviations of their corresponding amino acids. The two tRNA genes for leucine are L_1 (anti-codon sequence UAG) and L_2 (UAA), and those for serine are S_1 (UCU) and S_2 (UGA). *CR* is the abbreviation for the putative control region. **(b)** The circular mitochondrial genomes are linearized at the 5' end of *cox1* (for the purpose of illustration). Genes and putative control regions (*CR*) are shown as boxes but were not drawn to scale. Genes are transcribed from left to right except those underlined, which are transcribed from right to left. Putative control regions are highlighted in black. Dark, grey, shaded-boxes indicate genes that changed position relative to the putative ancestor of arthropods. Pale, grey, shaded-boxes indicate genes that changed both position and the orientation-of-transcription, relative to the putative ancestor of arthropods.

Supplementary Fig. 11. Introns in single-copy orthologs across 12 species. Introns were mapped on to the protein sequence alignments of 524 Strict Single-Copy (SSC) orthologs and 1,529 Relaxed Single-Copy (RSC) orthologs, allowing for small splice site changes, and conserved regions with an intron in at least one species were identified by requiring >30% amino acid identity in the aligned blocks flanking the intron position. Between 32% and 52% of introns in each species are located in well-aligned core regions of the ortholog alignments and therefore may be compared across the 12 species, and examining SSC or RSC sets does not affect the proportions of informative introns. Abbreviations: *NVECT, Nematostella vectensis; HSAPI, Homo sapiens; MMUSC, Mus musculus; GGALL, Gallus gallus; DRERI, Danio rerio; ISCAP, Ixodes scapularis; DPULE, Daphnia pulex; PHUMA, Pediculus humanus; NVITR, Nasonia vitripennis; TCAST, Tribolium castaneum; AGAMB, Anopheles gambiae; DMELA, Drosophila melanogaster.*

Supplementary Fig. 12. 12-species phylogeny based on the conservation of intron positions. Euclidean distance matrices from presence/absence matrices for 4,621 Strict Single-Copy (SSC, a & b) and 13,459 Relaxed Single-Copy (RSC, c & d) ortholog intron positions were employed to construct phylogenetic trees using Unweighted Pair Group Method with Arithmetic Mean (UPGMA, a & c) and Neighbor Joining (NJ, b & d) algorithms. *I. scapularis (ISCAP)* consistently shows greater similarity to the outgroup

species (red), human, mouse, chicken, zebrafish and sea anemone, than to the pancrustaceans (blue). Bootstrap values are indicated for the two nodes on each tree with less than 100% support: the alternative topologies cluster *PHUMA* and *NVITR* together and/or swap the positions of *DRERI* and *GGALL*. Unrooted radial trees are presented at the lower left of each panel. Abbreviations: *NVECT*, *Nematostella vectensis*; *HSAPI*, *Homo sapiens*; *MMUSC*, *Mus musculus*; *GGALL*, *Gallus gallus*; *DRERI*, *Danio rerio*; *ISCAP*, *Ixodes scapularis*; *DPULE*, *Daphnia pulex*; *PHUMA*, *Pediculus humanus*; *NVITR*, *Nasonia vitripennis*; *TCAST*, *Tribolium castaneum*; *AGAMB*, *Anopheles gambiae*; *DMELA*, *Drosophila melanogaster*.

Supplementary Fig. 13. Intron gain/loss estimates across the 12-species phylogeny. Analysis of intron gain and loss across the 12-species phylogeny for the Strict Single-Copy (SSC) and Relaxed Single-Copy (RSC) sets of orthologs using Dollo Parsimony (DP) and Posterior Probability (PP) methods implemented in the MALIN

suite for maximum likelihood analysis of intron evolution in eukaryotes³³. Data are normalized by the maximum number of introns (always *NVECT*) in order to compare the estimates from different sets using different methods. Normalization: Gained, Lost, or Present Introns / Maximum number of Introns. NB: the scale for the normalized gain and loss estimates (0.0-0.5) is double that of the normalized presence data (0.0-1.0). Corresponding numbers are presented in Supplementary Table 9. Abbreviations: *NVECT*, *Nematostella vectensis*; *HSAPI*, *Homo sapiens*; *MMUSC*, *Mus musculus*; *GGALL*, *Gallus gallus*; *DRERI*, *Danio rerio*; *ISCAP*, *Ixodes scapularis*; *DPULE*, *Daphnia pulex*; *PHUMA*, *Pediculus humanus*; *NVITR*, *Nasonia vitripennis*; *TCAST*, *Tribolium castaneum*; *AGAMB*, *Anopheles gambiae*; *DMELA*, *Drosophila melanogaster*.

Supplementary Fig. 14. Intron length distributions across 12 species. The length distributions of informative introns for the Relaxed Single-Copy (RSC) orthology sets are

plotted: RSC All, all informative introns; RSC Shared, informative introns found in *ISCAP* and *DPULE* and at least one non-arthropod and at least one insect. Boxes indicate the median, 1st and 3rd quartiles, and whiskers show up to 1.5 times the interquartile range, box heights are proportional to the number of introns. *I. scapularis* (*ISCAP*) introns are most similar to those of *MMUSC* and other vertebrates, and more than an order of magnitude longer than pancrustacean introns. *NVECT*, *HSAPI*, *MMUSC*, *GGALL*, *DRERI*, and *ISCAP* scale to 10,000 bp (green axis) while the pancrustaceans scale to 1,000 bp (blue axis). The numbers, along with Wilcoxon test results, are presented in Supplementary Table 10. Abbreviations: *NVECT*, *Nematostella vectensis*; *HSAPI*, *Homo sapiens*; *MMUSC*, *Mus musculus*; *GGALL*, *Gallus gallus*; *DRERI*, *Danio rerio*; *ISCAP*, *Ixodes scapularis*; *DPULE*, *Daphnia pulex*; *PHUMA*, *Pediculus humanus*; *NVITR*, *Nasonia vitripennis*; *TCAST*, *Tribolium castaneum*; *AGAMB*, *Anopheles gambiae*; *DMELA*, *Drosophila melanogaster*.

Supplementary Fig. 15. Heme synthesis pathways and heme synthesis genes identified in the *Ixodes scapularis* genome. Candidate heme synthesis genes identified in the *I. scapularis* genome are shown in red. The VectorBase accession numbers for each of the putative *I. scapularis* heme synthesis genes are listed in Supplementary Table 20.

Supplementary Fig. 16. Schematic representation of putative CPs and Vgs detected in *Ixodes scapularis* genome compared to the confirmed counterparts from *Dermacentor variabilis*. DUF1943: a domain of unknown function, LPD_N: lipid binding domain, SP: signal peptide, vWD: von Willebrand type D domain. Arrows represent the RXXR location while vertical solid lines represent the GL/ICG domain location. Amino acid sequence shown represents the N-terminal sequence of the 2 CP subunits starting directly downstream of the signal peptide and the RXXR cleavage sites. Dash lines represent missing sequences. DvCP1 (ABD83654), DvVg1 (AAW78577), DvVg2 (ABW82681), IsCP1 (ISCW021709), IsCP2 (ISCW014675), IsCP3 (ISCW021710), IsCP4 (ISCW012424), IsCP5 (ISCW012423), IsCP6 (ISCW021704), IsCP7 (ISCW021707), IsCP8 (ISCW021706), IsCP9 (ISCW021705), IsCP10 (ISCW024299), IsVg1 (ISCW013727), IsVg2 (ISCW021228).

Supplementary Fig. 17. Cytochrome P450 genes orthologous to the Halloween genes that encode steroidogenic cytochrome P450s for hydroxylations of 20-hydroxylecdysone. Blue font indicates the VectorBase accession number for the corresponding predicted protein sequences identified in the *I. scapularis* genome. Solid circles at branch points indicate bootstrapping support with higher than 70% in 1000 replication of the neighbor-joining tree. Insect genes in the orthologous group are from *Tribolium castaneum* (Tcas), *Drosophila melanogaster* (Dmel), *Apis mellifera* (Amel), and *Daphnia pulex* (Dpul).

HMG-S, Hydroxymethylglutaryl-CoA synthase HMG-R, Hydroxymethylglutaryl-CoA reductase JH, Juvenile Hormone

Supplementary Fig. 18. The mevalonate/farnesoic acid pathway in *Ixodes*

scapularis. Genes encoding enzymes highlighted in red were identified in the *I. scapularis* genome. There is no evidence that putative *I. scapularis* methyl transferases are involved in the synthesis of methyl farnesoate. There is no direct evidence for the production of methyl farnesoate or juvenile hormone (JH) in ticks, and no evidence that these compounds, when introduced exogenously, affect tick development and reproduction.

Supplementary Fig. 19. Recent gene expansion for farnesoic acid methyltransferase/methyl transferase in the *lxodes scapularis* genome showing 44 copies. Blue fonts are for the sequences found in the *l. scapularis* with the frequency of the EST for each predicted gene in the parenthesis and bar graph on the right column. Solid circles at the branching points are for bootstrapping supports with higher than 70% in 1000 replications of the neighbor-joining tree. Insect genes in the orthologous group are from *Tribolium castaneum* (Tc), *Drosophila melanogaster* (Dm), *Aedes aegypti* (Aa), *Helicoverpa armigera* (Ha), *Bombyx mori* (Bm), and *Eriocheir*

sinensis (Es). The VectorBase accession for the predicted protein and corresponding base-pair range of each gene on the *I. scapularis* scaffolds are; ISCW000145, DS624614 (1302..5354); ISCW000146, DS624614 (9631..10170); ISCW000153, DS763941 (182505..186413); ISCW000579, DS947122, (6316..11994); ISCW000581, DS629339, (179176..194485), ISCW001490, DS706167, (10281..31698); ISCW002306, DS932067, (897..5521); ISCW002935, DS768854, (735905..747194); ISCW003340, DS779352, (21734..27575); ISCW003481, DS793841, (18669..25357); ISCW004808, DS674354, (11645..16314); ISCW005290, DS970697, (84452..85469); ISCW005302, DS629339, (117659..129013); ISCW005399, DS777710, (6901..10266); ISCW005831, DS887498, (197112..207263); ISCW006025, DS954326, (27895..30828); ISCW006197, DS748781, (26926..29875); ISCW006201, DS851612, (37761..41988); ISCW006304, DS930042, (10717..12534); ISCW006899, DS690206, (9184..9657); ISCW006900, DS741077, (829..13451); ISCW006924, DS872849, (1313..1855); ISCW007168, DS789606, (16620..25257); ISCW007263, DS768854, (719374..727853); ISCW007368, DS779352, (129774..133039); ISCW007369, DS967436, (35953..41027); ISCW008032, DS652581, (3712..4362); ISCW008748, DS748497, (1567..25229); ISCW010473, DS615618, (20473..34490); ISCW011169, DS751725, (281571..300251); ISCW012621, DS638221, (12578..13060); ISCW013074, DS781271, (1344..5551); ISCW013675, DS781271, (13943..14422); ISCW014084, DS751647, (5328..26009); ISCW014478, DS880071, (28950..39043); ISCW014552, DS977870, (16944..20120); ISCW015008, DS644550, (414041..414787); ISCW015523, DS928935, (5815..7014); ISCW016046, DS972004, (8558..19224); ISCW017567, DS746255, (64199..77852); ISCW018807, DS661924, (43567..48537); ISCW018808, DS735014, (408..7677); ISCW019053, DS710865, (6303..9071); ISCW019728, DS970447, (16214..18413); ISCW023392, DS802122, (55507..58567); ISCW023772, DS938188, (37911..40070); ISCW023837, DS770764, (14572..19070).

Supplementary Fig. 20. Phylogenetic relationships among gustatory (GRs) and olfactory (ORs) receptors. Protein sequences from *Ixodes scapularis* (green), *Daphnia pulex* (blue), *Drosophila melanogaster* (orange) and *Anopheles gambiae* (maroon). Sugar and CO₂ receptors are highlighted in black. The insect olfactory receptors (grey) include protein sequences of several species: *D. melanogaster* (Or), *Tribolium castaneum* (Tc), *Anopheles gambiae* (Ag), *Pediculus humanus* (Ph), and *Acyrthosiphon pisum* (Ap).

Supplementary Fig. 21. Phylogenetic tree of the *Ixodes scapularis* lonotropic Receptor (IR) and ionotropic glutamate receptor protein sequences (blue), alongside their *Drosophila melanogaster* (red) orthologs. Different receptor subfamilies of receptors are highlighted with black vertical lines. Protein sequences

were aligned with MUSCLE, and the tree was built with RAxML under the WAG model of substitution with 1000 bootstrap replicates. Bootstrap values for each branch are indicated on the tree. The scale bar represents the number of substitutions per site.

Supplementary Fig. 22. In silico analysis of the (a) Toll and (b) IMD pathways in the *lxodes scapularis* genome. Gene identifiers were obtained from VectorBase (www.vectorbase.org) and compared to the Toll and IMD pathways in *Drosophila* melanogaster, Anopheles gambiae and Aedes aegypti mosquitoes. Gene identifiers from *I. scapularis* are boxed. Red question marks indicate genes that were not identified in the *I. scapularis* genome. Dagger marks represent sequences for which putative *I. scapularis* homologues were uncovered but cannot be categorized as precise orthologs. Asterisks indicate sequences for which putative *I. scapularis* homologues were uncovered but cannot be categorized as precise orthologs.

Supplementary Fig. 23. In silico analysis of the (a) JAK/STAT and (b) anti-viral RNAi pathways in the *I. scapularis* genome. Gene identifiers were obtained from VectorBase (www.vectorbase.org) and compared to the JAK/STAT and RNAi pathways in *Drosophila melanogaster*, *Anopheles gambiae* and *Aedes aegypti* mosquitoes. Gene identifiers from *I. scapularis* are boxed. Red question marks indicate genes that were not identified in the *I. scapularis* genome.

Supplementary Fig. 24. Protein expression in early and late *Anaplasma phagocytophilum* infection of *lxodes scapularis* ISE6 cells. The Venn diagram shows the number of proteins (in parenthesis) that are over- or under- represented in early versus late infection (*indicates significant overlaps; $p<10^6$).

Supplemental Fig. 25. The *Ixodes scapularis* ligand-gated anion channel (KR107244) expressed in *Xenopus laevis* oocytes was exposed in turn to a series of neurotransmitter molecules that have been shown to activate invertebrate ligand-gated anion channels. The transmitters were tested separately at 10^{-4} M on oocytes (n=29, 7, 7, 6, 7, 6, 6 respectively). Only L-glutamate yielded a current. All others tested (acetylcholine (ACh), γ -amino butyric acid (GABA), dopamine, histamine, serotonin, tyramine) were without effect. Glycine, which like GABA activates ligand gated anion channels in mammalian brain was also without effect (n=7). This selectivity for L-glutamate led to the nomenclature IscaGluCl1 for subunit KR107244.

Supplementary Tables

Assembly Settings	Α	В	С		D	
Input reads	~12,000,000	16,632,252	16,875,697		16,875,697	
Software version	CA 3.1	CA 4.0	CA 4.0		CA 4.0	
Partial overlaps for trim						
+ K-mer seed length	22	16	16	28	16	28
+ seed frequency	default	50	50	1000	50	1000
threshold						
+ error threshold	6%	6%	6%	6%	6%	6%
+ overlap length threshold	40	40	40	300	40	300
+ detect and trim chimer	yes	yes	no		no	
Full overlaps for unitigs						
+ K-mer seed length	22	22	14		14	
+ seed frequency	default	default	8000		8000	
threshold						
 + initial error threshold 	6%	6%	20%		20%	
 + basecall correction 	yes	yes	no		no	
 + final error threshold 	3%	3%	13%		13%	
Contig building						
+ assumed genome size	default	default	default		1 Gbp	
+ max error, unitig join	6%	6%	20%		20%	
+ max error, gap close	6%	6%	12%		20%	
Assembly Results	Α	В	С		D	
Contigs						
+ number of contigs	600,000	843,837	474,816		570,640	
 + max bases per contig 	30,000	76,172	83,974		117,687	
+ contig N ₅₀ bases	1,900	1,943	3,116		2,942	
+ mean bases per contig	n/a	1,997	2,554		2,433	
+ mean coverage	2.0	2.3	3.4 3.		3.5	
 reads incorporated 	30%	35%	37%		44%	
+ total contig bases	n/a	1,684,909,012	1,212,614,075		1,388,475,690	
Scaffolds						
+ number of scaffolds	500,000	680,216	327, 135		369, 495	
+ max span per scaffold	250,000	645,492	3,360,897		3,699,225	
+ scaffold N ₅₀ span	2,200	2,535	22,441		51,551	
+ mean span per scaffold	n/a	3,209	4,606		4,774	
+ total scaffold span	2.150.000.000	2.182. 541.146	1.506.73	4.076	1.763.9	20.678

Supplementary Table 1. Cumulative effect of *Ixodes scapularis* IscaW1 assembly intervention.

Four assemblies of *Ixodes scapularis*. Columns A through D summarize four runs of the Celera Assembler software. **Assembly Settings**. Partial overlaps are local alignments between read pairs. Celera Assembler trimmed terminal basecalls of reads based on drop off patterns in the partial overlap collection. Parameter changes during assemblies B and C were designed to enlarge the collection. Assemblies C and D used the union of two collections. Full overlaps are pair-wise alignments that fully cover at least two of the four read ends; they capture dovetail and containment relations. Parameter changes during assemblies C and D were designed to enlarge the collection. Parameter changes during assemblies C and D were designed to reduce sensitivity to high-coverage unitigs (genome size), consensus differences in multiple sequence alignments (unitig join), and basecall differences between trimmed sequences at contig ends (gap close). **Assembly Results.** In the Celera Assembler output, contigs and scaffolds are redundant organizations of the same consensus sequence. Every contig belongs to one scaffold and every scaffold spans one or more contigs. Contigs have positive read coverage at every base. Scaffolds span gaps between contigs where gap size is derived from spanning mate constraints. Scaffolds also span repetitive regions where a unitig consensus is placed as surrogate for read coverage. Contig N50 is the number of bases of the smallest contig in the minimal set that covers 50% of the assembly's total contig bases. Scaffold N50 is the span smallest scaffold in the minimal set that covers 50% of the assembly's total scaffold span. Mean coverage is the sum of bases after trimming in reads incorporated into contigs divided by total contig bases.

No. Scaffolds	Total No. Bases ^a	% Genome in					
		Scaffolds					
51	84,551,570	3.6%					
2,914	743,132,618	32.1%					
14,397	390,238,447	16.8%					
352,130	545,998,043	23.6%					
369,492	1,763,920,678	76%					
	No. Scaffolds 51 2,914 14,397 352,130 369,492	No. Scaffolds Total No. Bases ^a 51 84,551,570 2,914 743,132,618 14,397 390,238,447 352,130 545,998,043 369,492 1,763,920,678	No. Scaffolds Total No. Bases ^a % Genome in Scaffolds 51 84,551,570 3.6% 2,914 743,132,618 32.1% 14,397 390,238,447 16.8% 352,130 545,998,043 23.6% 369,492 1,763,920,678 76%				

Supplementary Table 2. Size and distribution of DNA on *Ixodes scapularis* IscaW1 scaffolds.

Calculations are based on the genome size estimate of 2.31 Gb ^aBased on total scaffold span for column "D" in Supplementary Table 1.
Supplementary Table 3. *Ixodes scapularis* genome annotation IscaW1 statistics

Transcription units - genes	lxodes scapularis	<i>Aedes aegypti</i> (AaegL1.3)	Anopheles gambiae (AgamP3.7)	Drosophila melanogaster (FB2012_04)	Daphnia pulex (Ensembl Genome 71)	Tetranychus urticae (Ensembl Genomes 72)
Total number of protein coding	20,486	15,998	12,810	13,937	30,894	18,224
genes						
Mean gene length (bp)	10,589	15,456	6,383	6,492	2,116	2,733
Median gene length (bp)	4,259	5,895	2,076	2,088	1,279	1,549
Shortest gene (bp)	95	105	111	117	150	99
Longest gene (bp)	242,297	428,674	365,622	395,988	114,502	104,962
Exons						
Total number of exons	89,663	64,752	56,398	74,024	144,872	69,647
Number of mono-exonic genes	5,707	1,874	1,187	2,170	5,149	2,213
Max. no. exons/gene	81	41	67	82	83	55
Median exon length (bp)	219	231	232	246	154	179
Introns						
Total number of introns	69,163	52,370	51,024	133,158	113,998	16,041
Percentage of genes with introns	72.10%	88.3%	90.8%	84.4%	83.3%	88%
Mean intron length (bp)	2,284	4,789	1,566	1,568	285	456
Median intron length (bp)	1, 599	145	96	103	76	96
Shortest intron (bp)	15	1	1	1	0 (!)	1
Longest intron (bp)	54, 366	329,294	249,417	141,627	48,487	59,291
Coding sequences (CDS)						
Mean CDS length (bp)	855	1,363	1,616	1,977	976	1,074
Median CDS length (bp)	594	1,053	11,191	1,404	702	807
Shortest CDS (bp)	95	81	78	20	150	63
Longest CDS (bp)	15,248	33,987	47,535	68,850	23,331	54,762
RNAs						
Non coding RNAs	4,439	1,279	612	474	3,567	n/a
tRNAs	4,402	962	450	314	3,559	n/a
miRNAs	51	84	121	n/a	7	n/a
rRNAs	8	233	41	160	1	n/a
Miscellaneous Statistics						
Gene frequency (genes/kb)	1/70	1/82	1/22	1/12	1/6	1/5
,						

Percentage of coding region in	6%	-	-	-	-	-	
genome							
Av. Intergenic region (bp) ^a	80, 410	-	-	-	-	-	
Av. Intergenic region (bp) ^b	57, 141	-	-	-	-	-	
Intergenic regions GC content	32%	-	-	-	-	-	
Coding regions GC content	56%	-	-	-	-	-	
Total GC content	NA	38.2	40.9	42.5		-	

NA, not available ^aten longest scaffolds ^bglobal

Supplementary Table 4. Analysis of *Ixodes scapularis* Bacterial Artifical Chromosomes (BACs) showing assembly completeness and mapping to IscaW1 scaffolds.

BAC Name	GenBank	BAC	Sequencing	Assembly	IscaW1	GenBank
	Accession	Length (bp)	Center	Status	Scaffold Hits ^a	IscaW1 Scaffold ID
ISG1-05A01	AC192414	117.688	Broad	1 C	2	DS776359
		,				DS810098
ISG1-33A01	AC192415	122,081	Broad	2 OP	3	DS818409
						DS825617
						DS768807
ISG1-36A01	AC192416	106,082	Broad	2 OP	1	DS694416
ISG1-40A01	AC192417	102,815	Broad	3 UP	4	DS840034
						DS872355
						DS892014
						DS682990
ISG1-41A01	AC192418	114,701	Broad	3 UP	1	DS907939
ISG1-43A01	AC192419	113,880	Broad	2 OP	multiple	N/A
ISG1-45A01	AC192420	146,997	Broad	19 UP	multiple	N/A
ISG1-49A01	AC192421	137,442	Broad	7 UP	2	DS858616
						DS746366
ISG1-51A01	AC192422	135,954	Broad	2 OP	1	DS752087
ISG1-53A01	AC192423	109,798	Broad	2 OP	multiple	N/A
ISG1-55A01	AC192424	145,462	Broad	5 UP	1	DS732299
ISG1-60A01	AC192425	145,957	Broad	6 OP	multiple	N/A
ISG1-64A01	AC192426	117,608	Broad	4 UP	1	DS868627
ISG1-66A01	AC192427	98,661	Broad	1 C	1	DS911446
ISG1-67A01	AC192428	109,864	Broad	3 OP	multiple	N/A
ISG1-68A01	AC192429	142,474	Broad	3 UP	multiple	N/A
ISG1-48A01	AC192742	133,074	Broad	1 C	1	DS780529
ISG1-54A01	AC192743	130,937	Broad	8 UP	multiple	N/A
ISG1-61A01	AC192744	115,169	Broad	2 OP	multiple	N/A
ISG1-02A01	AC200531	77,162	Broad	1 C	multiple	N/A
ISG1-01F14	AC205630	95,257	JCVI	1 C	multiple	N/A
ISG1-01P02	AC205631	108,728	JCVI	2 OP	multiple	N/A
ISG1-03K02	AC205632	26,509	JCVI	1 C	multiple	N/A
ISG1-03P02	AC205633	97,928	JCVI	4 OP	multiple	N/A
ISG1-06P02	AC205634	112,417		10	multiple	
ISG1-11P02	AC205635	104,824			1	DS800715
ISG1-12P02	AC205636	106,974	JCVI	6 OP	4	DS088082
						DS/0013/
						DS900007 DS826015
ISG1-14C07	AC205637	132 125		3 OP	multiple	N/A
	AC205057	102,120		1 0	multiple	
ISG1-15P02	AC205630	100,370			multiple	N/A N/A
ISG1-10F02	AC205059	92,703 100.065		4 OF 4 OP	multiple	N/A N/Δ
ISG1-24P02	AC205641	179 341		1 C	multiple	N/A
ISG1-27P02	AC205642	110 473		10	3	D\$850588
1001 211 02	/ 102000 12	110,170	0011	10	0	DS039300 DS028213
						DS859588
ISG1-31P02	AC205643	128.247	JCVI	1 C	1	DS891538
ISG1-37P02	AC205644	110,110	JCVI	2 OP	multiple	_ 000.000 N/A
ISG1-41M08	AC205645	120.605	JCVI	2 OP	2	DS712833
		-,				

						DS712833
ISG1-42P02	AC205646	122,242	JCVI	1 C	1	DS840967
ISG1-43E15	AC205647	115,710	JCVI	1 C	multiple	N/A
ISG1-44P02	AC205648	126,904	JCVI	3 OP	multiple	N/A
ISG1-47P02	AC205649	112,049	JCVI	2 OP	multiple	N/A
ISG1-56P02	AC205650	107,316	JCVI	1 C	1	DS636787
ISG1-58P02	AC205651	172,210	JCVI	2 OP	1	DS879425
ISG1-62P02	AC205652	50,437	JCVI	1 C	multiple	N/A
ISG1-63P02	AC205653	108,041	JCVI	1 C	3	DS976271
						DS897480
						DS981194
ISG1-69P02	AC205654	14,567	JCVI	1 C	multiple	N/A
	1.1					

Broad, the Broad Institute of MIT/Harvard; JCVI, J. Craig Venter Institute; C, complete assembly of BAC clone: BAC assembly sequence is complete and ungapped; OP, ordered pieces: the BAC assembly is incomplete but the order of contigs comprising the BAC is known; UP, unordered pieces: the BAC assembly is incomplete and the order of the pieces cannot be deduced basded on read mate pair information; ^anumeric value indicating number of IscaW1 scaffolds that align to the assembled BAC clone; multiple, 10 or more IscaW1 scaffolds align to the sequence of the assembled BAC clone.

BAC Clone	BAC	Genbank	IscaW1	Hit coordi	nates on BAC	% ID to	Gene coverage	Protein name
GenBank	length	Protein Locus	Gene	5' end	3' end	annotated	(%BAC/IscaW1)	
Accession	(bp)	Tag	length (bp)	0 0.1.4	0 0114	IscaW1 protein		
AC205647	115,710	ISCW001627	999	71,697	72,691	96.2	100	hypothetical protein
AC205650	107,316	ISCW001662	1,595	40,314	41,908	100	100	voltage-gated potassium channel
AC205637	132,125	ISCW005308	1,139	1,261	2,400	95.18	99.82	conserved hypothetical protein
AC192428	109,864	ISCW005551	813	51,858	52,672	97.06	100	hypothetical protein
AC205642	110,473	ISCW007049	903	11,042	11,941	95.57	100	hypothetical protein
AC205646	122,242	ISCW007900	912	12,862	13,716	97.19	93.53	conserved hypothetical protein
AC192414	117,688	ISCW008378	1,017	104,265	105,120	96.85	84.17	hypothetical protein
AC205636	106,974	ISCW009194	1,776	104,329	106,149	95.28	100	leucine-rich transmembrane protein, putative
AC205645	120,605	ISCW009445	1,086	36,434	37,293	98.84	79.01	hypothetical protein
AC205637	132,125	ISCW011925	1,182	99,621	100,799	97.88	99.83	hypothetical protein
AC205637	132,125	ISCW011924	909	101,454	102,362	97.14	100	hypothetical protein
AC192418	114,701	ISCW012420	1,188	101,002	102,058	95.84	87.96	polyprotein of retroviral origin
AC205636	106,974	ISCW013209	1,974	51,710	53,682	97.63	100	hypothetical protein
AC205648	126,904	ISCW014746	1,401	75,055	76,459	96.59	99.86	hypothetical protein
AC205653	108,041	ISCW015369	753	94,678	95,428	98.93	99.73	hypothetical protein
AC192428	109,864	ISCW017315	1,113	48,937	49,821	97.3	79.78	hypothetical protein
AC192418	114,701	ISCW018410	1,799	76,283	78,081	98.78	100	conserved hypothetical protein
AC192422	135,954	ISCW019007	1,464	88,949	90,400	96.6	99.8	transmembrane protein C9orf46
AC192422	135,954	ISCW019010	1,083	16,384	17,471	99.17	100	conserved hypothetical protein
AC205645	120,605	ISCW019863	2,507	86,223	88,736	96.07	100	zinc finger protein, putative
AC205645	120,605	ISCW019864	4,307	89,682	93,981	95.79	99.72	zinc finger protein, putative
AC205635	104,824	ISCW019867	6,487	80,684	87,155	98.68	100	zinc finger protein, putative
AC205635	104,824	ISCW019869	1,182	52,935	54,101	97.29	100	zinc finger protein, putative
AC205635	104,824	ISCW019871	1,353	4,616	5,971	99.41	100	carbon-nitrogen hydrolase
AC205646	122,242	ISCW020015	945	111,615	112,559	100	100	hypothetical protein
AC192421	137,442	ISCW021499	843	18,199	19,056	96.5	99.88	hypothetical protein
AC192421	137,442	ISCW021498	897	46,540	47,435	98.11	99.55	hypothetical protein
AC205640	109,965	ISCW024821	1,090	6,451	7,539	99.45	100	hypothetical protein

Supplementary Table 5. Analysis of gene content of *Ixodes scapularis* BAC clones. The IscaW1 predicted protein sequences were queried against the sequence of assembled BAC clones using BLASTX.

Supplementary Table 6. Putative microRNA genes identified in the *Ixodes scapularis* **genome.** MicroRNA gene predictions were consolidated from miRBase¹⁶⁰, miROrtho¹⁶¹, and VectorBase¹⁶², resulting in a conservative set of 45 miRNAs. Family: assigned based on similarity to miRBase miRNAs. miRBase-ID, miROrtho-ID, VectorBase-ID: resource specific gene identifiers. miRBase-Family: family identifier, if predicted. Chromosome, Start, End, Strand: location in the *I. scapularis* genome or trace reads.

Family	miRBase-	miROrtho-	VectorBase-ID	miRBase-Family	Scaffold	Start (bp)	End (bp)	Strand
	ID	ID						
bantam	MI0012259	616211	NA	MIPF0000153	DS612599	38772	38872	-
mir-133	MI0012266	NA	NA	MIPF0000029	DS613658	228744	228844	-
mir-7	MI0012282	615892	NA	MIPF0000022	DS629750	8358	8437	-
mir-263	MI0012272	NA	ISCW000811	MIPF0000122	DS633978	93542	93641	+
mir-263	NA	616209	ISCW000812	NA	DS633978	112822	112905	+
mir-96	MI0012288	NA	ISCW000813	MIPF0000072	DS633978	113211	113315	+
mir-279	MI0012274	615761	ISCW000516	MIPF0000184	DS634011	38506	38597	+
mir-153	MI0012268	617851	NA	MIPF0000050	DS642248	1296642	1296742	-
mir-219	MI0012270	NA	ISCW002511	MIPF0000044	DS658596	21107	21207	-
mir-315	MI0012278	NA	NA	MIPF0000141	DS711462	57333	57433	+
mir-8	MI0012286	615572	ISCW005313	MIPF0000019	DS755496	12152	12245	-
mir-2001	MI0010250	616271	NA	none	DS758004	38911	38988	-
mir-2	MI0012276	NA	NA	MIPF0000049	DS799611	45157	45257	-
mir-2	MI0012277	616921	NA	MIPF0000049	DS799611	45547	45647	-
mir-71	MI0012283	616923	NA	MIPF0000278	DS799611	45689	45789	-
mir-184	MI0012269	NA	NA	MIPF0000059	DS803854	570	670	-
mir-1	MI0012261	NA	ISCW019387	MIPF0000038	DS811420	416289	416380	+
mir-1905	NA	616494	NA	NA	DS833022	58235	58298	-
mir-124	MI0012265	NA	ISCW009604	MIPF0000021	DS840700	85144	85244	+
none	MI0015941	NA	NA	none	DS841188	7191	7293	+
mir-137	MI0012267	617785	NA	MIPF0000106	DS847994	158277	158377	-
mir-276	MI0016443	616110	NA	none	DS848078	34717	34803	-
mir-335	NA	618522	NA	NA	DS850031	1991	2088	+
mir-1993	MI0015940	NA	NA	none	DS862055	102	182	+
mir-1175	NA	616890	NA	NA	DS874548	51760	51844	-
mir-750	MI0012284	616924	NA	MIPF0000796	DS874548	52964	53064	-
mir-9	MI0012285	NA	NA	MIPF0000014	DS885551	436490	436590	+
mir-317	MI0012279	617989	NA	MIPF0000144	DS891538	57423	57523	-
mir-iab-4	MI0016445	617926	NA	MIPF0000151	DS891538	738905	739003	-
mir-iab-4	NA	617910	NA	NA	DS891538	738924	738992	+
mir-10	MI0012262	NA	NA	MIPF0000033	DS891538	2780812	2780883	+

mir-993	MI0012289	617990	NA	MIPF0000698	DS891538	3285820	3285911	-
mir-67	MI0012281	617852	NA	MIPF0000293	DS911299	1700291	1700391	-
mir-87	MI0012287	NA	NA	MIPF0000152	DS929532	41471	41571	-
mir-375	MI0012280	NA	NA	MIPF0000114	DS929532	41471	41571	-
mir-87	NA	617584	NA	NA	DS929532	41890	41991	-
mir-12	MI0012264	NA	NA	MIPF0000181	DS942119	45739	45839	-
mir-305	MI0016444	616960	NA	MIPF0000158	DS945001	228258	228352	-
mir-275	MI0012273	617124	NA	MIPF0000187	DS945001	243239	243339	-
mir-190	NA	616305	NA	NA	DS969850	171528	171624	+
mir-125	NA	NA	ISCW023847	NA	DS978597	217027	217099	-
mir-99	MI0012263	NA	ISCW023848	MIPF0000025	DS978597	252465	252565	-
let-7	MI0012260	NA	NA	MIPF0000002	gnl ti 1145246679	9 601	700	+
mir-29	MI0012275	NA	NA	MIPF0000009	gnl ti 1308393763	3 736	831	+
mir-252	MI0012271	NA	NA	MIPF0000285	gnl ti 1711070620) 757	857	+

Supplementary Table 7. Proportions of shared intron positions across 12 animal species. Examining conservation of intron positions between *ISCAP*, *DPULE* and either the five insects (*PHUMA*, *NVITR*, *TCAST*, *AGAMB*, *DMELA*) or the five non-arthropods (*NVECT*, *HSAPI*, *MMUSC*, *GGALL*, *DRERI*) reveals that greater than 10 times more intron positions are shared exclusively between at least one of the outgroup species (Cnidaria or Vertebrata) and *ISCAP*, compared to *DPULE* (13.80% compared to 1.08%). Conversely, *DPULE* shares about 4 times more intron positions exclusively with insects (2.34% compared to 0.58%). The percentages shown in Fig. B are the mean values from the numbers of shared or unique positions out of the total number of intron positions (4,621 SSC and 13,459 RSC) as detailed in the table. Abbreviations: *NVECT*, *Nematostella vectensis*; *HSAPI*, *Homo sapiens*; *MMUSC*, *Mus musculus*; *GGALL*, *Gallus gallus*; *DRERI*, *Danio rerio*; *ISCAP*, *Ixodes scapularis*; *DPULE*, *Daphnia pulex*; *PHUMA*, *Pediculus humanus*; *NVITR*, *Nasonia vitripennis*; *TCAST*, *Tribolium castaneum*; *AGAMB*, *Anopheles gambiae*; *DMELA*, *Drosophila melanogaster*.

Intron Positions	SSC	RSC	SSC%	RSC%	Mean%
OUT ONLY	656	1776	14.20	13.20	13.70
INS ONLY	128	403	2.77	2.99	2.88
OUT-ISCAP ONLY	659	1795	14.26	13.34	13.80
OUT-DPULE ONLY	47	155	1.02	1.15	1.08
INS-ISCAP ONLY	24	85	0.52	0.63	0.58
INS-DPULE ONLY	108	314	2.34	2.33	2.34
OUT-INS-ISCAP ONLY	330	1116	7.14	8.29	7.72
OUT-INS-DPULE ONLY	180	456	3.90	3.39	3.64
OUT-ISCAP-DPULE ONLY	68	180	1.47	1.34	1.40
INS-ISCAP-DPULE ONLY	27	52	0.58	0.39	0.49
ISCAP-DPULE ONLY	12	23	0.26	0.17	0.22
OUT-INS ONLY	239	646	5.17	4.80	4.99
OUT-INS-ISCAP-DPULE	432	1169	9.35	8.69	9.02
NVECT ONLY	476	1382	10.30	10.27	10.28
HSAPI ONLY	3	12	0.06	0.09	0.08
MMUSC ONLY	3	8	0.06	0.06	0.06
GGALL ONLY	37	124	0.80	0.92	0.86
DRERI ONLY	40	95	0.87	0.71	0.79
ISCAP ONLY	154	501	3.33	3.72	3.53
DPULE ONLY	502	1579	10.86	11.73	11.30
PHUMA ONLY	138	459	2.99	3.41	3.20
NVITR ONLY	136	431	2.94	3.20	3.07
TCAST ONLY	87	302	1.88	2.24	2.06
AGAMB ONLY	48	164	1.04	1.22	1.13
DMELA ONLY	87	232	1.88	1.72	1.80
Totals	4621	13459	100	100	100

OUT: at least one of 5 outgroup species, *NVECT*, *HSAPI*, *MMUSC*, *GGALL*, *DRERI*. INS: at least one of 5 insect species, *PHUMA*, *NVITR*, *TCAST*, *AGAMB*, *DMELA*. SSC: strict single-copy; RSC: relaxed single-copy.

Supplementary Table 8. Proportions of shared Ixodes scapularis intron positions. Examining pairwise conservation of intron positions between *ISCAP* and each of the other eleven species shows the greatest sharing with the non-arthropods (*NVECT*, *HSAPI*, *MMUSC*, *GGALL*, *DRERI*): about 3 times more than with *AGAMB* and *DMELA*, and about 1.5-1.8 times more than with *DPULE*, *PHUMA*, *NVITR*, and *TCAST*. Abbreviations: *NVECT*, *Nematostella vectensis*; *HSAPI*, *Homo sapiens*; *MMUSC*, *Mus musculus*; *GGALL*, *Gallus gallus*; *DRERI*, *Danio rerio*; *ISCAP*, *Ixodes scapularis*; *DPULE*, *Daphnia pulex*; *PHUMA*, *Pediculus humanus*; *NVITR*, *Nasonia vitripennis*; *TCAST*, *Tribolium castaneum*; *AGAMB*, *Anopheles gambiae*; *DMELA*, *Drosophila melanogaster*.

ISCAP	ALL SSC %	ALL RSC %	SHARED SSC %	SHARED RSC %
NVECT	29.86	30.07	35.01	35.67
HSAPI	31.84	32.3	33.13	33.82
MMUSC	31.83	32.03	33.12	33.54
GGALL	31.71	32.08	33.28	33.92
DRERI	31.84	32.18	33.43	33.94
DPULE	17.49	16.09	22.22	21.04
PHUMA	20.89	21.12	23.3	23.92
NVITR	19.5	19.92	21.79	22.57
TCAST	17.02	16.62	18.85	18.72
AGAMB	10.76	11.09	11.85	12.39
DMELA	10.31	10.85	11.57	12.25

SSC: strict single-copy, RSC: relaxed single-copy.

ALL: ISCAP-OTHER Shared / ISCAP-OTHER Total Intron Positions.

SHARED: ISCAP-OTHER Shared / ISCAP-OTHER Total Non-Unique Intron Positions.

Supplementary Table 9. Intron presence, gain, and loss estimates across the 12 animal species phylogeny. Intron presence, gain, and loss estimates across the phylogeny for the strict (SSC) and relaxed (RSC) sets of orthologs using Dollo Parsimony (DP) and Posterior Probability (PP) methods of the MALIN suite for maximum likelihood analysis of intron evolution in eukaryotes³³. The normalized numbers and the species phylogeny with all named nodes are presented in Supplementary Fig. 9. Abbreviations: *NVECT*, *Nematostella vectensis*; *HSAPI*, *Homo sapiens*; *MMUSC*, *Mus musculus*; *GGALL*, *Gallus gallus*; *DRERI*, *Danio rerio*; *ISCAP*, *Ixodes scapularis*; *DPULE*, *Daphnia pulex*; *PHUMA*, *Pediculus humanus*; *NVITR*, *Nasonia vitripennis*; *TCAST*, *Tribolium castaneum*; *AGAMB*, *Anopheles gambiae*; *DMELA*, *Drosophila melanogaster*.

	SSC30:	4621	1 site	s			RSC30: 13459 sites					
	DP			PP			DP			PP		
Branch/Leaf	present	gain	loss	present	gain	loss	present	gain	loss	present	gain	loss
DMELA	506	87	165	506	94	242	1492	232	447	1492	236	743
Diptera	584	38	307	654	99	317	1707	125	834	2000	352	826
AGAMB	487	48	145	487	52	219	1420	164	451	1420	133	713
Diptera-Coleoptera	853	12	359	872	25	357	2416	52	1052	2473	110	1107
TCAST	768	87	172	768	105	209	2223	302	495	2223	362	612
Holometabola	1200	16	218	1203	0	175	3416	45	648	3470	0	486
NVITR	1053	136	283	1053	187	337	3011	431	836	3011	564	1023
Insecta	1402	62	127	1378	47	11	4019	181	358	3957	93	0
PHUMA	1118	138	422	1118	170	430	3284	459	1194	3284	562	1235
Pancrustacea	1467	108	659	1342	122	1051	4196	314	1795	3864	421	2727
DPULE	1376	502	593	1376	614	580	3928	1579	1847	3928	1911	1847
Arthropoda	2018	63	422	2271	86	302	5677	160	1043	6170	128	806
ISCAP	1706	154	466	1706	148	713	4921	501	1257	4921	524	1773
Coelomata	2377	279	0	2487	398	14	6560	866	0	6848	1205	112
DRERI	2392	40	20	2392	41	23	6581	95	65	6581	100	66
Vertebrata	2372	231	236	2374	183	295	6551	716	725	6547	593	894
GGALL	2334	37	44	2334	37	44	6552	124	82	6552	129	80
Tetrapoda	2341	3	34	2341	1	34	6510	15	56	6504	9	52
MMUSC	2337	3	4	2337	3	4	6380	8	112	6380	10	113
Mammalia	2338	0	3	2338	0	3	6484	2	28	6483	2	23
HSAPI	2336	3	5	2336	3	5	6454	12	42	6454	12	41
Metazoa	2098	NA	NA	2103	NA	NA	5694	NA	NA	5756	NA	NA
NVECT	2574	476	0	2574	471	0	7076	1382	0	7076	1320	0

Supplementary Table 10. Comparisons of intron length distributions across 12 animal species. Comparison of intron lengths among the 12 species for the Strict Single-Copy (SSC) and Relaxed Single-Copy (RSC) sets of orthologs. Intron counts, their median and mean lengths, and the p-values from Wilcoxon tests that compare the length distributions are presented for 1. all informative introns, 2. informative introns found in *ISCAP* and *DPULE* and at least one non-arthropod and at least one insect, 3. informative introns shared between *ISCAP* and each of the other species. The length distributions are presented as boxplots in Supplementary Fig. 7 and the species for which the shared site data are presented in Fig. 3C (main text) are indicated with an asterisk (*). Abbreviations: P-Wilcox, paired Wilcoxon test; *NVECT*, *Nematostella vectensis*; *HSAPI*, *Homo sapiens*; *MMUSC*, *Mus musculus*; *GGALL*, *Gallus gallus*; *DRERI*, *Danio rerio*; *ISCAP*, *Ixodes scapularis*; *DPULE*, *Daphnia pulex*; *PHUMA*, *Pediculus humanus*; *NVITR*, *Nasonia vitripennis*; *TCAST*, *Tribolium castaneum*; *AGAMB*, *Anopheles gambiae*; *DMELA*, *Drosophila melanogaster*.

880	1. All:	4621 site	s		2. Sha	red: 432	sites		3. ISCAP-shared			
330	Count	Median	Mean	Wilcox	Count	Median	Mean	Wilcox	Count	Median	Mean	P-Wilcox
NVECT	2574	404.0	635.0	<2.2e-16	371	421.0	684.8	<2.2e-16	1278	401.0	628.7	<2.20e-16
HSAPI	2336	1386.0	2998.1	6.60e-05	399	1474.0	3575.0	8.02e-03	1287	1385.0	3169.0	1.35e-05
MMUSC	2337	1128.0	2111.0	9.22e-02	401	1288.0	2550.0	6.14e-01	1287	1191.0	2257.0	6.23e-01
GGALL	2334	665.5	1474.7	<2.2e-16	398	703.5	1473.0	1.43e-07	1281	685.0	1364.0	<2.20e-16
DRERI	2392	666.5	1548.1	<2.2e-16	407	861.0	1819.6	3.88e-05	1305	713.0	1589.0	1.98e-13
ISCAP	1706	1223.5	2053.3	NA	432	1194.5	2187.7	NA	1552	1205.5	2043.6	NA
DPULE	1376	66.0	91.5	<2.2e-16	432	66.0	99.7	<2.2e-16	539	66.0	94.9	<2.20e-16
PHUMA	1118	87.0	143.3	<2.2e-16	313	90.0	160.3	<2.2e-16	590	88.0	141.3	<2.20e-16
NVITR	1053	81.0	357.8	<2.2e-16	304	81.0	348.8	<2.2e-16	538	81.0	268.3	<2.20e-16
TCAST	768	51.0	435.6	<2.2e-16	246	50.0	436.2	<2.2e-16	421	50.0	357.1	<2.20e-16
AGAMB	487	78.0	539.7	<2.2e-16	146	77.0	557.4	<2.2e-16	236	78.0	534.7	<2.20e-16
DMELA	506	62.0	351.3	<2.2e-16	143	62.0	183.4	<2.2e-16	228	62.0	408.2	<2.20e-16

Dec	1. All: 1	13459 sit	es		2. Sha	red: 1169) sites		3. ISCAP-shared			
RSC	Count	Median	Mean	Wilcox	Count	Median	Mean	Wilcox	Count	Median	Mean	P-Wilcox
NVECT	7076	407.0	645.9	<2.2e-16	976	426.5	662.6	<2.2e-16	3608	408.0	648.8	<2.20e-16
HSAPI*	6454	1483.0	3687.2	<2.2e-16	1060	1745.5	4723.6	7.93e-12	3674	1552.0	4042.0	<2.20e-16
MMUSC*	6380	1224.5	2743.9	3.26e-01	1050	1447.0	3751.0	3.68e-04	3620	1288.0	3052.5	1.98e-02
GGALL	6552	693.5	1700.0	<2.2e-16	1070	761.0	2217.1	2.10e-11	3680	727.0	1815.0	<2.20e-16
DRERI	6581	728.0	1787.0	<2.2e-16	1084	935.0	2204.0	1.81e-07	3701	785.0	1917.0	<2.20e-16
ISCAP*	4921	1213.0	2034.0	NA	1169	1204.0	2125.0	NA	4420	1188.0	1999.0	NA
DPULE*	3928	66.0	86.9	<2.2e-16	1169	67.0	89.2	<2.2e-16	1424	67.0	86.9	<2.20e-16
PHUMA*	3284	88.0	155.8	<2.2e-16	861	91.0	188.4	<2.2e-16	1733	89.0	163.3	<2.20e-16
NVITR*	3011	82.0	565.1	<2.2e-16	816	82.0	436.0	<2.2e-16	1580	82.0	419.2	<2.20e-16
TCAST	2223	51.0	459.9	<2.2e-16	628	50.0	374.4	<2.2e-16	1187	50.0	368.4	<2.20e-16
AGAMB	1420	80.5	473.8	<2.2e-16	408	81.0	628.9	<2.2e-16	703	80.0	574.6	<2.20e-16
DMELA*	1492	63.0	256.9	<2.2e-16	383	64.0	305.3	<2.2e-16	696	63.0	328.5	<2.20e-16

Supplementary Table 11. Summary of gene group counts using OrthoMCL clustering of reciprocal best hit BLASTP.

oGene	nGroup	UDup	Orth1	OrDup	OrGrp	OrMis1
11817	8594	2079	7239	2499	7945	110
11194	6685	4000	5227	1967	5937	147
41142	11157	31914	4076	5152	4865	1189
38049	20334	20313	9092	8644	12354	5
27825	14456	10784	10410	6631	11866	10
28999	13397	19164	5330	4505	7017	122
24954	9724	8848	6778	9328	8068	43
11523	8449	2519	6925	2079	7627	38
26797	14280	14667	6826	5304	8705	15
12523	8919	2119	7584	2820	8429	29
18662	9605	7544	7480	3638	8259	23
Species						
18820	11829	2310	8282	8228	11089	61
19916	11777	3130	8139	8647	11171	84
,	oGene 11817 11194 41142 38049 27825 28999 24954 11523 26797 12523 18662 Species 18820 19916	oGene nGroup 11817 8594 11194 6685 41142 11157 38049 20334 27825 14456 28999 13397 24954 9724 11523 8449 26797 14280 12523 8919 18662 9605 Species 11829 19916 11777	oGene nGroup UDup 11817 8594 2079 11194 6685 4000 41142 11157 31914 38049 20334 20313 27825 14456 10784 28999 13397 19164 24954 9724 8848 11523 8449 2519 26797 14280 14667 12523 8919 2119 18662 9605 7544 Species 11829 2310 19916 11777 3130	oGene nGroup UDup Orth1 11817 8594 2079 7239 11194 6685 4000 5227 41142 11157 31914 4076 38049 20334 20313 9092 27825 14456 10784 10410 28999 13397 19164 5330 24954 9724 8848 6778 11523 8449 2519 6925 26797 14280 14667 6826 12523 8919 2119 7584 18662 9605 7544 7480 Species 1 2310 8282 19916 11777 3130 8139	oGenenGroupUDupOrth1OrDup11817859420797239249911194668540005227196741142111573191440765152380492033420313909286442782514456107841041066312899913397191645330450524954972488486778932811523844925196925207926797142801466768265304125238919211975842820186629605754474803638SpeciesI313081398647	oGenenGroupUDupOrth1OrDupOrGrp118178594207972392499794511194668540005227196759374114211157319144076515248653804920334203139092864412354278251445610784104106631118662899913397191645330450570172495497248848677893288068115238449251969252079762726797142801466768265304870512523891921197584282084291866296057544748036388259SpeciesIIIII188201182923108282822811089199161177731308139864711171

oGene = number of genes with reciprocal best hits used by orthomcl.

nGroup = number of gene family groups (2+genes), orthology + species-unique.

OrGrp = count of ortho groups (nGroup = OrGrp + unique paralog groups).

UDup = species-unique duplicated paralog genes.

Orth1 = count of single ortho gene.

OrDup = count of duplicated ortho gene.

OrMis1 = groups missing gene all others have (ignoring human)

Data sources:

Chelicerata: *Ixodes scapularis* 2011, <u>https://www.vectorbase.org/</u>; *Tetranychus urticae*, http://www.nature.com/nature/journal/v479/n7374/pdf/nature10640.pdf;

Dermacentor variabilis, http://www.ncbi.nlm.nih.gov/pubmed/20060044;

Crustacea: Daphnia pulex 2010,

http://arthropods.eugenes.org/EvidentialGene/daphnia/daphnia_genes2010/;

Daphnia magna 2011, pre-release gene set; Pandalus latirostris,

http://www.ncbi.nlm.nih.gov/pubmed/22016807;

Insecta: *Acrythosiphon pisum* 2011, <u>http://arthropods.eugenes.org/EvidentialGene/pea_aphid2/genes-bestof3/;</u>

Drosophila melanogaster, NCBI RefSeq 2011; Locusta migratoria http://www.ncbi.nlm.nih.gov/pubmed/21209894

Tribolium casteneum, UniProt 2011; Nasonia vitripennis 2012,

http://arthropods.eugenes.org/EvidentialGene/nasonia/;

Vertebrates: Homo sapiens, NCBI RefSeq 2011; Danio rerio, NCBI RefSeq 2011

Clone ID	Repeat	Repeat Length(s)	Copy Number(s)	Hybridization	Hybridization
	Family	(bp)	in End-sequence	Intensity	Description
A-02	ISR-2	95	12.8	NC	NC
A-03	-	21, 26, 49	5.7, 13.8, 1.9	NS	NS
A-07	ISR-3	376	2.5	S	S
A-12	-	14, 48	2.1, 2	NS	NS
A-17	-	118	1.9	М	S/D
A-22	-	None (control)	NA	NS	NS
B-01	-	35, 70	3.2,2.8	S	D
B-08	ISR-2a	95	17.8	S	S
B-11	-	4, 4, 12	40.3, 22, 12	W	D
B-13	ISR-2c	97	15.9	S	S
B-20	-	11, 25, 25, 39	2.4, 3.2, 9.1, 4.2	S	D
B-22	-	None (control)	NA	NS	NS
B-24	ISR-2b	96	10.5	S	S
C-02	-	41, 83	7.4, 3.7	NS	NS
C-07	ISR-2c	97	13.3	S	S
C-12	-	63	12	NS	NS
C-13	-	26,31	2,2.6	Μ	D
C-20	ISR-2a	95	13.1	NC	NC
D-02	ISR-2c	97	13.8	NC	NC
D-03	-	2, 32	58.5, 2.3	W	D
D-12	-	98	2	W	D
D-19	ISR-3	386	2.1	NC	NC
D-23	ISR-2b	96	17.4	S	S
E-01	ISR-2a	95	14.4	NC	NC
E-09	ISR-2a	95	12.7	NC	NC
E-18	ISR-2d	99	12.9	S	S
E-19	ISR-2a	95	3.7	NC	NC
E-20	-	2	54.5	W	D
E-21	-	196	9.1	Μ	S/D
E-23	-	36	5.1	W	D
E-24	ISR-2d	99	12.3	S	S
F-11	-	16, 33	2.1, 2.1	NS	NS
F-12	-	2, 46	30, 5.3	W	D
G-04	ISR-2d	99	13.8	S	S
G-14	ISR-2a	95	12.8	NC	NC
G-17	-	37, 14	2.6, 3	W	D
G-20	ISR-3	385	2.9	S	S
H-16	ISR-1	90, 179, 446	11.6, 5.8, 2	Μ	S
H-18	-	44	3.4	NS	NS
H-19	-	16, 243	2.1, 2.7	Μ	D
H-21	ISR-2d	99	13.6	S	S
H-22	ISR-2a	95	15.8	NC	NC
H-24	-	15, 17, 17, 44, 59	9.9, 2.6, 2.4, 3.2, 2.5	W	D
I-01	-	40, 41, 41, 81	2.5, 4.5, 3.6 1.9	Μ	D
I-06	ISR-2a	95	12.1	NC	NC
I-22	ISR-2a	95	10.6	NC	NC
I-24	ISR-2a	95	17	S	S

Supplementary Table 12. Summary of tandem repeats identified from an *Ixodes scapularis* small insert genomic DNA library and FISH-based physical mapping to ISE18 cell line chromosomes.

J-02	-	14, 40	7.9, 2	NS	NS
J-08	-	22, 42	2.7,2	NS	NS
J-15	-	77	2	W	D
K-01	ISR-2a	95	11	NC	NC
K-02	ISR-2a	95, 284	6.1, 2	NC	NC
K-05	ISR-2b	96	18.5	S	S
K-13	-	2, 40, 32, 2	31.5, 1.9, 2.5	Μ	D
L-01	-	18	10.4	NS	NS
L-10	ISR-2a	95	17.1	S	S
L-23	-	13, 17, 29	1.9, 9.5, 2	NS	NS
M-04	ISR-2a	95	16.7	S	S
M-10	-	135	8.2	W	D
M-16	ISR-2c	97	12.9	NC	NC
M-17	ISR-2c	97	12.8	NC	NC
M-19	ISR-2a	95	10.5	NC	NC
M-21	ISR-2a	95	4.7	NC	NC
M-23	-	2, 21	49.5, 2.4	Μ	D
N-01	-	71	4.5	Μ	D
N-07	ISR-2a	95	13.5	NC	NC
N-11	ISR-2c	97	14.9	NC	NC
N-17	-	6	16.7	Μ	D
N-19	ISR-2a	95	15.3	NC	NC
O-03	-	207, 413	8.4, 4.2	S	S/D
O-10	ISR-2a	95	15.2	NC	NC
O-14	ISR-2d	99	10.9	S	S
O-15	-	11, 32, 32	2.8, 3.8, 3.6	NS	NS
O-21	-	6, 17, 18, 78	8, 3.4, 13.8, 2	S	D
O-24	-	155	3.7	W	D
P-03	-	27, 53, 83	12.4, 5.9 2.5	W	D
P-07	-	21	5	NS	NS
P-14	ISR-2c	97	16.1	NC	NC

Hybridization intensity: S=strong; M=moderate; W=weak; NS=no signal, NC=not conducted. Hybridization descriptions: S=specific; D=dispersed; NS=no signal; NC=not conducted. The "Repeat Family" column indicates which of the tandem-repeat containing clones that were classified into ISR-1-3⁴¹ or that contained different tandem repeats that remain unclassified (-).

TE name	Elements per family	Copy Number	Base pairs	% Genome
<u>Class I</u>				
LTR retrotransposons	41	29462	11383395	0.64
Gypsy	37	28997	11189309	0.63
Pao-Bel	4	465	194086	0.01
Non-LTR retrotransposons	530	606602	118212063	6.70
CR1	128	133579	26561455	1.50
1	43	49040	9402964	0.53
Jockey	2	6	3896	0.00
L1	171	201621	36843465	2.09
L2	65	57882	11639922	0.66
R1	7	430	61781	0.00
R4	2	1924	582360	0.03
Other Non-LTR	112	162120	33116220	1.88
Penelope				
Penelope	132	94326	19113444	1.08
<u>Class II</u>				
DNA transposons	254	293281	54005181	3.06
hAT	52	32713	7362901	0.42
Merlin	3	652	160598	0.01
Mutator	10	397	99572	0.01
Р	35	28807	4859952	0.28
PIF	30	38609	7054230	0.40
piggyBac	76	108314	21178514	1.20
Tc1mariner	48	83789	13289414	0.75
MITEs	234	343838	87535895	4.96
m2bp	17	24668	6492577	0.37
m3bp	7	7033	1537791	0.09
m4bp	88	127330	31503909	1.78
m5bp	2	1225	414964	0.02
m6bp	3	7523	1738704	0.10
m7bp	3	7746	1198574	0.07
m8bp	22	56732	18130019	1.03
m9bp	2	4802	892191	0.05
mTA	90	106779	25627166	1.45
<u>Unclassified</u>	98	20073	5849509	0.33
Total	1289	1379140	294717617	16.69

Supplementary Table 13. Summary of transposable elements identified in the *lxodes scapularis* genome.

This table represents a conservative estimation of the repeat content because we focused on manually annotated TEs. Annotation of long TEs is especially difficult given the fragmented nature of the genome assembly. Tandem repeats and satellite sequences are not included. TE copy numbers and base pairs were obtained by running RepeatMasker version 3.2.9 with the *Ixodes scapularis* TE library (available for

download from the TEfam database at: <u>http://tefam.biochem.vt.edu</u>) and VectorBase (https://www.vectorbase.org/).

Class	Total Families	Total Sequences	Bases Occupied	Percent Genome
Class I				
L1	1,773	1,980	137,648,067	6.55
Ty3_gypsy	1,644	1,867	67,124,477	3.20
Penelope	290	328	18,329,691	0.87
Pao Bel	81	97	3,988,612	0.19
Rnase_H	24	26	164,423	0.01
Class II				
piggyBac	80	90	8,723,874	0.42
PIF	40	43	7,637,650	0.36
hAT	102	129	7,538,310	0.36
Mariner	74	91	6,280,194	0.30
Р	54	58	6,054,528	0.29
Mutator	19	56	188,089	0.01
Merlin	3	3	160,327	0.01
Unclassified				
(mostly fragments)	1,338	2,693	40,366,119	1.92
Total	5.522	7.461	304.204.361	14.49

Supplementary Table 14. Summary of transposable elements identified in the *lxodes scapularis* coding sequence.

A transposable element genomic search was devised by (1) doing Psiblast of the coding regions of representatives of the diverse families of transposable elements against the non-redundant database from NCBI; (2) constructing matrices from the alignments to be used by the tool rpsBLAST; (3) by retrieving genomic matches by rpsBLAST against this database that are larger than 500 nt and *e* value < $1e^{-15}$, with additional 500 nt of flanking regions; (4) finding terminal repeats (direct and inverted) and trimming the sequences accordingly (sequence without repeats are trimmed on their coding sequences); (5) by clusterizing the data set of 7,461 elements that have 90% identity over 90% of its length to obtain 5,522 clusters of elements, then (6) comparing the consensus sequences by BLAST to several databases and (7) finally running a program to classify these elements. The obtainied sequequences were compared to the genome to identify the number of bases occupied by this representative set.

Supplementary Table 15. Summary of fluorescent *in situ* hybridization (FISH) to *Ixodes scapularis* ISE18 cell line chromosome spreads using BAC clone probes. Probes included only fully sequenced and assembled BAC clones from the 10X BAC clone library. D=Dispersed signal; S=Specific signal; I=Inconsistent result.

Genbank Accession	BAC Size(bp)	10X BAC Library Plate/Well	FISH Result
AC192414	117688	5/A1	D
AC192415	122081	33/A1	D
AC192416	107486	36/A1	D
AC192417	102815	40/A1	D
AC192418	114701	41/A1	D
AC192419	113880	43/A1	D
AC192420	146997	45/A1	D
AC192421	137443	49/A1	D
AC192422	135954	51/A1	D
AC192423	109798	53/A1	D
AC192424	144952	55/A1	D
AC192425	145957	60/A1	D
AC192426	117608	64/A1	S
AC192427	98661	66/A1	D
AC192428	106828	67/A1	D
AC192429	136633	68/A1	D
AC192742	133074	48/A1	D
AC192743	130937	54/A1	D
AC192744	115169	61/A1	D
AC200531	77162	2/A1	D
AC205630	95257	1/F14	D
AC205631	108628	1/P2	D
AC205632	26509	3/K2	I
AC205633	97628	3/P2	I
AC205634	112417	6/P2	S
AC205635	104824	11/P2	D
AC205636	106471	12/P2	D
AC205637	131925	14/C7	D
AC205638	100378	15/P2	D
AC205639	92483	16/P2	D
AC205640	109665	22/P2	Ι
AC205641	179341	24/P2	D
AC205642	110473	27/P2	S
AC205643	128247	31/P2	D
AC205644	110010	37/P2	D
AC205645	120505	41/M8	D
AC205646	122242	42/P2	D
AC205647	115710	43/E15	D
AC205648	126704	44/P2	D
AC205649	111949	47/P2	D
AC205650	107316	56/P2	D

AC205651	172110	58/P2	D	
AC205652	50437	62/P2	D	
AC205653	108041	63/P2	D	
AC205654	14567	69/P2	I	

Group	Group Name	Mol. Wt.	Proposed	ls	Hs	Bt	Gg	Aa	Cq	Ag	Dm	Ce	At	Function ^c
NO.		(kDa)	Gene No."											
3	Kunitz domain-	Multiples	30	74	26	28	7	5	5	4	30	57	0	Anti-clotting
	containing peptides	of 8												
13b	Selenoproteins	15	3	2	4	2	1	1	1	1	1	1	1	Presumed antioxidant
13b	Alkyl hydroperoxide	28	3	6	23	8	5	6	6	6	10	4	11	Detoxification
	reductase													
8	Metalloproteases	55	3	34	108	71	38	9	14	10	19	8	0	Fibrinolytic
25b	Dipeptidyl peptidase	60	2	7	7	8	3	9	8	10	7	1	0	Kininase
12b	Defensin	6	2	8	13	29	12	4	1	2	1	0	0	Immunity
17b	Cystatin	14	2	13	30	23	9	2	0	0	4	3	11	antiinflammatory,
														immunosuppressor
17c	Serpin	24	2	44	115	80	31	32	48	25	44	11	12	Serine protease
														inhibitor
25a	Serine proteases	Various	2	133	293	154	77	392	448	321	283	12	0	Specificity unknown
17a	TIL domain peptide	11	2	23	16	7	15	23	13	23	11	29	0	Unknown
25c	Phospholipase A2	Truncated	1	2	2	2	2	5	1	1	1	0	0	Specificity unknown
13a	Glutathione	25	1	8	15	7	4	3	4	5	4	10	8	Presumed antioxidant
	peroxidase													
26b	Antigen 5	35	1	12	38	13	11	35	30	19	22	34	22	Unknown
26a	Ixoderin	30	1	27	61	26	34	35	92	49	22	7	0	Immunity
12a	GGY repeat family ^d	4.7-13	Various											Unknown, possibly
			families											antimicrobial
18	Mucins ^e	Various	Various											Unknown
			families											
10	Ixostatin	9-11	25	11										unknown
15	WC-10 family	9-11	21	4										Unknown
11	Lipocalins	18-24	20	40										Kratagonist
16	LPTS family	12-16	11	0										Unknown
4	Proline/Glycine rich	6-8	10	24										Unknown
	peptides													
7	9 and 7 kDa family	7-9	10	12										Unknown
6	5.3 kDa family	5.3	9	6										Antimicrobial
1	Basic tail	13-14	8	16										Anti-clotting
	polypeptides													
9	Ixodegrin (RGD	<4	5	10										Probable platelet
	containing peptides)													aggregation inhibitor

Supplementary Table 16. Summary of protein domains identified in *Ixodes scapularis* sialome sequences.

14	Anticlomplement	16	4	1	Anticomplement
	Isac				
19	IS6 family	9-12	4	2	Unknown
2	Basic tailless	10-11	3	included	Unknown
	polypeptides			in group	
				1	
20	12 kDa family	12	3	2	Unknown
5	18.7 kDa family	19	2	4	Unknown
12c	Microplusin	13	2	15	Antimicrobial
21	26 kDa family	26	2	2	Unknown
23	Toxin like, may be	8-9	2	1	Unknown
	related to IS6				
24	SRAEL family	16-22	2	2	Unknown
25d	Small ribonuclease	6	1	1	Unknown
22	30 kDa family	30	1	20	Unknown

^aBased on⁶⁴. The supplemental table can be obtained from http://exon.niaid.nih.gov/transcriptome/Ix_scapularis_sialome_2005/Sup-tables/Sup-table-2.xls.

^bProteins that are >90% divergent in amino acid sequence.

^cBased on at least one member of a protein family that has been functionally analyzed.

^dHeterogeneous family, with poor primary sequence conservation, but having GGY repeats.

^eHeterogeneous family having in common solely over 10 N-acetyl-galactosylation sites.

Aa, Aedes aegypti; Ag, Anopheles gambiae; At, Arabidopsis thaliana; Bt, Bos taurus; Ce, Caenorhabditis elegans; Cq, Culex quinquefasciatus; Dm, Drosophila melanogaster; Gg, Gallus gallus; Hs, Homo sapiens; Is, Ixodes scapularis.

Immune pathway and gene	Gene description	<i>I. scapularis</i> supercontig #	Base pair range on supercontig	Genbank accession #
Toll Pathway				
Dorsal	Embryonic polarity dorsal	DS612897	344,672-368,433	ISCW000140
Cactus	NF-kappaB inhibitor IkappaB	DS807313 DS789268	89,019-110,525 14,144-34,799	ISCW019520 ISCW007030
Pelle	serine-threonine protein kinase	DS633730	60,689-76,958	ISCW001463
Tube	cyclin T-dependent kinase CDK9	DS787602	500,517-518,860	ISCW007160
MyD88	myd88	DS831454	19,812-43,217	ISCW008802
Toll	toll toll toll toll toll toll	DS894332 DS795254 DS692880 DS863226 DS795254 DS725696 DS795254	370,864-378,206 164,145-173,413 318,809-322,642 213,685-217,374 116,582-121,636 4,704-5,021 130,237-135,616	ISCW022740 ISCW007727 ISCW018193 ISCW020989 ISCW007724 ISCW017724* ISCW007726**
Spätzle	toll toll spatzle alternatively spliced isoform 11.27	DS695149 DS794567 DS851201 DS924847	145,084-147,147 257,906-260,571 446,328-461,671 58,310-78,232	ISCW004495** ISCW008289** ISCW020221** ISCW022569
	Sptzle 1B	DS915052	406,105-422,910	ISCW022732
Imd pathway				
Caudal	homeobox protein cdx	DS839652	4,771-4,947	ISCW008954
Relish	kappa-B P105 subunit	DS737890	107,162-147,186	ISCW018935
IKK gamma	protein kinase	DS711115	74,892-92,974	ISCW003529
IKK beta	inhibitor of nuclear factor kappa-B kinase alpha	DS684865	34,555-75,124	ISCW002130
TAK1	tak1	DS956364	46,654-69,194	ISCW023496
TAB2	conserved hypothetical protein	DS831661	125,422-146,802	ISCW009346
POSH	conserved hypothetical protein	DS980186	71,040-94,158	ISCW015192
Caspar	regulator of the ubiquitin pathway	DS635599	608,153-631,045	ISCW015648

Supplementary Table 17. List of putative immune-related genes identified in the *lxodes scapularis* genome.

Effete	ubiquitin protein ligase	DS734834	71,859-74,198	ISCW018551
Bendless	ubiquitin protein ligase	DS734517	102,190-115,886	ISCW006743
Uev1a	ubiquitin-conjugating enzyme	DS755574	226,269-228,921	ISCW019147
IAP2	inhibitor of apoptosis protein 1 and 2	DS874571	17,481-47,594	ISCW010694
RNAi pathway				
Dicer	dicer-1 dicer-1	DS643033 DS643033	158,526-187,719 191,838-226,069	ISCW000889 ISCW000890
Argonaute	translation initiation factor 2C	DS620030 DS879840 DS903494 DS887784 DS906490	375,533-385,847 1,146-17,131 161,089-164,329 612,740-615,223 52,601-76,044	ISCW015916 ISCW011768 ISCW022696 ISCW021130 ISCW013378
FMRP	HyFMR	DS662130	57,130-96,383	ISCW002912
VIG	vasa intronic gene	DS630348	7,046-19,031	ISCW000538
Tudor-SN	4SNc-Tudor domain protein	DS947409	53,618-100,428	ISCW014289
Armitage	Conserved hypothetical protein	DS771975	54,521-70,842	ISCW019555
Aubergine	Cniwi protein Cniwi protein	DS692353 DS861388	8,438-10,987 229,689-253,854	ISCW004464 ISCW011373
Rm62	ATP-dependent RNA helicase	DS668332 DS668332 DS819551	17-18,383 27,837-64,710 52,974-68,087	ISCW002701 ISCW002703 ISCW009472
JAK/STAT pathway				
JAK (Hopscotch)	Tyrosine protein kinase	DS636921	613,020-649,592	ISCW016158
STAT	Stat3	DS736534	85,785-110,372	ISCW005692
JAK receptor (Domeless)	Receptor protein tyrosine phosphatase	DS672509	132,429-173,396	ISCW016699
PIAS	Sumo ligase	DS741077	191,455-212,512	ISCW005295
SOCS	SOCS box SH2 domain-containing protein	DS788896	252,388-253,269	ISCW019435

Other immune- related genes				
Akirin	Protective antigen D48/subolesin	DS936446	66,643-89,471	ISCW023283
Antimicrobial peptides (AMPs)***	AMP AMP scapularisin secreted salivary gland peptide microplusin preprotein	DS766801 DS858447 DS766801 DS766801 DS700881	7,539-10,842 10,615-12,036 805-4,569 37,932-40,936 37,354-41,025 11,851-16,401	ISCW005927 ISCW011162 ISCW005926 ISCW005928 ISCW004019
Caspases****	microplusin preprotein caspase caspase caspase caspase	DS683675 DS689930 DS923722 DS980848 DS896168	4,952-18,616 42,757-57,807 29,397-36,907 55,609-67,445	ISCW002113 ISCW003039 ISCW013172 ISCW015329 ISCW022545
Defensins	preprodefensin preprodefensin preprodefensin preprodefensin defensin	DS759251 DS664851 DS929532 DS633368 DS930883	1,299-2,130 77,757-80,159 1,258-2,470 480-1,253 134,844-141,980	ISCW024381 ISCW016747 ISCW022594 ISCW024015 ISCW022102
Duox	dual oxidase 1	DS798980	38,754-135,685	ISCW007865
Fibrinogen-related proteins	ixoderin precursor ixoderin precursor ixoderin precursor ixoderin precursor ixoderin precursor	DS662660 DS929502 DS959741 DS860650 DS899572	9,473-15,818 1,407-13,639 7,679-17,815 948-6,195 85,691-93,595	ISCW002664 ISCW012248 ISCW013746 ISCW024686 ISCW022063
Lysozymes	lysozyme lysozyme lysozyme C-type lysozyme	DS613145 DS613145 DS844216 DS670557	77,141-77,891 47,267-56,398 51,691-65,539 67,058-72,249	ISCW001646 ISCW001645 ISCW020680 ISCW017129
NADPH oxidase	NADPH oxidase	DS690902	246,606-271,833	ISCW002630
Peptidoglycan Recognition Receptors (PGRPs)	PGRP Ammonium transporter PGRP PGRP	DS686855 DS861599 DS697694 DS904186	766-1,809 1-805 122,963-124,835 380,517-387,075	ISCW024175 ISCW024689 ISCW004389 ISCW022212
Thio-ester containing proteins (TEPs)	TEP alpha-2 macroglobulin alpha-2 macroglobulin alpha-2 macroglobulin conserved	DS837598 DS790028 DS970697 DS716413 DS687147 DS779097	3,653-100,934 75,581-99,146 293,496-343,165 7,286-62,557 35,629-71,042 53,866-97,786	ISCW020822 ISCW019887 ISCW023777 ISCW003923 ISCW003089 ISCW007141

hypothetical protein alpha-2 macroglobulin

AMPs include all the sequences uncovered as AMPs but that were not annotated as "defensins". These sequences represent caspases that share similarity with death related ced-3/Nedd2-like protein (Dredd caspase).

Sequence only shows the Toll/Interleukin-1 receptor domain (TIR) but no leucine-rich repeats (LRRs). ^{**}Sequence only shows LRRs but no TIR domain.

Supplementary Table 18. Genes in the *lxodes scapularis* genome with similarity to the enzymes involved in the mevalonate/farnesyl PP and JH pathways in insects.

			Top BLAST result	
Enzyme	Scaffold	VectorBase	Organism (Ose Dank Associan)	e-value
Fornood PB nothway	(op range)	Accession	(GenBank Accession)	Amino Acid Identity
Acetoacetyl-CoA thiolase	DS624476 (15968-41821)	ISCW016117	Dendroctonus ponderosae (AFI45001)	4e-170 (61%)
HMG-S ^a	DS690902 (31998-46779)	ISCW002615	Nasonia vitripennis (XP_003426942)	9e-169 (68%)
HMG-R ^b	DS842351 (4797-71147)	ISCW009466	Pediculus humanus corporis (XP_002428525)	0.0 (55%)
Mevalonate kinase	DS735207 (298570-308399)	ISCW018716	Camponotus floridanus (EFN64406)	4e-60 (35%)
Phosphomevalonate kinase	DS881578 (239893-241993)	ISCW021370	Acromyrmex echinatior (EGI169273)	1e-44 (42%)
Diphosphomevalonate decarboxylase	DS921134 (457048-474172)	ISCW022273	Apis mellifera (XP_001121619)	7e-122 (51%)
Isopentenyl diphosphate isomerase	not found	not found	not found	not found
Geranyl diphosphate synthase	not found	not found	not found	not found
Farnesyl diphosphate synthase	DS834911 (53770-59211)	ISCW009264	Dendroctonus jeffreyi (AAX78435)	2e-96 (47%)
JH Pathway				
Farnesyl diphosphate pyrophosphatase	not found	not found	not found	not found
Farnesol oxidase	DS838300 (597086-612073)	ISCW020246	Ceratosolen solmsi marchali (XP_011505480)	1e-99 (60%)
Farnesal dehydrogenase	not found	not found	not found	not found
Methyltransferase	DS624614 (1302-5354)	ISCW000145	Schistocerca gregaria (ADV17350)	4e-18 (29%)
JH ^c epoxidase	not found	not found	not found	not found

^a Hydroxymethylglutaryl-CoA synthase. ^b Hydroxymethylglutaryl-CoA reductase.

^c Juvenile hormone.

Gene name	VectorBase Accession	Scaffold	Coordinates on Scaffold (bp)
CYP307A1 (Spook)	ISCW024795	DS931697	1061604
CYP307B1 (SPOT) CYP307A2 (Spookier)	ISCW006980	DS782423	561212969
CYP306A1 (Phantom)	ND		
CYP302A1 (Disembodied)	ND		
CYP315A1 (Shadow)	ISCW021866	DS864024	4458249687
CYP314A1 (Shade)	ISCW021011	DS857608	115434126481
- · ·	ISCW001527	DS638370	3062762
Ecdysone receptor	ISCW003147	DS667471	104353111170

Supplementary Table 19. Putative *Ixodes scapularis* genes associated with ecdysone synthesis and the ecdysone receptor.

Enzyme	Gene	VectorBase Accession	Scaffold	Transcript Evidence GenBank Accession	Gene Identified in REIS
ALA synthase Aminolevulic acid synthase	hemA	-	-	-	+
Glutamyl-tRNA synthase [†]	gltX	ISCW018719	DS735207	Dv syn YP_001857605.1	+
Glutamyl-tRNA reductase	gtrA/hemA	-	-	Dv ov YP_002306262.1	-
Glutamate-1- semialdehyde 2,1- aminotransferase	hemL	-	-	-	+
Aminolevulic acid dehydratase	hemB	-	-	-	+
Porphobilinogen deaminase	hemC	-	-	-	+
Uroprophyrinogen-III synthase	hemD	-	-	-	+
Uroporphyrinogen decaroxylase	hemE	-	-	-	+
Corproporphyrinogen III oxidase	hemF	ISCW010977 ISCW006377	DS891848 DS752864	-	+
	hemN	-	-	-	+
Protoporphyrinogen IX oxidase	hemG	ISCW023396	DS626813	ls syn NP_001167359	+
	hemY	-	-	-	-
Ferrochelatase	hemH	ISCW016187	DS626813	Dv syn ZP_03286863.1	+
Heme oxygenase	hemO	-	-	ls syn XP_002711461	-
Biliverdin reductase	-	-		-	-
Protoheme IX farnesyl transferase	суоЕ	ISCW008907	DS846584	Ot syn XP_002411071.1	-

Supplementary Table 20. Summary of *Ixodes scapularis* aminolevulinic acid (ALA) synthesis, proto-heme synthesis and heme degradation pathways.

ALA, δ-aminolevulinic acid; REIS, *Rickettsia* endosymbiont of *Ixodes scaplaris*¹⁰; syn, syngalnglion transcriptome; ov, ovary transcriptome, Dv, *Dermacentor variabilis*; Is, *I. scapularis*; Ot, *Ornithodorus turicata*; [†]peptide evidence (see supplemental text).

					•			
Function	Gene name	Vector base accession no.	Scaffold	Scaffold coordinates	Gene length (bp)	Transcript Length (bp)	Length (AA)	No. Exons
				(bp)				
	Cathepsin D (Aspartic	IscW_ISCW023880	DS949737	152,273- 190,227	37954	1179	392	1
	protease)	lscW_ISCW013185	DS900056:	10,899-23,895	12,996	963	320	8
Daires e ma		IscW_ISCW003823	DS722875:	17,354-32,869	15,515	1100	345	6
hemoglobin	Cathepsin L (Cysteine protease endopeptidase)	IscW_ISCW024899	DS970886	4,733-5,116	5313	383	127	1
cleavage	Cathepsin L (Cysteine protease endopeptidase)	lscW_ISCW000076	DS629804	3,735-4,818	1,083	300	99	2
Legumain (Aspartic endopeptidase)	lscW_ISCW015983	DS621767	1,225-3,192	14,974	1968	446	1	
Secondary	Cathepsin B (Endopeptidase)	lscW_ISCW005981	DS754946	9,428-18,454	9,026	672	223	5
nemogiopin	Cathepsin L (Cysteine	lscW_ISCW024899	DS970886	4,733-5,116	5313	383	127	1
cleavage	protease endopeptidase)	IscW_ISCW024213	DS704563	4,637-6,606	9464	255	84	1
Tertiary	Cathepsin C (Aminodipeptidase)	lscW_ISCW003494	DS694733	169,868- 186,056	16,188	1,080	352	7
cleavage	<u>Cathepsin B</u> (Endopeptidase)	lscW_ISCW005981	DS754946	9,428-18,454	9,026	672	223	5
		IscW_ISCW021184	DS88627	64,978-83,896	18,918	1705	473	4
Fired	SCP (Serine	IscW_ISCW006427	DS752045	233-3,375	3,142	1125	374	2
Final	carboxypeptidase)	IscW_ISCW010371	DS886430	77,615-100,122	22,507	1431	476	6
nemogiopin		IscW_ISCW007492	DS725233	346-7,634	7,288	1416	471	4
cleavage	LAP (Leucine aminopeptidase)	IscW_ISCW0023735	DS967246	117,498- 141,675	24,177	1590	529	11

Supplementary Table 21. List of *Ixodes scapularis* hemoglobin digesting genes and gene annotations¹

¹Legend: Hemoglobin is digested intracellularly in specialized lysosome (hemosomes, see Fig. 1D). The digestive pathway comprises four major cleavage processes. 1) Primary digestion of the globin moieties into large fragments by the aspartic proteases Cathepsin D and legumain, supported by the cysteine endopeptidase Cathepsin L; 2) digestion of the resulting large peptide fragments (8 -11 kDa) by the endopeptidases Cathepsin B and Cathepsin L, resulting in intermediate size fragments ($\sim 5 - 7$ kDa); 3) digestion of the intermediate size fragments by Cathepsin C and B resulting in small fragments ($\sim 3 - 5$ kDa); 4) digestion of the small peptide fragments by SCP and LAP, liberating free amino acids and dipeptides. Free heme resulting from hemoglobinase activity is inactivated by forming large hematin-like aggregates that accumulate inside the hemosomes¹²³.

Supplementary Table 22. Summary of *Ixodes scapularis* hemelipoglyco-carrier protein (CP) and vitellogenin (Vg) gene annotations.

I. scapularis	VectorBase	Scaffold	Scaffold	Length	Length	No.
Gene	Accession		Coordinates (bp)	(bp)	(AA)	Exons
Hemelipoglyc	o-carrier Protein	Genes				
CP 1	ISCW021709	DS853155	640,093-674,357	4,934	1,556	25
$CP 2^{\dagger}$	ISCW014675	DS946795	23,797-86,142	4,554	1,517	24
CP 3 [†]	ISCW021710	DS853155	687,061-748,951	3,990	1,329	22
CP 4 [†]	ISCW012424	DS930868	97,596-131,023	3,978	1,325	20
CP 5 [†]	ISCW012423	DS930868	45,085-91,058	3,336	1,111	19
CP 6 [†]	ISCW021704	DS853155	567,881-571,678	1,440	480	8
CP 7 [†]	ISCW021707	DS853155	617,028-622,418	845	265	4
CP 8 [†]	ISCW021706	DS853155	567,881-571,678	460	153	3
CP 9 [†]	ISCW021705	DS853155	605,937-607,255	425	141	2
CP 10 [†]	ISCW024299	DS725419	389-1,716	354	117	2
Vitellogenin P	rotein Genes					
Vg 1	ISCW013727	DS950603	16,225-44,518	4,935	1,644	26
Vg 2	ISCW021228	DS874548	255,397-286,108	5,811	1,936	22

[†]Incomplete gene model.

Supplementary Table 23. Putative cytchrome P450 genes in *the lxodes scapularis* genome.

CYP2 Clan ^a	VB Accession ^b	CYP3 Clan	VB Accession	CYP4 Clan	VB Accession
CYP18C1	ISCW009830	CYP41A2	ISCW022948	CYP4W2	ISCW024589.
••••••		••••		0	ISCW024427
CYP307A1	ISCW006980.	CYP41B1	ISCW022672	CYP4W2-	ABJB010319121
	ISCW024795	-		de10b11b	
CYP3001A1	ISCW002226	CYP41C1	ISCW022945		
CYP3001A2	ISCW008379	CYP41C2	ISCW022947	CYP4W3	ISCW003279
CYP3001A3	ISCW003457	CYP41C3	ISCW019880	CYP4W4	ISCW022701.
0.1.000.1.0		0.1. 1.00		••••	ISCW022702
CYP3001A4	ISCW004522	CYP41C4	EW786235.1.	CYP4W5	ABJB010639789.1
• • • • • • • • • • • • •			EW899917.1	• • • • • • •	
CYP3001A5	ABJB010183741.1	CYP41C5	ISCW019198	CYP4W6	ISCW013762
CYP3001A6	ABJB010948131.1	CYP41C6v1	ISCW024627	CYP4W7	ISCW017084
CYP3001A7	ABJB010161347.1	CYP41C6v2	ISCW011029	CYP4DL1	ISCW022695
CYP3001B1	ISCW016425	CYP41C7	ISCW022987	CYP4DL2	ISCW022697
CYP3001B2	EW827166.1,	CYP41C8	ISCW024413	CYP4DL3P	ABJB010866300.1
	EW827167.1				
CYP3001B3	ISCW006203	CYP41C9	ISCW000510	CYP4DL4	ISCW007225
CYP3001B4	ISCW006204	CYP41C10	ISCW010134,	CYP4DL4-	ABJB011028851
			ISCW024611	de3b	
CYP3001B5	ISCW004521	CYP41C11	ISCW013318	CYP4DL5	EW922199.1
CYP3001B6	ISCW002182	CYP41C12	ISCW007389	CYP4DM1	ISCW022693
CYP3001B7	ISCW006219	CYP41C13	ISCW008554	CYP4DN1	ISCW024545
CYP3001B8	ISCW016424	CYP41C14	ISCW002138	CYP4DN2	ISCW022708
CYP3001B9	ABJB010987053.1	CYP41C15	ISCW003215	CYP4DP1	ISCW022706
CYP3001C1	ISCW022449	CYP41D1	ISCW008571	CYP4DP2	ABJB010524713.1
CYP3001C2	ISCW022451	CYP3004A1	ISCW018384	CYP4DQ1	DS865979,
					DS895862,
					DS714189
CYP3001D1	ISCW008112	CYP3004A2	ISCW018383	CYP4DR1	ISCW016620
CYP3001D2	ISCW013045	CYP3004A3	EW879600.1	CYP4DS1	ISCW005615
CYP3001D3	EW958870.1	CYP3004A4	EW959618.1	CYP4DS2	ISCW005544
CYP3001D4	ISCW024917	CYP3001B1	ISCW016424	CYP4DS3	ABJB010393473.1
CYP3001D5	ABJB010249968.1	CYP3004C1v1	ISCW022652	CYP4DS4	ISCW002003
CYP3001E1	ISCW007349	CYP3004C1v2	EW883126.1	CYP4DS5	ISCW010787
CYP3001F1	ISCW009779	CYP3004C2	ISCW022649	CYP4DS6	ISCW010786
CYP3001F2	ISCW006867	CYP3004C3P	ISCW020210	CYP4DS7	ISCW010788
CYP3001G1	ISCW006936	CYP3004D1	ISCW001306,	CYP4DS8	ISCW019906
0) (5000 / 00	10014/0004/00		ISCW001307		
CYP3001G2	ISCW022148	0) (5000 (50	10.014/000000	CYP4DS9	ABJB010117553.1
CYP3001H1	ISCW005196	CYP3004D2	ISCW002936	CYP4DS10	ISCW002005
CYP3001H2	ABJB010355812.1	CYP3005A1	ISCW003160	CYP4D11	ISCW016623
CYP3001J1	ISCW002317	CYP3005A2	DS799461.1	CYP319A3	ISCW022705
CYP3001K1	ISCW003266	CYP3005A3	ISCW004132	CYP319A4	DS764743
CYP3001L1	ISCW023771, ISCW006380	CYP3005A4	ISCW007953	CYP319A5	ISCW022704
CYP3001L2	ISCW012594	CYP3005A5	ISCW007954	CYP319A6v1	EW883950.1
CYP3001L3	ISCW018982	CYP3005A6	ISCW012000	CYP319A6v2	ISCW024808
CYP3001L4	ISCW015950	CYP3005A7	ISCW011997	CYP319A7	ISCW022703
CYP3001M1	ISCW017305	CYP3005A8	ISCW011996		
CYP3001M2	ISCW017964	CYP3005A9	ISCW024674		
CYP3001M3	ISCW017306	CYP3005A10	ISCW020282	Mito Clan	

CYP3001M4	DS798591			CYP302A1	ISCW010580
CYP3001N1	ISCW007262	CYP3005A11	ISCW011028	CYP3012A1v1	ISCW001527
			ISCW024197.		
CYP3001N2	ISCW002062	CYP3005A12	ISCW008823	CYP3012A1v2	EW909080 1
CVP3001N3	F\N/887890 1	CVP3005413	ISCW024701	CVP3012A1v3	AB IB010700/73 1
011 3001113	EW007030.1, EW855831 1	011 3003A13	10011024701	011 3012A103	AD0D010100410.1
	AB IB010069977 1		ISC/001241	CVD201201.11/4	E\N/924609 1
CVD2001D1	ISC/W015055	CVD2005A15v1	ISCW001241	CVD2012A104	AB IB010291557
	ISCW015055	CVD2005A15V1	ISCW024274	CVD2012A2	ADJD010301337
	1301013034	CYP2005415V2	130W024303	CTF3012A3	EVV901943.1
C1P3001P3	1901/1000000	C1P3005A16	1500014319	C1P3012A4	1500000207
CIPSUUIQI	1500012310	C1P3005A17	1500007367	CTP314A1	15CW021011
CYP3001Q2	ISCW009178	CYP3005A18	ISCW004905	CYP315A1	ISCW021866,
	10014104 4700	0)/00005440	10011/000040		ISCW021867
CYP3001Q3V1	ISCVV014782	CYP3005A19	ISCW008019		
CYP3001Q3v2	ABJB010212140.1	CYP3005A20	ISCW001104,	CYP20 clan	
			ISCW001105		
CYP3001R1	ISCW016133	CYP3005A21	ISCW001103	CYP20	ISCW015973, ISCW015974
CYP3001R2	ISCW005591	CYP3006A1	ISCW005198		
CYP3001S1	ISCW014295	CYP3006B1	ISCW009640		
CYP3002A1	ABJB010539647.1	CYP3006C1	ISCW012785		
CYP3002A2	ISCW024473	CYP3006D1	ISCW014588		
CYP3003A1	ISCW019785	CYP3006E1	ISCW001476		
CYP3003A2	ISCW019784	CYP3006E1	ISCW001473		
CVP300343	ISCW013704	CVP3006G1	ISCW007473		
CVP3003A4	ISCW022003	CVP3006C2	ISCW007134		
CVD2002A5	ISCW022070	CVP2006C2	E\\/796094 1		
CTF 3003A5	1300022071	CTF3000G3	EVV700904.1,		
			EL310401		
C1F3003A3-	ADJD010494977.1	C1F3000G4	1301/001022		
	1001000000	CVD2006CF	ISC/M046204		
C1F3003A0	13011022073	C1F3000G5	ISCW010204,		
			1300010205		
	1500022075		10014/000005		
CYP3003A8P	ISCW022076	CYP3006G6	ISCW000235		
CYP3003A9	ISCW022077	CYP3006G7P	DS949456.1		
		CYP3006H1	ISCW001075		
		CYP3007A1	ISCW017673		
		CYP3007A2	EW793223.1,		
		CVD200742			
		CYP3007A3	1500014407		
		CYP3007A4	ISCW000434		
		CYP3007A5	EVV886425.1		
		CYP3008A1v1	DS711134.1		
		CYP3008A1v2	ABJB010083687.1		
		CYP3008A1v3	ABJB010429442.1		
		CYP3008A2	ISCW003335		
		CYP3008A3	ISCW010505		
		CYP3008B1	DS884020		
		CYP3009A1	ISCW016385		
		CYP3009A2	DS641118		
		CYP3009A3	ISCW016388		
		CYP3009A4	DS641118		
		CYP3009A5	ISCW016389		
		CYP3009A6	DS641118		

CYP3009A7	DS641118
CYP3009A8	ISCW016390
CYP3009A9	ISCW016392
CYP3009A9-	DS641118
de11b12b	
CYP3009A10	ISCW016393
CYP3009A10-	DS641118
de6b	
CYP3009A11	DS641118
CYP3009A12	ISCW015064
CYP3009A13	ISCW013158
CYP3009A14	ISCW007317
CYP3009B1	ISCW007380
CYP3009B2	ISCW011357
CYP3009B3	ISCW023575
CYP3009C1	ISCW016395
CYP3009D1	ISCW015040
CYP3009D2v1	ISCW015041
CYP3009D2v2	ISCW009986
CYP3009D3	ISCW003934
CYP3009D4	DS641118
CYP3009D5P	DS641118
CYP3009D6	ISCW016397
CYP3009D7	ISCW005328
CYP3009D8	EW899738.1,
	EW899739.1
CYP3010A1	ISCW001418
CYP3010B1	ISCW010002,
	ISCW010003
CYP3011A1	ISCW006560
CYP3011A2v1	EW797008.1,
	EW883539.1
CYP3011A2v2	ISCW012810
CYP3011A3	ISCW009136

^aThe clans are higher level clades of genes. Ticks have five clans (including CYP20). The 2 clan has 68 entries with one possible allele (v2). P or –dexxx on the end of a name indicates a pseudogene. (deindicates detritus exon adjacent to a parent gene, the numbers 10b11b etc indicate the exons that are present). The 2 clan has 2 pseudogenes, 1 variant and 65 genes. The 3 clan has 5 pseudogenes, 7 variants and 100 genes. The 4 clan has 3 pseudogenes, 1 variant and 33 genes. The mito clan has 3 variants and 7 genes. The 20 clan has only 1 gene. There are a total of 206 P450 genes. Halloween genes are (CYP302A1 [disembodied gene (dib)], CYP307A1 [spook (spo)], CYP314A1 [shade (shd)], CYP315A1 [shadow (sad)]). CYP18A1 in *Drosophila melanogaster* has 26 hydroxylase activity and is essential for metamorphosis¹⁸⁵. ^bVectorBase accession numbers include ISCW gene model numbers if available, if there is no gene model, contig accessions ABJB01XXXXXXX.1 or scaffold accessions DSXXXXXX or ESTs EWXXXXXX.1 are given.

Supplementary Table 24. Putative carboxylesterase genes Identified in the *Ixodes scapularis* genome

Classification	VectorBase	Protein	Ixodes	Base Pair Range on
	Accession	Length [†]	scapularis	Scaffold
	Number		Scaffold	
Carboxylesterase/	ISCW012483	654	DS901690	148,125169,517
AChE-like	ISCW007849 ^a	651	DS807640	41,80655,016
	ISCW020835 ^{a, d}	647	DS812474	15,57421,604
	ISCW020833 ^a	640	DS818569	257,240263,338
	ISCW011400 ^a	634	DS859680	251,048253,591
	ISCW011399 ^ª	632	DS859680	183,448185,998
	ISCW012339 ^{b, c}	623	DS907147	57,07498,844
	ISCW020830 ^{a, d, c}	620	DS818569	213,005222,326
	ISCW022870 [°]	617	DS903315	33,35435,307
	ISCW001079	592	DS638237	347,645356,732
	ISCW003637	586	DS727378	78,71580,741
	ISCW005431	564	DS758735	7,07413,075
	ISCW022246 [°]	558	DS921995	692,289694,852
	ISCW017638 [°]	557	DS717196	297,489301,318
	ISCW006617 ^⁰	556	DS737125	63,96467,823
	ISCW020819 ^a	555	DS839663	26,71748,021
	ISCW022251 ^a	547	DS921995	896,844900,843
	ISCW021541 ^{a, c}	542	DS889213	16,36923,464
	ISCW022244 ^a	538	DS921995	665,765669,060
	ISCW013353	534	DS904610	25,92428,794
	ISCW020832 ^a	524	DS818569	238,942245,039
	ISCW020825 ^{a, c}	518	DS818569	60,96862,524
	ISCW003278 [°]	517	DS685100	11,46521,610
	ISCW001132 ^b	504	DS639501	286,801288,315
	ISCW001748 ^b	504	DS631740	5,4927,006
	ISCW010310 ^b	500	DS819927	6,7968,298
	ISCW020821 ^{a, b}	499	DS839663	94,46297,065
	ISCW009205 ^b	499	DS828756	4,6526,151
	ISCW006206 ^{a, b}	499	DS770580	30,21038,997
	ISCW006896	494	DS789758	5,9827,560
	ISCW015340 ^b	493	DS976673	38,03739,518
	ISCW004315 ^b	483	DS694420	58,22259,673
	ISCW022252 ^a	481	DS921995	912,311927,215
	ISCW019926	480	DS798293	1,550,5821,572,844
	ISCW024484	471	DS773540	7192,131
	ISCW024669	467	DS867945	4991,899
	ISCW007848 ^a	464	DS807640	28,18529,576
	ISCW022036	461	DS926387	907,297921,121
	ISCW024395	460	DS750145	5,5066,889
	ISCW002384 ^b	452	DS663061	396,472397,830
	ISCW010323	432	DS833783	42,99459,925
	ISCW006205 ^a	425	DS770580	4254,231
	ISCW014784	421	DS945247	9,27212,166
	ISCW020826 ^a	413	DS818569	102,860112,799
	ISCW021542 ^{a, c}	388	DS889213	47,18254,677
	ISCW007846 ^a	358	DS807640	11,15112,224
	ISCW003776	356	DS731177	27,17246,710
	ISCW022253 ^a	354	DS921995	933,635943,599
	ISCW020829 ^a	348	DS818569	133,597151,342

	ISCW015477	330	DS980614	7,69911,969
	ISCW001875	325	DS671188	563,450582,923
	ISCW020818 ^a	311	DS839663	18,22421,291
	ISCW020837 ^a	287	DS812474	41,99342,853
	ISCW009994	281	DS822211	2,54112,634
	ISCW022255 ^a	279	DS921995	1.025.9041.026.740
	ISCW020827 ^a	279	DS818569	123.253124.089
	ISCW011398 ^a	279	DS859680	180.717181.553
	ISCW001837 ^a	272	DS683640	413.937414.752
	ISCW023613 ^a	270	DS963588	441.327442.136
	ISCW020828 ^a	259	DS818569	128 594 129 370
	ISCW022256 ^a	250	DS921995	1.059.602.1.060.351
	ISCW021543 ^a	250	DS889213	54 792 55 544
	ISCW022245 ^a	245	DS921995	682 492 684 860
	ISCW000833	228	DS629490	41 992 45 753
	ISCW015220	227	DS974313	721 11 930
	ISCW009289	227	DS841411	1 826 9 546
	ISCW020834 ^a	217	DS818569	273 050 276 739
	ISCW006376	207	DS768980	5 026 13 061
	ISCW022249 ^a	202	DS921995	846 363 846 968
	ISC\W/024894	188	D0021000 D002732	484 1 047
	ISC\N/024034	186	DS818560	228 504 229 808
	ISCW020031	141	DS010303	A28 A 745
	ISCW004947	141	DS021005	4204,745 870 0/3 875 528
	ISCW022250	120	DS921995	07 452
	ISCW014233	110	D3937307	97400 16 700 17 690
	130 1007 945	115	D3700202	10,72217,002
Carboxylesterase	ISCW019824	391	DS796655	26,65139,339
Juvenile Hormone	ISCW016978	412	DS654645	97 242 121 428
Esterase	ISCW022078	276	DS892946	257 260 279 544
Esterase	10011022010	210	00002010	201,200210,011
Pvrethroid-	ISCW014411	530	DS971257	10 154 12 726
Metabolizing	ISCW014780	503	DS967860	56 802 58 313
Carboxylesterase	ISCW022961 ^b	491	DS939604	711 415 712 890
Carboxylocicitado	ISCW023610 ^a	489	DS963588	305 840 327 886
	ISCW023611 ^a	431	DS963588	334 284 355 108
	ISCW023612 ^a	359	DS963588	380 390 381 538
	ISCW007946 ^a	255	DS788282	22 248 23 305
	ISCW024448	246	DS793560	222 962
	ISC/W001836 ^a	208	DS683640	406 591 413 763
	ISC/M/022027	183	DS000040	177 536 178 574
	10000022901 190100026158	165	D0011002	177,000170,074 151 386 152 000
	1301023013	100	03903000	401,300402,909

[†]Gene models ranked in order of descending amino acid length of conceptual protein. ^aDenotes scaffold containing two or more carboxylesterase gene models. ^bDenotes potentially complete gene model. ^cDenotes putative acetylcholinesterase; AChE, acetylcholinesterase.
Neuropeptide Genes	Scaffold	Scaffold	VectorBase	
		Coordinates (bp)	Accession	
Achatin-like (GFGE)	DS940350	2301923117	NA	
AKH/corazonin-related peptide	DS968442	2472024893	NA	
Allatostatin A	DS971562	340315339812	ISCW022939	
Allatostatin B (myoinhibitory peptide)	DS704057	214860217973	ISCW017595	
Allatostatin C	DS617680	2675626517	ISCW001803	
Allatosattin CC	DS614450	9416093978	ISCW001408	
Allatotropin	DS723986	6989774019	ISCW017791	
Vasopressin/Oxytocin-like (inotocin) ^a	DS955335	731757	NA	
	DS655913	5048950686	NA	
Bursicon alpha	DS725348	327154329168	ISCW004617	
Bursicon beta	DS725348	334706336760	ISCW004618	
CAPA (Pyrokinin / periviscerokinin)	DS798279	5344757119	ISCW019582 ^c	
CCAP	DS863512	155818156096	ISCW010619	
CCHamide-1 ^a	DS920188	42701925	ISCW013057	
	DS721341	9441070		
Corazonin	DS968442	48308114	ISCW014429	
Calcitonin-like diuretic hormone 1	DS849364	213812229510	ISCW020490	
Calcitonin-like diuretic hormone 2	DS833812	290964308120	ISCW009341	
Corticotropin-releasing factor-related	DS951787	11121534	ISCW007845	
diuretic hormone ⁵	DS793410	1805318115		
Eclosion hormone	DS652454	187087184932	ISCW001941	
EFLamide	DS945230	55463-66354	ISCW014582	
Glycoprotein A2 ^b	DS850534	4165341751	NCBI prediction	
	DS669550	13331046		
	DS957846	1248112573		
Glycoprotein B5	DS860962	4972166736	ISCW010926	
Insulin like peptide (ILP4)	DS687889	5665972302	ISCW002549	
Ion transport peptide	DS934076	10854097467	ISCW023228	
Kinin	DS680282	5831410	ISCW024200	
Neuroparsin	DS781496	2399425192	NA	
Orcokinin	DS860349	87108450	ISCW010518	
Proctolin	DS752645	2304497988	ISCW005701	
P11H-like	DS624571	/921596811	ISCW001809	
RYamide	DS762742	1048740630	ISCW005825	
SIFamide	DS939604	1016618491	ISCW022950	
Short neuropeptide F	DS682464	1104	ISCW007409	
0	DS800964	2029920852		
	DS6/4693	5070750498	NA	
I acnykinin"	DS805407	1890116589	15CW008383	
T 2. 22	DS/14254	22980		
Irissin	DS706258	980-1054		

Supplementary Table 25. Putative neuropeptide genes in Ixodes scapularis.

Novel Putative Neuropeptide Genes^c

DS925401	117227115863	NA
DS641015	10371	NA
DS726073	10371	NA
DS871441	735	
DS873396	117488117156	NA
DS963481	1316567	NA
DS918990	378863381517	ISCW012656
DS918990	305627305271	ISCW000205
DS647107	9131149	
DS810236	227458231328	ISCW019773 ^d
DS680282	7151383	ISCW024200
	DS925401 DS641015 DS726073 DS871441 DS873396 DS963481 DS918990 DS918990 DS918990 DS647107 DS810236 DS680282	DS925401117227115863DS64101510371DS72607310371DS871441735DS873396117488117156DS9634811316567DS918990378863381517DS918990305627305271DS6471079131149DS810236227458231328DS6802827151383

QFTa/QFAa/QLTamide	DS810352	31431	NA	
QFAa/ HFAa/QLTamide ^a	DS799148	92119	NA	
	DS699187	11751	NA	
QFAa/QVKamide	DS658524	9792	NA	
2				

^aThe gene likely spans multiple scaffolds (and multiple predictions) ^bPossible allelic forms of two scaffolds. ^cPredicted based on the repeated short peptides with C-terminal amidation canonical signals (GR or GK). These peptides do not have homology with other known, insect neuropeptides. ^dPredictions that need to be corrected for the reading frame.

NA=Not found in computationalannotation.

GPCR	GPCR	GPCR	l. scapularis	I. scapularis	Coordinates on	VectorBase
class	subclass	family	GPCR	scaffold	scaffold (bp)	accession
(1) Class	s A-Rhod(op	sin) receptor f	amily			
	Amine rec	ceptors				
		Dopamine				
			GPRdop1	DS648196	133,404-134,681	ISCW001496
			GPRdop2 [⊤]	DS812273	247,251-248,624	ISCW008775
			GPRdop3_1	DS715310	294,120-294,563	ISCW005105
			GPRdop3_2	DS748057	13,854-13,963	ISCW006077
			GPRdop3_3	DS978565	1,946-10,664	ISCW015254
			GPRdop3_4	DS834842	11,072-11,233	ISCW008917
		Muscarinic a	cetylcholine			
			mAChR1	DS660344	46,915-48,657	ISCW001961
			mAChR2	DS968008	135,220-137,700	ISCW014424
		Octopamine/	Tyramine			
			GPRoa1 [™]	DS729026	32,100-33,527	ISCW003835
			GPRoa2	DS847958	146,790-147,929	ISCW008552
			GPRtyr1 ¹	DS964012	103,184-104461	ISCW013655
		_	GPRtyr2 ¹	DS728699	4690-5811	ISCW005195
		Serotonin				
			GPR5ht1	DS756593	240,283-253,629	ISCW019072
			GPR5ht2	DS883764	16,244-17,440	ISCW020906
			GPR5ht3	DS666028	398,996-400,363	ISCW017050
			GPR5ht4	DS756593	157,071-160,431	ISCW019070
	Peptide re	eceptors				
		ACP	· · +			
			ACP-R1	DS874502	36,974-42,229	ISCW011612+NEW
			ACP-R2'	DS635143;	68,533-69,052;	ISCW001755+
				DS675617;	21664-21,867;	ISCW003272+
			+	DS797600	569-1124	ISCW008018
			ACP-R3'	DS786800	296,857-297,402;	ISCW019339+
			· · +		441,895-445,805	ISCW019342
			ACP-R4'	DS679693;	139,339-139,860;	ISCW017422+
				DS621023	55,588-58,021	ISCW000658
			ACP-R5	DS641985	30,478-31,447	ISCW000195
			ACP-R6	DS908815	64,376-64,909	ISCW013251
		Allatotropin				

Supplementary Table 26. List of G protein-coupled receptors (GPCRs) identified in *Ixodes scapularis.*

	AT-R	DS978161	73,824-74,264	ISCW015323+ ISCW015322
Allatostatin (A)		_		
	Ast-A-R1	DS627425	21,088-22,374	ISCW001334
	Ast-A-R2	DS616747	171,212-172,466	ISCW016381
	Ast-A-R3	DS616747	216,452-217,633	ISCW016382
	Ast-A-R4	DS946344	139,992-141,146	ISCW014938
Allatostatin (B)				
	Ast-B-R1	DS814451	498,437-516,130	ISCW008779-A
	Ast-B-R2	DS814451	498,437-516,130	ISCW008779-B
Allatostatin (C)				
(-)	Ast-C-R	DS789528	6.027-12.848	ISCW007666
Bursicon		20.00020	0,021 12,010	
20.00000	Burs-R	DS641526	219,850-250,933	ISCW015788
Capa/CAP _{2b} /P	eriviscerokinin			
1 25	Capa-R1 [†]	DS640702;	9,628-9,977;	ISCW000633+NEW+
	•	DS713265:	1,470-1,694:	ISCW015219
		DS713265:	18-304:	
		DS674949:	1.541-1.674:	
		DS980147	14 584-15 105	
	Cana-R2	DS902408	45-15 095	ISCW012018
	Capa-R3	DS967049	68 951-69 238	ISCW014181
CCAP	Oupu No	20001010	00,001 00,200	
00/11	CCAP-R1	DS642648	32 147-35 927	ISCW000563
	CCAP-R2	DS902282	1 720-11 529	ISCW013454
		DS713552	1 900-18 /99	ISCW004135
		DS713332	21 170-21 656	ISC/W011686
CCHamida_1	CCAP-IN4	03001371	21,179-21,050	1300011000
CCHamilde-1		D\$055040	242 219 244 424	1901/015075
Corozonin	CCHal-K	D3933040	343,318-344,424	1300013075
Corazonin	CR7-R1 [†]	DS862522	337 666-338 286 [.]	ISCW010571+
		DS002522,	99 573-100 052	ISCW010371+
	007 00	DS733203	72 052 74 512	1501/005601
GPA2/GPB5		D3743203	13,952-14,512	130 100 000 1
	I GR1-A	DS776412	12 445-14 686	ISCW007539
	LOITIN	DONIOTIZ	12,110 11,000	10011001000
	LGR1-B	DS670197	19,910-20,201	ISCW001983
Inotocin			, , _	
	IT-R1 [†]	DS658583	333,292-352,021	ISCW016651
	$IT-R2^{\dagger}$	DS811967	34,737-35,711	ISCW008700

Kinin	IT-R3 [†]	DS802003	16,558-17,508	ISCW007179
	Kin-R1 [†]	DS915052	240,714-241,681; 53,234-53,339; 49,154-49,247;	ISCW022730+ ISCW022728
	Kin-R2	DS915052	43,336-43,826, 769,801-769,880; 803,104-803,316	ISCW022739
	Kin-R3	DS915406	62,791-63,588	ISCW022222
	Kin-R4	DS972284	15,019-15,848	ISCW015326
Myosuppressin				
	MS-R	DS710828	131-1,127	ISCW004636
Proctolin	Proct-R	DS711613	287,447-289,213; 289,343-291,511	ISCW017865+ ISCW017866
Pyrokinin	PK-R*	DS929178	1,062,985-1,063,966	ISCW022759+ ABJB011125851
RYamide				
	RYa-R1	DS816975	121,888-122,667;	ISCW020603+
		D0040075	34,779-35,090	ISCW020601
SIEamido	RTA-RZ	D2816975	9,435-9,878	1501020600
	SIFa-R	DS721695	449,641-450,381; 563,784-566,715	ISCW017837+ ISCW017839
Short Neurope	otide F			
	sNPF-R1	DS646881	88,703-90,025	ISCW000923
0 14 1	sNPF-R2	DS646881	90,611-91,642	ISCW000924
Sulfakinin			44 702 40 507	
	SK-KI	DS746439	41,702-49,507	ISCW0000070
	SK-R2	DS022900	840 577-842 643	ISCW009027
	SK-R4	DS303250 DS747369	8 639-37 302	ISCW022701
	SK-R5	DS671072	3 595-6 522	ISCW0000040
	SK-R6	DS784565	1.046-55.113	ISCW007293
	SK-R7	DS648932	8.474-11.106	ISCW001201
Tachykinin			, , ,	
-	TK-R1	DS848485	50,750-51,163; 102,898-133,431	ISCW010010+ ISCW010011
	TK-R2	DS969660	233,259-233,744;	ISCW013545+

			96,620-97,175	ISCW013543
	TK-R3	DS787613	187,848-188,293	ISCW007598
	TK-R4	DS966520	9,416-9,925	ISCW013598
	TK-R5	DS643864	392,493-428,777	ISCW015892
	TK-R6	DS765493	118,152-120,504	ISCW006511
	TK-R7	DS754151	181,199-209,245	ISCW005553
	TK-R8	DS641764	8,595-8,791	ISCW000039
	TK-R9	DS747089	177,811-178,007	ISCW006476
	TK-R10	DS649700	31,210-31,421	ISCW001766
Trissin				
	Trissin-R1	DS746403	46,424-55,835	ISCW006418
	Trissin-R2	DS812310	49,622-55,240	ISCW009718
Purine receptors				
Adenosine				
	GPRads1	DS751891	15-731	ISCW006710
	GPRads2	DS857834	851,959-852,927	ISCW021342
	GPRads3	DS688131	171,862-193,233	ISCW002246
(Rhod)opsin receptors				
Long	GPRop1_1	DS655566	780-1051	NEW
	GPRop1_2	DS631721	363-641	NEW
	GPRop1_3	DS955589	190-451	NEW
	GPRop1_4	DS681879	565-876	NEW
Unknown	GPRop2_1	DS727386	14108-17853	ISCW004568
	GPRop2_2	DS647038	58-387	NEW
Pteropsin	GPRop3	DS748823	19,086-19,376	ISCW005498
Orphan/Putative Class	A GPCRs			
	GPRorp1	DS834336	4,245-8,992	ISCW009595
	GPRorp2	DS928128	52-732	ISCW011905
	GPRorp3	DS885437	65,156-92,934	ISCW021283
	GPRorp4	DS854897	42,286-78,035	ISCW020998
	GPRorp5	DS895157	172,724-173,425	ISCW022377
	GPRorp6	DS810236	58,185-65,642	ISCW019770
	GPRorp7	DS961247	253,289-254,266	ISCW014455
	GPRorp8	DS694733	137,237-138,349	ISCW003493
	GPRorp9	DS758491	336,265-339,216	ISCW018984
	GPRorp10	DS799887	152,872-154,406	ISCW007873
	GPRorp11	DS622494	210,268-238,098	ISCW000432
	GPRorp12	DS794020	20,137-20,862	ISCW007619
	GPRorp13	DS957018	374,567-374,881	ISCW023266
	GPRorp14	DS819573	1,022-9,833	ISCW008691

GPRorp15	DS895157	130,408-130,773	ISCW022376
GPRorp16	DS727732	6,810-7,274	ISCW018171
GPRorp17	DS718929	48,953-50,059	ISCW004650
GPRorp18	DS695281	139,310-140,419	ISCW018273
GPRorp19	DS651746	89,066-90,402	ISCW015953
GPRorp20	DS849590	246,992-248,101	ISCW010126
GPRorp21 [†]	DS978744	75,826-92,419	ISCW015218+NEW
GPRorp22	DS664726	6,762-7,730	ISCW002641
GPRorp23	DS909250	807,932-809,260	ISCW022779
GPRorp24	DS951856	59,174-59,443	ISCW013584
GPRorp25	DS933420	12,704-13,765	ISCW014824
GPRorp26	DS626219	6,965-8,056	ISCW000606
GPRorp27	DS822291	20,914-22,134	ISCW010179
GPRorp28	DS847080	82-553	NEW
GPRorp29	DS794029	116-365	NEW
GPRorp30	DS957063	1,197-1,356	NEW
GPRorp31	DS622115	720-804	NEW
GPRorp31	DS734036	1,535,022-1,543,165	ISCW018990
GPRorp32	DS848412	15,099-15,401	ISCW009648
GPRorp33	DS673067	5,821-6,303	ISCW002847
GPRorp34	DS923672	7,604-8,503	ISCW013090
GPRorp35	DS825031	28,068-29,836	ISCW009568
GPRorp36	DS915257	2,800-28,037	ISCW013383
GPRorp37	DS708537	221,842-297,739	ISCW018360
GPRorp38	DS930058	108,838-109,239	ISCW013211
GPRorp39	DS755450	72,170-87,450	ISCW006089
GPRorp40	DS848412	15099-15401	ISCW009648
GPRorp41	DS673067	5,821-6,303	ISCW002847
GPRorp42	DS923672	7,604-8,503	ISCW013090
GPRorp43	DS825031	28,068-29,836	ISCW009568

(2) Class B – Secretin receptor family Diuretic hormone receptors

Calcitonin-like CT/DH-R1* DS922272 17,085-30,991 ISCW012970 107,053-141,306 CT/DH-R2 DS687147 ISCW003092 CT/DH-R3 DS769661 26,884-146,275 ISCW018841 DS711942 10,647-69,312 CT/DH-R4 ISCW004902 CT/DH-R5 DS677381 25,745-78,149 ISCW017538

Corticotropin-re	leasing hormone-lik	ke (CRF-like)		
	CRF/DH-R1*	DS783174	89,137-131,136	ISCW007036
	CRF/DH-R2a ^{†‡}	DS784114;	14,660-139,631;	ISCW007612;
		DS789666	100,614-100,769	ISCW007615
	CRF/DH-R2b	DS704079	5,933-78,153	ISCW017942
	CRF/DH-R3	DS758074	212,330-212,392	NEW
			214,835-214,983	NEW
			221,884-221,950	ISCW019068
	CRF/DH-R4	DS793456	1,543-38,369	ISCW019312
	CRF/DH-R5	DS810171	300-480	NEW
Pigment dispersing factor	or receptor			
	PDF-R1	DS668046	445,965-498,626	ISCW017309
	PDF-R2	DS668046	721,274-777,173	ISCW017314
Orphan/ Putative Class E	B GPCRs			
	GPRorp1	DS906776	30,788-78,611	ISCW012057
	GPRorp2	DS909780	606,602-613,020	ISCW022534
	GPRorp3	DS650442	28,460-36,150	ISCW016343
	GPRorp4	DS650414	56,145-57,149	ISCW000074
	GPRorp5	DS757053	175,008-192,421	ISCW005937
	GPRorp7	DS929178	814,031-814,471	ISCW022757
	GPRorp8	DS921316	47,452-59,327	ISCW012038
	GPRorp9	DS714433	547,697-550,000	ISCW018246
	GPRorp10	DS968865	1,339,830-1,340,321	ISCW023674
	GPRorp11	DS968865	1,320,857-1,321,348	ISCW023671
	GPRorp12	DS968865	1,338,700-1,339,191	ISCW023673
	GPRorp13	DS646990	289,490-339,295	ISCW000464
	GPRorp14	DS806217	91,135-151,617	ISCW019673
	GPRorp15	DS627544	239,378-248,563	ISCW001355
	GPRorp16	DS929508	189,207-239,610	ISCW012721
	GPRorp17	DS756825	20,407-111,042	ISCW006717
	GPRorp18	DS905169	68,799-70,697	ISCW022854
	GPRorp19	DS885034	25,512-27,359	ISCW010897
	GPRorp20	DS730006	701-1,822	ISCW004659
	GPRorp21	DS674693	369,558-371,486	ISCW016899
	GPRorp22	DS968865	1,272,426-1,274,804	ISCW023670
	GPRorp23	DS958380	104-9,636	ISCW014021
	GPRorp24	DS979492	46,128-46,284	ISCW015339
	GPRorp25	DS788275	144-266	NEW

(3) Class C – Metabotropic glutamate-like receptor family

Metabotrop	ic alutamate	receptors
in ota o ti o p	gialaniale	

	GPRmgl1	DS827319	1,297-9,829	ISCW010068
	GPRmgl2	DS837710	392,177-408,030	ISCW020530
	GPRmal3	DS727862	10.596-30.463	ISCW004657
	GPRmal4	DS687238	5.152-11.333	ISCW016808
	GPRmal5	DS908406	8.172-49.656	ISCW013154
	GPRmal6 1	DS614359	383,268-425,389	ISCW016580
	GPRmal6_2	DS614359	190.697-267.345	ISCW016579
	GPRmal7	DS814554	1.703-14.641	ISCW009984
	GPRmal8	DS686939	2.170-2.646	ISCW002379
GABA(B) receptors	Critangio	20000000	2,	10011002010
	GPRabb1	DS792523	21,774-51,362	ISCW019833
	GPRabb2 1	DS856995	432 245-455 920	ISCW021466
	GPRabb2 2	DS856995	551,946-568,013	ISCW021468
	GPRabb3	DS963588	123,993-201,680	ISCW023607
	GPRabb4 1	DS842011	316,154-318,677	ISCW020868
	GPRabb4 2	DS842011	205.862-222.694	ISCW020865
	GPRabb4_3	DS842011	165,731-169,913	ISCW020864
	GPRabb4 4	DS842011	92.375-140.091	ISCW020863
	GPRabb4 5	DS842011	33.574-49.385	ISCW020862
Orphan/Putative Class C	GPCRs		,	
•	GPRorp1	DS959025	442.721-466.585	ISCW023311
	GPRorp2	DS877997	216-1,225	ISCW011406
	GPRorp3	DS696092	86,002-87,104	ISCW017670
	GPRorp4	DS963588	471,884-472,447	ISCW023616
	•		, ,	
(4) Class D- Atypical 7TM proteins				
Frizzled				
	GPRfz1	DS671553	112,320-113,984	ISCW003177
	GPRfz2	DS624476	452,659-454,854	ISCW016122
	GPRfz3	DS976137	33,694-34,746	ISCW015217
	GPRfz4	DS702749	85,729-87,155	ISCW003981
	GPRfz5	DS703155	48,275-50,017	ISCW004077
	GPRfz6	DS708614	201,139-213,311	ISCW004862
	GPRfz7	DS877147	771-1175	NEW
Smoothened				
	GPRsmo	DS857340	534,668-554,150	ISCW021763
Starry night				
	GPRstn	DS931589	4,009-100,015	ISCW022151

The *I. scapularis* G protein-coupled receptors (GPCRs) are categorized according to their predicted class, subclass, and family. The scaffold number, annotation coordinates and the GenBank accession number (ISCW identifier) corresponding to each GPCR are provided. Abbreviations for GPCR nomenclature: ACP, AKH/corazonin-related peptide; adr, adrenergic; ads, adenosine; Ast, allatostatin; AT, Allatropin; Burs, bursicon; CT, calcitonin; Capa, Capa peptide; CCHa1, CCHamide-1; CCAP, cardioacceleratory peptide; cir, cirl/latrophilin; CRF, Corticotropin-releasing factor-like; CRZ, corazonin; dop, dopamine; fz, frizzled; gbb, gamma amino butyric acid B receptor (GABA_B); GPA2, Glycoprotein hormone-alpha-2; GPB5, glycoprotein hormone-beta-5; 5HT, 5-hydroxytryptamine/serotonin; IT, insect oxytocin/vasopressin-like peptide; LGR, leucine-rich repeat-containing GPCR; mACh, muscarinic acetycholine; mgl, metabotropic glutamate; mth, methuselah; MS, myosuppressin; sNPF, short neuropeptide F; npr, neuropeptide receptor; oa, octopamine; op, opsin; orp, orphan; pct, proctolin; pdf, pigment-dispersing factor; pth, parathyroid hormone; pyn, pyrokinin; rxn, relaxin/insulin-like; RYa, RYamide; SK, sulfakinin; SIFa, SIFamide; smo, smoothened; stn, stan/starry night; TK, tachykinin; tyr, tyramine. The gene models corresponding to Dop3_1-4 (D₂-like dopamine receptor), GPRmgl6_1-2, GPRgbb2_1-2, and GPRgbb4_1-5 are believed to represent fragments of single genes split among different contigs. Similarly, Op1_1-4 are fragments of a single gene and confirmed by RT-PCR, and Op2_1 and Op2_2 represent overlapping portions of the same gene but assigned to different contigs, possibly due to an assembly error.

Footnotes:

[†] Entire cDNA cloned.

⁺ N-terminus of CRF/DH-R2a includes gene model ISCW007615.

* Partial cDNA clone

NEW: not automatically annotated, but newly identified region.

Neuropeptide	Neuropeptide Gene ID	Neuropeptide GPCR	Neuropeptide Domains	GPCR	Gene	ID and	Tra	insmembrane	(TM)		
			TM1	Т	M2	TM3		TM4	TM5	TM6	TM7
				•							
ACP	DS968442	ACP-R1 [†]	ISCW011612							NEW	
		ACP-R2 [†]	ISCW001755						ISCW003272	ISCW008018	
		ACP-R3 [†]	ISCW019339						ISCW019342		
		ACP-R4 [†]	ISCW017422						ISCW000658		
										1	
		ACP-R5							ISCW000195		
		ACP-R6								ISCW013251	
Allatatropia	1801/017701		1801/015222				วาา				
Allatotropin	1500017791	AI-K	1500015323			1500015	322				
Ast-A	ISCW/022939	Ast-A-R1	ISCW001334								
	10011022000		10011001001								
		Ast-A-R2	ISCW016381								
		Ast-A-R3	ISCW016382								
		Ast-A-R4	ISCW014938								

Supplementary Table 27. Summary of neuropeptides and neuropeptide GPCRs in *Ixodes scapularis*.

Ast-B	ISCW017595	Ast-B-R1*	ISCW008779-A					
		Ast-B-R2*	ISCW008779-B					
Ast-C [§]	ISCW001803	Ast-C-R	ISCW007666					
Ast-CC [§]	ISCW001408							
Bursicon a [§]	ISCW004617	Burs-R	ISCW015788					
Bursicon b [§]	ISCW004618							
Сара		Capa-R1 [†]	ISCW000633	NEW			ISCW015219	
		Capa-R2			ISCW012018			
		Capa-R3				ISCW014181		
CCAP	ISCW010619	CCAP-R1					ISCW000563	
CCHamide-1	ISCW013057	CCHa1-R	ISCW015075					
Corazonin	ISCW014429	CRZ-R1 [†]	ISCW010571					ISCW006212
		CRZ-R2	ISCW005601]		

CRF/DH	ISCW007845	CRF/DH-R1	ISCW007036					
		+ .						
		CRF/DH-R2a ^{1‡}	ISCW007612					
		CRF/DH-R2b			Γ	ISCW017942		
		CRF/DH-R3		NEW			ISCW019068	
		CRF/DH-R4	ISCW019312					
		CRF/DH-R5					NEW	
CT/DH	ISCW020490	CT/DH-R1	ISCW012970					
	ISCW009341	CT/DH-R2	ISCW003092					
		CT/DH-R3	ISCW018841					
		CT/DH-R4					ISCW004902	
			10014047500					
		CT/DH-R5	1500017538					
GPA2 [§]	DS669550	LGR1-A	ISCW007539					
8								
GPB5°	ISCW010926	LGR1-B	ISCW001983					
Inotocin	DS955355	IT-R1 [†]	ISCW016651					

		IT-R2 [†]	ISCW008700		
		IT-R3 [†]	ISCW007179		
	10014/00 4000		10014/000700		10.014/000700
Kinin	1500024200	KIN-K1	1500022730		ISCW022728
		Kin-R2	ISCW022739		
		Kin-R3	ISCW022222]
		Kin-R4	ISCW015326]
Myosuppressin		MS-R	ISCW004636		
DDE			ICOM017200		
FDF		FDF-KI	1301/1309		
		PDF-R2		ISCW017314	
Proctolin	ISCW005701	Proct-R	ISCW017865	ISCW017866	
Pyrokinin	ISCW019582	PK-R	ISCW022759		NEW
RYamide	ISCW005825	RYa-R1	ISCW020603		ISCW020601
		RYa-R2			ISCW020600

SIFamide	ISCW022950	SIFa-R	ISCW017837		ISCW017839		
sNPF	ISCW007409	sNPF-R1	ISCW000923				
		sNPF-R2		ISCW00092	4		
Sulfakinin	DS674693	SK-R1	ISCW005570				
		SK-R2	ISCW009627				
		SK-R3	ISCW022781				
		SK-R4			ISCW005948		
		SK-R5		I	ISCW001892		
		SK-R6					ISCW007293
		SK-R7					ISCW001201
Tachykinin	ISCW008383	TK-R1	ISCW010010			ISCW010011	
		TK-R2	ISCW013545			ISCW013543	
		TK-R3	ISCW007598				
		TK-R4	ISCW013598				

		TK-R5		ISCW015892		
		TK-R6		ISCW006511		
		TK-R7			ISCW005553	
		TK-R8				ISCW000039
		TK-R9				ISCW006476
		TK-R10				ISCW001766
Trissin	DS706258	Trissin-R1	ISCW006418			
		Trissin-R2	ISCW009718			

[†] Entire cDNA cloned.
[‡] N-terminus of CRF/DH-R2a includes gene model ISCW007615.
* Original annotation contained two fused genes which have now been corrected (A+B).
[§] These ligands use the same receptor.
NEW: not automatically annotated, but newly identified region.

Supplementary Table 28. Selection of neuropeptide and G protein-coupled receptor (GPCR) genes that have been expanded in *Ixodes scapularis* compared to other sequences in arthropods.

	A. No. Neuropeptide Genes		B. No. Pepti the Propept	ide Copies in ide		C. No. GPC	R Genes
		Other		Other			Other
Neuropeptide	<i>I.</i>	Arthropods	I.	Arthropods	GPCRs	Ι.	Arthropods
	scapularis		scapularis			scapularis	
ACP	1	1	1	1	ACP-Rs	6	1
Ast-A	1	1	4	1-35	Ast-A-Rs	4	1-2
Ast-B	1	1	3	1-6	Ast-B-Rs	2	1
Сара	-	1	-	2-3	Capa-Rs	3	1
Corazonin	1	1	1	1	CRZ-Rs	2	1
CRF/DH	1	1	1	1	CRF/DH-	5	1-2
					Rs		
CT/DH	2	1	1	1	CT/DH-Rs	5	1-2
Inotocin	1	1	1	1	IT-Rs	3	1
Kinin	1	1	19	1-8	Kin-Rs	4	1
PDF	1	1	1	1	PDF-Rs	3	1
sNPF	1	1	1	1-5	sNPF-Rs	2	1
Sulfakinin	1	1	2	2	SK-Rs	7	1-2
Tachykinin	1	1	4	4-11	TK-Rs	10	1-2
Trissin	1	1	1	1	Trissin-Rs	2	1

Genes expanded in *I. scapularis* relative to other sequenced arthropods are shaded in gray. The number of neuropeptide genes is not expanded in *I. scapularis* in comparison to other arthropods (Section A). The number of neuropeptides in the *I. scaplaris* kinin propeptide is expanded compared to other arthropods (Section B). Twelve neuropeptide GPCRs are expanded in number in *I. scapularis* in comparison to other arthropods (Section C).

Supplementary Table 29. Details of the *Ixodes scapularus* gustatory receptor (IsGr) family genes and proteins. Columns are: Gene – the gene and protein name assigned (suffixes are PSE – pseudogene, NTE – N-terminus missing, CTE – C-terminus missing, INT – internal exon missing, FIX – assembly was repaired, JOI – gene model spans scaffolds; multiple suffixes are abbreviated to single letters); OGS – the official gene number in the 20,486 proteins in OGSv1 (prefix is ISCW); Supercontig – the v1 genome assembly supercontig ID (prefix DS); Coordinates – the nucleotide range from the first position of the start codon to the last position of the stop codon in the scaffold; Strand – + is forward and - is reverse; Introns – number of introns in coding region; AAs – number of encoded amino acids in the protein; Comments – comments on the OGS gene model, repairs to the genome assembly, and pseudogene status (numbers in parentheses are the number of obvious pseudogenizing mutations).

Gene	OGS	Scaffold	Coordinates	Strand	Introns	AAs	Comments
Gr1FIX	018232	700356	130622-133945	+	3	403	Fix assembly gap
Gr2FIX	011821	855368	2651->5255	+	3	399	Fix assembly gap
Gr3FIX	-	855368	<16600-25223	+	3	389	Fix assembly gap
Gr4CTE	-	855368	29556->30788	+	3	363	Last exon missing
Gr5INT	-	855368	50700-60493	-	3	365	Third exon missing
Gr6CTE	011822	855368	78232->80092	+	3	367	Last exon missing
Gr7INT	-	855368	88901-90482	+	3	369	Third exon missing
Gr8PSE	-	855368	102468-103531	+	3	327	Pseudogene (10)
Gr9	800162	855368	122988-129732	+	3	404	New gene model
Gr10	800163	855368	160441-163747	+	3	394	New gene model
Gr11FIX	011826	855368	172171-176518	+	3	409	Fix assembly
Gr12FIX	-	681555	<144303-147585	-	3	408	Fix assembly gap
Gr13FIX	-	681555	122727-130437	-	3	394	Fix assembly
Gr14	800164	681555	110946-114435	-	3	406	New gene model
Gr15	800165	681555	97115-99209	-	3	409	New gene model
Gr16FIX	-	681555	85287-92568	-	3	413	Fix assembly gap
Gr17CTE	-	681555	<68420-69367	-	1	316	Last three exons missing
Gr18	800161	740051	6893-11542	+	3	394	New gene model
Gr19FJ	-	686724	82->1133	+	3	401	Join across two scaffolds
	-	797949	190->4652	-			Fix gap between scaffolds
Gr20JI	-	615125	<1-677	-	3	305	Join across two scaffolds
	-	686967	<1-12718	+			Part of exon one missing
Gr21FIX	-	848686	<7763-10335	+	3	401	Fix assembly gap
Gr22PSE	-	832595	17507-19366	+	3	393	Pseudogene (1)
Gr23PSE	-	832595	32755-34887	+	3	393	Pseudogene (5)
Gr24	800167	938791	41333-43178	+	3	393	New gene model
Gr25	800168	938791	80049-81932	+	3	393	New gene model
Gr26	800166	853698	97706-99752	-	3	393	New gene model
Gr27	800169	853698	89684-92137	-	3	393	New gene model
Gr28	800170	853698	111225-112868	-	3	393	New gene model
Gr29FIX	-	743784	<1-539	-	3	393	Fix assembly gap
Gr30FIX	-	857335	219->1239	-	3	393	Fix assembly gap
Gr31FIX	-	960372	<1-1000	+	3	393	Fix assembly gap
Gr32FIX	-	682467	236->1431	+	3	388	Fix assembly gap
Gr33	-	873761	45170-47981	+	2	387	Lost first intron
Gr34	800171	873761	51055-55819	-	3	380	New gene model
Gr35	800184	849364	15863-44702	+	3	379	New gene model
Gr36INT	000403	626740	7238-16841	+	3	374	Second exon missing
Gr37	018421	701157	1484-10355	+	6	372	Extra introns
Gr38CTE	013468	908024	<17508-18416	-	-	303	Last three exons missing
Gr39CTE	014940	953252	1139->2071	+	1	311	Last three exons missing

Gr40	800173	895205	28720-34708	+	3	397	New gene model
Gr41JI	-	976502	<1-1135	-	3	373	Join across two scaffolds
		671510	176901->189177	-			Second exon missing
Gr42CTE	008702	827442	6174->7127	+	1	318	Last three exons missing
Gr43CTE	008702	827442	8389->9369	+	1	327	Last three exons missing
Gr44CTE	008702	827442	11273->12205	+	1	311	Last three exons missing
Gr45CTE	-	660244	1213->1959	+	1	249	Last three exons missing
Gr46FC	-	828673	<1->519	+	-	200	Fix assembly gap
							Last three exons missing
Gr47	800174	884190	15927-17192	-	0	421	New gene model
Gr48	800175	663085	56946-58130	-	0	394	New gene model
Gr49	800176	663085	62527-63657	+	0	376	New gene model
Gr50	800177	966800	5785-7014	+	0	409	New gene model
Gr51	800178	637704	96604-97833	-	0	409	New gene model
Gr52	800179	931786	315480-316709	-	0	409	New gene model
Gr53	800180	931786	328322-329596	-	0	424	New gene model
Gr54	800181	940066	661113-662393	+	0	426	New gene model
Gr55	800182	688611	441077-442354	-	0	425	New gene model
Gr56	800183	775741	1373-2533	+	0	386	New gene model
Gr57PSE	-	907737	45413-46569	+	0	386	Pseudogene (8)
Gr58PSE	-	894387	688->1690	-	0	325	Pseudogene (9)
Gr59NC	012263	921071	<111821->112591	+	0	257	Both ends missing
Gr60NC	-	663085	<72725->73345	-	0	200	Both ends missing
Gr61	018260	714433	1067742-1076817	+	3	433	Fine as is
Gr62CTE	011649	878513	<4955-17506	-	1	307	C-terminus missing

Gene Name	VectorBase Accession	Scaffold	Start	Stop	Length (bp)	Introns	Comments ¹	Notes
IscaAMPAR01	ISCW016542-PA	DS647564	326210	285753	725	11	-	No ATG
IscaAMPAR02	novel	DS852167	93345	41206	719	11	PSE	1 frameshift
IscaAMPAR03	ISCW017534-PA	DS674345	860787	894098	914	14	-	
IscaAMPAR04	ISCW017535-PA	DS674345	896771	928186	878	12	-	No ATG 4 frameshifts. No ATG.
IscalR25a	ISCW008225-PA	DS776301	656	15191	627	5	PSE, CTE	Added N-term and C- term
IscalR270.1	ISCW014237-PA	DS941993	1246	48375	526	6	INT	
IscalR270.2	novel	DS944343	445174	621659	770	8	INT	
IscalR271	ISCW000549-PA	DS643501	48779	30656	487	9	-	
								No ATG. Added C-term,
IscalR272	ISCW022000-PA	DS917723	300652	307852	283	3	NTE	removed residues at N- term
IscalR273	ISCW006307-PA	DS743451	18121	16238	628	0	-	
IscalR274	ISCW015704-PA	DS613622	176323	163863	398	5	NTE	
IscalR275	ISCW020630-PA	DS844967	256726	273694	429	5	NTE	No ATG. Removed residues at N-term
IscalR276	ISCW022877-PA	DS911299	93493	103589	454	6	-	
IscalR277	ISCW001635-PA	DS618314	1505	19198	448	7	-	
IscalR278	ISCW015703-PA	DS613622	146719	160224	423	7	-	
IscalR279	ISCW019302-PA	DS809877	693067	708183	376	4	NTE	
IscalR280	ISCW015107-PA	DS979414	264628	258457	354	4	NTE	No ATG
IscalR281	ISCW010196-PA	DS829427	63163	77406	347	5	NTE	
IscalR93a	ISCW007957-PA	DS778079	2881	36116	659	9	-	
IscaKA01	ISCW023268-PA	DS954809	79910	4181	736	13	CTE	No ATG
IscaKA02	novel	DS683624	147641	132726	381	3	PSE, NTE, CTE	1 internal stop codon. No ATG
IscaKA03	ISCW001842-PA	DS664102	467895	401477	761	10	PSE	1 frameshift. No ATG. Few edits
IscaKA04	ISCW023274-PA	DS954809	715472	675153	808	12	-	No ATG
IscaKA05	ISCW008266-PA	DS811111	136492	107642	870	12	-	
IscaKA06	ISCW012402-PA	DS907449	324300	367939	728	11	CTE	No ATG
IscaKA07	ISCW008263-PA	DS811111	21039	8427	264	3	NTE	No ATG

Supplementary Table 30. Ixodes scapularis ionotropic glutamate receptors and ionotropic receptors

IscaNMDAR01	ISCW010976-PA	DS891848	1499	36711	582	9	-	Few edits. No ATG. Short?
lscaNMDAR02	ISCW005598-PA	DS758678	464306	409871	854	13	-	Few edits. No ATG
IscaNMDAR03	ISCW009282-PA	DS834911	299979	287443	1114	9	-	

 1 PSE = pseudogene; NTE = N-terminal end missing; CTE = C-terminal end missing; INT = internal gap.

Supplementary Table 31. Putative Cys-loop and ionotropic glutamate ligand-gated ion channels in the *lxodes scapularis* genome.

Ion Channel	Acaricidal Compound	Subunits <i>Ixodes</i>	Subunits Drosophila
Cys-loop ligand-gated ion channels	S		
Nicotinic acetylcholine receptors	Spinosyn	12	10
GABA receptors	Fipronil	4	3
Glutamate-gated anion channels	Ivermectin	6	1
Histamine-gated anion channels	Ivermectin	1	2
pH-sensitive anion channels	Ivermectin	1	1
Other subunits		8	5
Ionotropic glutamate receptors			
AMPA		4	2
Kainate		7	10
NMDA		3	2
IRs		15 [†]	66

[†]30 additional short sequence fragments encoding potential IRs were also identified.

EARLY INFECTION		LATE INFECTION	
Over-expressed in infected cells	N=13	Under-expressed in infected cells	N=50
Cell growth	7.7%*'**	Cell growth	20.0%*'**
Protein metabolism	38.5%	Protein metabolism	30.0%
Nucleic acid metabolism	23.1%	Nucleic acid metabolism	14.0%
Transport	15.4%	Transport	6.0%
		Energy metabolism	16.0%
		Cell communication	6.0%
		Lipid metabolism	0.0%
Unknown	15.3%	Unknown	8.0%
Up regulated in infected cells	N=8	Up regulated in infected cells	N=31
Cell growth	12.5%* ^{,**}	Cell growth	3.2%*',**
Protein metabolism	37.5%	Protein metabolism	38.7%
Nucleic acid metabolism	25.0%	Nucleic acid metabolism	25.8%
Transport	0.0%*	Transport	0.0%*
		Energy metabolism	9.7%
		Cell communication	3.2%
		Lipid metabolism	3.2%
Unknown	25.0%	Unknown	16.2%

Supplementary Table 32. Proteins identified by LC-MS/MS of ISE6-Anaplasma infected *Ixodes scapularis* ISE6 cells.

Biological process protein ontology of differentially represented proteins between infected and uninfected tick cells during early and late infections (* and ** indicate significant differences (p<0.05) between underand over-represented proteins in both early and late infections and between early and late infections, respectively).

FASTA Protein Description	UNIPROT	Protein Name	Fold	FDR⁵	Biological Process ^c
			Change		
Under-expressed in infected cells, N=13					
tr B7P2Q4 B7P2Q4_IXOSC Lamin, putative OS=Ixodes scapularis GN=IscW_ISCW000339	B7P2Q4	Laminin	-2.53	0.000	Cell growth and/or maintenance
tr B7P7F7 B7P7F7_IXOSC Heat shock protein, putative OS=Ixodes scapularis GN=Isc	B7P7F7	HSP	-2.31	0.004	Protein metabolism
tr B7P9E4 B7P9E4_IXOSC Na+/K+ ATPase, alpha subunit, putative (Fragment) OS=Ixo	B7P9E4	Na+/K+ ATPase, alpha subunit	-2.14	0.000	Transport
tr B7P5B3 B7P5B3_IXOSC U5 snRNP-specific	B7P5B3	U5 snRNP-specific	-2.04	0.004	Protein metabolism
tr B7PMC3 B7PMC3_IXOSC Putative	B7PMC3	Unknown	-2.03	0.000	Unknown
tr B7P2T4 B7P2T4_IXOSC Ribosomal protein	B7P2T4	ribosomal protein S17	-1.95	0.004	Protein metabolism
tr B7PV22 B7PV22_IXOSC Poly [ADP-ribose]	B7PV22	poly [ADP-ribose]	-1.94	0.013	Unknown
tr B7QDV1 B7QDV1_IXOSC Histone, putative	B7QDV1	histone	-1.93	0.000	Nucleic acid metabolism
tr B7P595 B7P595_IXOSC Proline and glutamine-	B7P595	proline and glutamine-	-1.89	0.003	Nucleic acid metabolism
rich splicing factor (SFPQ), puta		rich splicing factor (SFPQ)			
tr B7PR83 B7PR83_IXOSC Ubiquitin conjugating enzyme E1, putative OS=Ixodes scap	B7PR83	ubiquitin conjugating enzyme E1	-1.82	0.000	Protein metabolism
tr B7P0P1 B7P0P1_IXOSC DNA topoisomerase 2 OS=Ixodes scapularis GN=IscW ISCW01	B7P0P1	DNA topoisomerase II	-1.65	0.002	Nucleic acid metabolism
tr B7QMV1 B7QMV1_IXOSC Elongation factor, putative OS=Ixodes scapularis GN=IscW	B7QMV1	elongation factor 2 (eEF2)	-1.50	0.000	Protein metabolism
tr B7P5X8 B7P5X8_IXOSC Voltage dependent anion selective channel, putative OS=	B7P5X8	voltage-dependent anion- selective channel (mt)	-1.33	0.028	Transport
Over-expressed in Infected cells, N=8					
tr A6N9P0 A6N9P0_ORNPR 40S ribosomal protein S14 OS=Ornithodoros parkeri PE=2 S	A6N9P0	ribosomal protein S14	+ 1.69	0.000	Protein metabolism
tr B7Q0Q1 B7Q0Q1_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes sc	B7Q0Q1	Unknown	+ 1.78	0.002	Unknown
tr B7PZ14 B7PZ14_IXOSC RNA binding protein, putative OS=Ixodes scapularis GN=I	B7PZ14	RNA-binding protein	+ 1.83	0.011	Nucleic acid metabolism

Supplementary Table 33. Protein differential representation between *Anaplasma phagocytophilum*-early infected and control uninfected *Ixodes scapularis* ISE6 cells.

tr B7P3Q5 B7P3Q5_IXOSC Vasa intronic protein,	B7P3Q5	vasa intronic protein	+ 2.01	0.000	Nucleic acid metabolism
putative OS=Ixodes scapularis GN					
tr B7QD48 B7QD48_IXOSC Putative	B7QD48	Unknown	+ 2.35	0.037	Unknown
uncharacterized protein (Fragment) OS=Ixodes sc					
tr B7PSQ6 B7PSQ6_IXOSC 40S ribosomal protein	B7PSQ6	40S ribosomal protein	+ 3.10	0.004	Protein metabolism
S3A, putative OS=Ixodes scapularis		S3A			
tr B2YGD3 B2YGD3_9ARAC Actin (Fragment)	B2YGD3	actin	+ 3.27	0.027	Cell growth and/or
OS=Galianora bryicola PE=4 SV=1					maintenance
tr B7PXR5 B7PXR5_IXOSC Chaperonin complex	B7PXR5	chaperonin complex	+ 11.92	0.004	Protein metabolism
component, TCP-1 eta subunit, putativ		component, TCP-1b eta			
		subunit			

^a + indicates a significant increase in protein levels and - indicates a significant decrease in protein levels in infected cells (p < 0.05). ^bFalse discovery rate (FDR) associated to protein identification. ^cProtein ontology for biological process determined using human protein databases at: http://www.hprd.org / and <u>http://www.ebi.ac.uk/interpro/</u>

FASTA Protein Description	UNIPROT	Protein Name	Fold Change ^a	FDR⁵	Biological Process ^c
Under-expressed in infected cells, N=50					
tr B7P7F7 B7P7F7_IXOSC Heat shock protein,	B7P7F7	HSP	-5.81	0.004	Protein metabolism
putative OS=Ixodes scapularis GN=Isc					
tr B7P2Q4 B7P2Q4_IXOSC Lamin, putative	B7P2Q4	Laminin B	-5.64	0.000	Cell growth and/or
OS=Ixodes scapularis GN=IscW_ISCW000339					maintenance
tr B7P595 B7P595_IXOSC Proline and glutamine-	B7P595	proline and glutamine-rich	-2.73	0.003	Nucleic acid
rich splicing factor (SFPQ), puta		splicing factor (SFPQ)			metabolism
tr B7P0P1 B7P0P1_IXOSC DNA topoisomerase 2	B7P0P1	DNA topoisomerase II	-2.66	0.002	Nucleic acid
OS=Ixodes scapularis GN=IscW_ISCW01					metabolism
tr B7P9E4 B7P9E4_IXOSC Na+/K+ ATPase,	B7P9E4	Na+/K+ ATPase, alpha	-2.38	0.000	Transport
alpha subunit, putative (Fragment) OS=Ixo		subunit			
tr B7P3D3 B7P3D3_IXOSC FKBP-type peptidyl-	B7P3D3	FKBP-type peptidyl-prolyl	-2.27	0.037	Protein metabolism
prolyl cis-trans isomerase, putative		cis-trans isomerase			
tr B7P1C8 B7P1C8_IXOSC Protein hu-li tai shao,	B7P1C8	protein hu-li tai shao,	-2.17	0.000	Cell growth and/or
putative OS=Ixodes scapularis GN	5-0.00	Adducin	o / -		maintenance
tr B/Q1Y2 B/Q1Y2_IXOSC 6-phosphogluconate	B/Q1Y2	6-phosphogluconate	-2.15	0.003	Energy metabolism
dehydrogenase, decarboxylating (Frag		dehydrogenase	0.00	0.045	
tr B/P230 B/P230_IXOSC Translation initiation	B7P230	translation initiation factor	-2.08	0.015	Protein metabolism
factor 2C, putative US=Ixodes sc		2C	2.00	0.000	Nuclaia acid
TIB/QDV1B/QDV1_IXOSC Histone, putative	BIQDVI	nistone	-2.06	0.000	
tripzpep2/pzpep2_IXOSC_Lister_DND encosition		LIE an DND an acific	2.05	0.004	Dretain metabolism
nrotoin, putativo (Fragment) OS-Ivodo	DIFODO	DS SIRNF-Specific	-2.05	0.004	FIOLEIN MELADOIISM
triB7D8 MB7D8 M IXOSC ATE-dependent PNA	B7D8 1/1	ATP-dependent PNA	-2.02	0.027	Nucleic acid
helicase putative (Fragment) OS-Ivode	D7 F 054	helicase	-2.02	0.027	metabolism
trIB7PAS1/B7PAS1_IXOSC_MCM2 protein	B7PAS1	MCM2: Predicted ATPase	-1 99	0.010	Cell growth and/or
putative (Fragment) OS=Ixodes scapularis	Brindi	involved in replication	1.00	0.010	maintenance
		control			maintenance
trlB7PSE0/B7PSE0_IXOSC Ribosomal protein L4.	B7PSE0	ribosomal protein L4	-1.96	0.000	Protein metabolism
putative OS=Ixodes scapularis GN=I				0.000	
trlB7Q5Y2lB7Q5Y2 IXOSC Prohibitin, putative	B7Q5Y2	prohibitin	-1.92	0.000	Cell communication:
OS=Ixodes scapularis GN=IscW ISCW0					Signal transduction
tr B7PKP8 B7PKP8_IXOSC Spermidine synthase.	B7PKP8	spermidine synthase	-1.83	0.000	Energy metabolism
putative OS=Ixodes scapularis GN=I		. ,			
tr B7PKR5 B7PKR5_IXOSC Glutamyl-tRNA	B7PKR5	glutamyl-tRNA synthetase	-1.82	0.000	Protein metabolism
synthetase, cytoplasmic, putative OS=Ixode					

Supplementary Table 34. Protein differential representation between *Anaplasma phagocytophilum*-late infected and control uninfected *Ixodes scapularis* ISE6 cells.

tr B7PQP7 B7PQP7_IXOSC Hydroxyacyl-CoA dehydrogenase, putative (Fragment) OS=Ix	B7PQP7	hydroxyacyl-CoA dehvdrogenase	-1.81	0.000	Energy metabolism
tr B7PMC3 B7PMC3_IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN	B7PMC3	Unknown	-1.81	0.000	Unknown
tr B7QC74 B7QC74_IXOSC Transcription factor containing NAC and TS-N domains, pu	B7QC74	transcription factor containing NAC and TS-N domains	-1.73	0.020	Nucleic acid metabolism
tr B7PKQ6 B7PKQ6_IXOSC Cell division protein, putative (Fragment) OS=Ixodes sca	B7PKQ6	cell division protein	-1.72	0.027	Cell growth and/or maintenance
tr B7QFX7 B7QFX7_IXOSC RAB-9 and, putative OS=Ixodes scapularis GN=IscW_ISCW021	B7QFX7	RAB-9, small Rab GTPase that regulates vesicular traffic from early to late endosomal stages of the endocytic pathway	-1.71	0.000	Cell communication; Signal transduction
tr B7PUR9 B7PUR9_IXOSC Failed axon	B7PUR9	failed axon connections	-1.69	0.000	Unknown
tr B7PA04 B7PA04_IXOSC Putative	B7PA04	Unknown	-1.68	0.004	Unknown
tr B7PV22 B7PV22_IXOSC Poly [ADP-ribose]	B7PV22	poly [ADP-ribose]	-1.65	0.013	Unknown
tr B7PRG2 B7PRG2_IXOSC 60S acidic ribosomal	B7PRG2	60S acidic ribosomal	-1.62	0.044	Protein metabolism
tr B7P573 B7P573_IXOSC Processing peptidase	B7P573	processing peptidase	-1.59	0.011	Protein metabolism
tr B7PIZ1 B7PIZ1_IXOSC GDI-1 GDP dissociation inhibitor, putative (Fragment) O	B7PIZ1	GDI-1 GDP dissociation	-1.58	0.000	Cell communication; Signal transduction
tr B7P289 B7P289_IXOSC Prolyl 4-hydroxylase alpha subunit, putative OS=Ixodes s	B7P289	prolyl 4-hydroxylase alpha subunit	-1.58	0.003	Protein metabolism
tr B7PVI7 B7PVI7_IXOSC RNA-binding protein musashi, putative OS=Ixodes scapula	B7PVI7	RNA-binding protein musashi	-1.56	0.002	Nucleic acid metabolism
tr B7QMV1 B7QMV1_IXOSC Elongation factor,	B7QMV1	elongation factor 2 (eEF2)	-1.55	0.000	Protein metabolism
tr B7QM86 B7QM86_IXOSC Talin, putative	B7QM86	Talin, cytoskeletal	-1.51	0.000	Cell growth and/or
tr B7PCN1 B7PCN1_IXOSC Aldo-keto reductase,	B7PCN1	aldo-keto reductase	-1.47	0.004	Energy metabolism
tr B7Q3Z3 B7Q3Z3_IXOSC 26S proteasome	B7Q3Z3	26S proteasome	-1.47	0.048	Protein metabolism
tr A4UTU3 A4UTU3_DERVA Beta-actin OS=Dermacentor variabilis PE=2 SV=2	A4UTU3	Beta actin	-1.46	0.000	Cell growth and/or maintenance

tr B2D2D4 B2D2D4_9ACAR Translation elongation factor FE-1 alpha/Tu (Fragment)	B2D2D4	Translation elongation	-1.45	0.000	Protein metabolism
trlB7P1Z8/B7P1Z8/IXOSC Heat shock protein.	B7P1Z8I	HSP	-1.45	0.016	Protein metabolism
putative OS=Ixodes scapularis GN=Is	01			01010	
triB7QMD6IB7QMD6_IXOSC_Transaldolase.	B7QMD6	transaldolase	-1.43	0.000	Energy metabolism
putative OS=Ixodes scapularis GN=IscW ISC					5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
trlB7QIJ3IB7QIJ3 IXOSC Quinone	B7QIJ3I	quinone oxidoreductase	-1.41	0.000	Energy metabolism
oxidoreductase, putative (Fragment) OS=Ixodes s		1			5,
tr B7P5X8 B7P5X8 IXOSC Voltage-dependent	B7P5X8	voltage-dependent anion-	-1.40	0.028	Transport
anion-selective channel, putative OS=	·	selective channel (mt)			•
tr Q6X4W3 Q6X4W3_HAELO Actin	Q6X4W3	Actin	-1.40	0.000	Cell growth and/or
OS=Haemaphysalis longicornis GN=Act1 PE=2					maintenance
SV=1					
tr B7P1U8 B7P1U8_IXOSC Spectrin alpha chain,	B7P1U8	spectrin alpha chain,	-1.39	0.000	Cell growth and/or
putative OS=Ixodes scapularis GN=		cytoskeletal protein			maintenance
tr B7PGM6 B7PGM6_IXOSC G-3-P	B7PGM6	Glyceraldehyde 3-	-1.39	0.000	Energy metabolism
dehydrogenase, putative (Fragment) OS=Ixodes		phosphate			
scapu		dehydrogenase			
sp Q8WQ47 TBA_LEPDS Tubulin alpha chain	Q8WQ4	Alpha tubulin	-1.37	0.000	Cell growth and/or
OS=Lepidoglyphus destructor PE=1 SV=2					maintenance
tr B7QMW0 B7QMW0_IXOSC Fatty acid-binding	B7QMW0	fatty acid-binding protein	-1.34	0.000	Transport
protein FABP, putative OS=Ixodes sca		FABP			
tr A8UY20 A8UY20_9ACAR Elongation factor 1-	A8UY20	elongation factor -alpha	-1.32	0.003	Protein metabolism
alpha (Fragment) OS=Hypochthonius I		(eEF1a)			
tr B7PG97 B7PG97_IXOSC Transcription factor	B7PG97	transcription factor NFAT,	-1.31	0.011	Nucleic acid
NFAT, subunit NF45, putative (Frag		subunit NF45			metabolism
tr B7PD56 B7PD56_IXOSC cyclophilin B	B7PD56	cyclophilin B precursor	-1.31	0.003	Protein metabolism
precursor OS=Ixodes scapularis	_				
tr B7Q0D4 B7Q0D4_IXOSC	B7Q0D4	fumarylacetoacetase	-1.27	0.015	Energy metabolism
Fumarylacetoacetase, putative OS=Ixodes					
scapularis GN=Is					
tr B7PA92 B7PA92_IXOSC Beta tubulin	B7PA92	beta tubulin	-1.27	0.003	Cell growth and/or
OS=Ixodes scapularis GN=IscW_ISCW017133 PF					maintenance
Over-expressed in Infected cells, N=31					
trIB7PEN4IB7PEN4_IXOSC Heat shock protein	B7PEN4	HSP70	+ 1 20	0.011	Protein metabolism
putative OS=Ixodes scapularis GN=Is			11.20	0.011	
trIB4YTT8IB4YTT8 9ACAR Heat shock protein	B4YTT8	HSP70-1	+ 1.30	0.002	Protein metabolism
70-1 OS=Tetranychus cinnabarinus PE=2				0.002	
tr B7Q6Z1 B7Q6Z1 IXOSC Saposin, putative	B7Q6Z1	saposin	+ 1.37	0.000	Lipid metabolism
		•			

OS=Ixodes scapularis GN=IscW_ISCW01159					
tr B4YTT9 B4YTT9_9ACAR Heat shock protein	B4YTT9	HSP70-2	+ 1.42	0.000	Protein metabolism
tr lscW_lSCW008184 lscW_lSCW008184	IscW_ISC	calreticulin, chaperone	+ 1.46	0.000	Protein metabolism
tr B7P591 B7P591_IXOSC	B7P591	phosphoribosylamidoimid	+ 1.46	0.000	Nucleic acid
succinocarboxamide synthas		azole- succinocarboxamide			metabolism
tr B7PV15 B7PV15_IXOSC	B7PV15	synthase glyoxylate/hydroxypyruvat	+ 1.48	0.000	Energy metabolism
Glyoxylate/hydroxypyruvate reductase, putative	·	e reductase			
tr B7PKH2 B7PKH2_IXOSC Mcm2/3, putative	B7PKH2	minichromosome	+ 1.49	0.030	Nucleic acid
(Fragment) OS=Ixodes scapularis GN=Isc		maintenance protein Mcm2/3			metabolism
tr B7PBW3 B7PBW3_IXOSC Protein disulfide	B7PBW3	protein disulfide	+ 1.53	0.050	Protein metabolism
tr B7PEL0 B7PEL0_IXOSC Tetraspanin, putative	B7PEL0	tetraspanin	+ 1.57	0.000	Unknown
tr B7PRN8 B7PRN8_IXOSC Brain acid soluble	B7PRN8	brain acid soluble protein	+ 1.58	0.018	Nucleic acid
protein, putative OS=Ixodes scapular trIA6N9M1IA6N9M1_ORNPR_40S ribosomal	A6N9M1	40S ribosomal protein	+ 1.68	0.017	metabolism Protein metabolism
protein S2/30S OS=Ornithodoros parkeri PE=		S2/30S	4 70	0.000	
tr B/PH44 B/PH44_IXOSC Malate dehydrogenase, putative OS=Ixodes scapularis	B7PH44	malate dehydrogenase	+ 1.72	0.000	Energy metabolism
GN=I					
SplQ09J14 RL38_ARGMO 60S ribosomal protein L38 OS=Argas monolakensis GN=RpL38	Q09J14	60S ribosomal protein	+ 1.90	0.003	Protein metabolism
tr B7QF39 B7QF39_IXOSC Transcription factor	B7QF39	Transcription factor Mbf1	+ 2.02	0.003	Nucleic acid
tr B5M799 B5M799_9ACAR Histone H2B	B5M799	Histone H2B	+ 2.06	0.048	Nucleic acid
tr B7QF45 B7QF45_IXOSC 3 ketoacyl CoA	B7QF45	3-keto-acyl-CoA thiolase	+ 2.13	0.032	Protein metabolism
thiolase, putative OS=Ixodes scapularis					
tr B7Q1Y8 B7Q1Y8_IXOSC Putative	B7Q1Y8	Unknown	+ 2.18	0.039	Unknown
trIB7P714IB7P714_IXOSC_RNA binding protein	B7P714	RNA-binding protein	+ 2 20	0.011	Nucleic acid
putative OS=Ixodes scapularis GN=I			1 2.20	0.011	metabolism
tr B7Q5H9 B7Q5H9_IXOSC Fructose	B7Q5H9	fructose 1,6-bisphosphate	+ 2.23	0.004	Energy metabolism
bisphosphate aldolase OS=Ixodes scapularis		aldolase			

GN=I					
tr B7PHT2 B7PHT2_IXOSC Histone H2A OS=Ixodes scapularis GN=IscW_ISCW004478 PE=	B7PHT2	Histone H2A	+ 2.72	0.000	Nucleic acid metabolism
tr B7Q645 B7Q645_IXOSC Secreted salivary gland peptide, putative (Fragment) OS	B7Q645	secreted salivary gland peptide	+ 2.81	0.000	Protein metabolism
tr B7Q4T5 B7Q4T5_IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN	B7Q4T5	Unknown	+ 2.83	0.000	Unknown
tr B7Q0Q1 B7Q0Q1_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes sc	B7Q0Q1	Unknown	+ 2.91	0.002	Unknown
tr B7PB95 B7PB95_IXOSC Stathmin OS=Ixodes scapularis GN=IscW_ISCW003366 PE=3 S	B7PB95	stathmin	+ 2.96	0.000	Cell communication; Signal transduction
tr B7QD48 B7QD48_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes sc	B7QD48	Unknown	+ 3.14	0.037	Unknown
tr A6N9P0 A6N9P0_ORNPR 40S ribosomal protein S14 OS=Ornithodoros parkeri PE=2 S	A6N9P0	ribosomal protein S14	+ 3.22	0.000	Protein metabolism
tr B7PKZ9 B7PKZ9_IXOSC BRI1 KD interacting protein, putative OS=Ixodes scapula	B7PKZ9	BRI1-KD interacting protein	+ 3.98	0.014	Protein metabolism
tr Q86G66 Q86G66_DERVA Putative beta thymosin OS=Dermacentor variabilis PE=2 SV	Q86G66	beta thymosin	+ 4.68	0.000	Cell growth and/or maintenance
tr B7P3Q5 B7P3Q5_IXOSC Vasa intronic protein, putative OS=Ixodes scapularis GN	B7P3Q5	vasa intronic protein	+ 4.81	0.000	Nucleic acid metabolism
tr B7PXR5 B7PXR5_IXOSC Chaperonin complex component, TCP1 eta subunit, putativ	B7PXR5	chaperonin complex component, TCP-1b eta subunit	+ 16.16	0.004	Protein metabolism

^a + indicates a significant increase in protein levels and - indicates a significant decrease in protein levels in infected cells (p < 0.05).
^bFalse discovery rate (FDR) associated to protein identification.
^cProtein ontology for biological process determined using human protein databases at: http://www.hprd.org / and <u>http://www.ebi.ac.uk/interpro/</u>

FASTA protein Description	Species	No. Peptides ^a	FDR ^b
Proteins identified with FDR <1%			
tr B7PEV0 B7PEV0_IXOSC Chaperonin subunit, putative OS=Ixodes scapularis GN=Isc	lxodes scapularis	12	0.000
sp Q8WQ47 TBA_LEPDS Tubulin alpha chain OS=Lepidoglyphus destructor PE=1 SV=2	Lepidoglyphus destructor	10	0.000
tr B7PEN4 B7PEN4_IXOSC Heat shock protein, putative OS=Ixodes scapularis GN=Isc	Ixodes scapularis	10	0.000
tr B7QI01 B7QI01_IXOSC Hsp90 protein, putative OS=Ixodes scapularis GN=IscW_IS	Ixodes scapularis	9	0.000
tr B7P1U8 B7P1U8_IXOSC Spectrin alpha chain, putative OS=Ixodes scapularis GN=	Ixodes scapularis	8	0.000
tr B7Q5X7 B7Q5X7_IXOSC Vinculin, putative OS=Ixodes scapularis GN=IscW_ISCW0214	Ixodes scapularis	8	0.000
tr B7Q9F1 B7Q9F1_IXOSC Protein disulfide isomerase, putative OS=Ixodes scapular	Ixodes scapularis	8	0.000
tr B7QIT3 B7QIT3_IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN	Ixodes scapularis	7	0.000
tr B7P8Q5 B7P8Q5_IXOSC Hsp70, putative (Fragment) OS=Ixodes scapularis GN=IscW	Ixodes scapularis	6	0.000
tr B7Q0J9 B7Q0J9_IXOSC Peptidyl-prolyl cis-trans isomerase OS=Ixodes scapulari	Ixodes scapularis	6	0.000
tr B7QAM1 B7QAM1_IXOSC Chaperonin complex component, TCP-1 theta subunit, putat	Ixodes scapularis	6	0.000
tr B7QC85 B7QC85_IXOSC Tumor rejection antigen (Gp96), putative (Fragment) OS=I	Ixodes scapularis	6	0.000
tr B7QM86 B7QM86_IXOSC Talin, putative OS=Ixodes scapularis GN=IscW_ISCW023338	lxodes scapularis	6	0.000
tr B7QMV1 B7QMV1_IXOSC Elongation factor, putative OS=Ixodes scapularis GN=IscW	lxodes scapularis	6	0.000
tr B7P3Z6 B7P3Z6_IXOSC Chaperonin complex component, TCP-1 gamma subunit, putat	Ixodes scapularis	5	0.000
tr B7P4U1 B7P4U1_IXOSC Protein disulfide isomerase, putative OS=Ixodes scapular	Ixodes scapularis	5	0.000
tr B7PA92 B7PA92_IXOSC Beta tubulin OS=Ixodes scapularis GN=IscW_ISCW017133 PE=	Ixodes scapularis	5	0.000
tr B7PG97 B7PG97_IXOSC Transcription factor NFAT, subunit NF45, putative (Fragm	Ixodes scapularis	5	0.000
tr B7PN34 B7PN34_IXOSC KH domain RNA binding protein, putative (Fragment) OS=Ix	Ixodes scapularis	5	0.000
tr B7PUR9 B7PUR9_IXOSC Failed axon connections, putative OS=Ixodes scapularis G	lxodes scapularis	5	0.000
tr B7PX63 B7PX63_IXOSC Zinc finger protein, putative OS=Ixodes scapularis GN=Is	lxodes scapularis	5	0.000
tr B7Q0D4 B7Q0D4_IXOSC Fumarylacetoacetase, putative OS=Ixodes scapularis GN=Is	Ixodes scapularis	5	0.000
tr B7QE46 B7QE46_IXOSC ATP synthase subunit beta OS=Ixodes scapularis GN=IscW_	Ixodes scapularis	5	0.000
tr B5AHF4 B5AHF4_9ACAR Heat shock protein 90 OS=Tetranychus cinnabarinus PE=2 S	Tetranychus cinnabarinus	5	0.000
tr A4UTU3 A4UTU3_DERVA Beta-actin OS=Dermacentor variabilis PE=2 SV=2	Dermacentor variabilis	5	0.000
tr A0S0Q6 A0S0Q6_9ACAR Actin (Fragment) OS=Neoseiulus womersleyi PE=2 SV=1	Neoseiulus womersleyi	4	0.000
tr B7P1Z8 B7P1Z8_IXOSC Heat shock protein, putative OS=Ixodes scapularis GN=Isc	Ixodes scapularis	4	0.000
tr B7PAR6 B7PAR6_IXOSC Heat shock protein, putative OS=Ixodes scapularis GN=Isc	Ixodes scapularis	4	0.000

Supplementary Table 35. Protein identification in *Ixodes scapularis* ISE6 cells infected with *Anaplasma phagocytophilum*.

trIB7PH44IB7PH44 IXOSC Malate dehvdrogenase, putative OS=Ixodes scapularis GN=I tr|B7PIM5|B7PIM5_IXOSC CNDP dipeptidase, putative (Fragment) OS=Ixodes scapular tr|B7Q5G8|B7Q5G8_IXOSC Spectrin beta chain, putative OS=Ixodes scapularis GN=Is tr|B7Q5Y2|B7Q5Y2_IXOSC Prohibitin, putative OS=Ixodes scapularis GN=IscW_ISCW0 tr|B7QCK2|B7QCK2 IXOSC ATP synthase subunit alpha OS=Ixodes scapularis GN=IscW_ tr|B7QJ21|B7QJ21_IXOSC Chaperonin complex component, TCP-1 eta subunit, putati tr|B5M6E6|B5M6E6_HAPSC Beta tubulin OS=Haplopelma schmidti PE=2 SV=1 tr|A1KXJ1|A1KXJ1 BLOTA Blo t Mag29 allergen OS=Blomia tropicalis PE=2 SV=1 tr/B7P0M7/B7P0M7 IXOSC Aldehyde dehydrogenase, putative (Fragment) OS=Ixodes s tr|B7P5X8|B7P5X8 IXOSC Voltage-dependent anion-selective channel, putative OS=I tr|B7PAB9|B7PAB9 IXOSC Methylmalonate semialdehyde dehydrogenase, putative OS=I tr|B7PDF3|B7PDF3 IXOSC FKBP-type peptidyl-prolyl cis-trans isomerase, putative tr|B7PHC3|B7PHC3_IXOSC Carbon-nitrogen hydrolase, putative OS=Ixodes scapularis tr|B7PHJ5|B7PHJ5_IXOSC Cytochrome b5 domain-containing protein, putative (Fragm tr|B7PKG2|B7PKG2_IXOSC Fasciclin domain-containing protein, putative OS=Ixodes tr|B7PKR5|B7PKR5_IXOSC Glutamyl-tRNA synthetase, cytoplasmic, putative OS=Ixode tr|B7PRN8|B7PRN8_IXOSC Brain acid soluble protein, putative OS=Ixodes scapular tr|B7PSE0|B7PSE0_IXOSC Ribosomal protein L4, putative OS=Ixodes scapularis GN=I tr|B7PV15|B7PV15_IXOSC Glyoxylate/hydroxypyruvate reductase, putative OS=Ixodes tr|B7Q5I4|B7Q5I4 IXOSC Multifunctional chaperone, putative OS=Ixodes scapulari tr|B7Q5L2|B7Q5L2_IXOSC Calponin, putative OS=Ixodes scapularis GN=IscW_ISCW021 tr|B7QEE0|B7QEE0_IXOSC Hypoxia up-regulated protein, putative OS=Ixodes scapula tr|B7QGH2|B7QGH2_IXOSC Glutathione S-transferase, putative OS=Ixodes scapularis tr|B7QMW0|B7QMW0_IXOSC Fatty acid-binding protein FABP, putative OS=Ixodes sca tr|B4YTT9|B4YTT9_9ACAR Heat shock protein 70-2 OS=Tetranychus cinnabarinus PE= tr|A6N9Z0|A6N9Z0_ORNPR Ubiquitin/40S ribosomal protein S27a OS=Ornithodoros par trlA6NA14|A6NA14_ORNPR Truncated peroxiredoxin (Fragment) OS=Ornithodoros parke tr|B7P3B9|B7P3B9_IXOSC Lumican, putative OS=Ixodes scapularis GN=IscW_ISCW00102 tr|B7P3M8|B7P3M8_IXOSC D-3-phosphoglycerate dehydrogenase, putative (Fragment) tr|B7P427|B7P427_IXOSC Transmembrane protein Tmp21, putative OS=Ixodes scapular tr|B7P526|B7P526_IXOSC Reductase, putative OS=Ixodes scapularis GN=IscW_ISCW00 tr|B7P591|B7P591_IXOSC Phosphoribosylamidoimidazole-succinocarboxamide synthas

Ixodes scapularis	4	0.000
Ixodes scapularis	4	0.000
Haplopelma schmidti	4	0.000
Blomia tropicalis	3	0.000
Ixodes scapularis	3	0.000
Tetranychus cinnabarinus	3	0.000
Ornithodoros parkeri	3	0.000
Ornithodoros parkeri	3	0.000
Ixodes scapularis	2	0.000

tr|B7P5U7|B7P5U7_IXOSC Lon protease homolog (Fragment) OS=Ixodes scapularis GN= trIB7PA04IB7PA04 IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN tr|B7PA24|B7PA24_IXOSC Protein phosphatase 2A regulatory subunit A, putative OS tr|B7PBW3|B7PBW3_IXOSC Protein disulfide isomerase 1, putative OS=Ixodes scapul tr|B7PCL8|B7PCL8_IXOSC Hydroxysteroid (17-beta) dehydrogenase, putative OS=Ixo tr|B7PEU9|B7PEU9_IXOSC Heat shock protein OS=Ixodes scapularis GN=IscW_ISCW0178 tr|B7PEY5|B7PEY5_IXOSC Alanyl-tRNA synthetase, putative OS=Ixodes scapularis G tr|B7PGM6|B7PGM6 IXOSC G-3-P dehydrogenase, putative (Fragment) OS=Ixodes scapu tr|B7PIZ1|B7PIZ1 IXOSC GDI-1 GDP dissociation inhibitor, putative (Fragment) OS tr|B7PMY6|B7PMY6 IXOSC Actin depolymerizing factor, putative OS=Ixodes scapula tr|B7PTR3|B7PTR3 IXOSC Limbic system-associated membrane protein, putative OS=I tr|B7PUK8|B7PUK8 IXOSC Clathrin heavy chain, putative (Fragment) OS=Ixodes scap tr|B7PYE7|B7PYE7_IXOSC B-cell receptor-associated protein, putative OS=Ixodes s tr|B7Q0D5|B7Q0D5_IXOSC Pyruvate kinase OS=Ixodes scapularis GN=IscW_ISCW020197 tr|B7Q4P0|B7Q4P0_IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN trlB7Q4T5|B7Q4T5_IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN tr|B7Q6Y2|B7Q6Y2_IXOSC Chaperonin subunit, putative OS=Ixodes scapularis GN=Is tr|B7Q8W6|B7Q8W6_IXOSC Alkyl hydroperoxide reductase, thiol specific antioxida tr|B7QAW3|B7QAW3_IXOSC Electron transfer flavoprotein, beta subunit, putative O tr|B7QBM8|B7QBM8 IXOSC EnovI-CoA hydratase, putative OS=Ixodes scapularis GN=Is tr|B7QC74|B7QC74_IXOSC Transcription factor containing NAC and TS-N domains, pu tr|B7QFN6|B7QFN6_IXOSC Proliferating cell nuclear antigen OS=Ixodes scapularis tr|B7QGQ3|B7QGQ3_IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN tr|B7QHT2|B7QHT2_IXOSC Profilin (Fragment) OS=Ixodes scapularis GN=IscW_ISCW023 tr|B7QIJ3|B7QIJ3_IXOSC Quinone oxidoreductase, putative (Fragment) OS=Ixodes s tr|B7QL57|B7QL57_IXOSC Adenylyl cyclase-associated protein OS=Ixodes scapulari tr|B7QLY6|B7QLY6_IXOSC Nucleoside diphosphate kinase OS=Ixodes scapularis GN=Is tr|B7QMD6|B7QMD6_IXOSC Transaldolase, putative OS=Ixodes scapularis GN=IscW_ISC tr|Q64K73|Q64K73_9ACAR Calreticulin (Fragment) OS=Ixodes woodi PE=3 SV=1 tr|A5LHV9|A5LHV9_HAELO Protein disulfide isomerase-2 OS=Haemaphysalis longicorn tr|A6N9S1|A6N9S1 ORNPR Thioredoxin peroxidase OS=Ornithodoros parkeri PE=2 SV= tr|A9Y1V1|A9Y1V1_HAELO Ribosomal protein P0 OS=Haemaphysalis longicornis PE=2 S

Ixodes scapularis	2	0.000
Ixodes scapularis	2	0.000
lxodes scapularis	2	0.000
lxodes scapularis	2	0.000
Ixodes scapularis	2	0.000
lxodes woodi	2	0.000
Haemaphysalis Iongicornis	2	0.000
Ornithodoros parkeri	2	0.000
Haemaphysalis	2	0.000

tr|A9XYV8|A9XYV8_MASGI Putative uncharacterized protein (Fragment) OS=Mastigopr trlB4YTU0|B4YTU0_9ACAR Heat shock protein 70-3 OS=Tetranychus cinnabarinus PE= splQ4PLZ3|TCTP_IXOSC Translationally-controlled tumor protein homolog OS=Ixodes tr|B7P1C8|B7P1C8_IXOSC Protein hu-li tai shao, putative OS=Ixodes scapularis GN tr|B7P1U0|B7P1U0_IXOSC GTP-specific succinyl-CoA synthetase, beta subunit, put tr|B7P201|B7P201_IXOSC Ran GTPase-activating protein, putative OS=Ixodes scapul tr|B7P2P8|B7P2P8 IXOSC ATP synthase alpha subunit vacuolar, putative (Fragment) tr|B7P2Q4|B7P2Q4 IXOSC Lamin, putative OS=Ixodes scapularis GN=IscW ISCW000339 tr|B7P328|B7P328 IXOSC Superoxide dismutase (Fragment) OS=Ixodes scapularis GN tr|B7P361|B7P361 IXOSC 26S protease regulatory subunit 6B, putative OS=Ixodes s tr/B7P363/B7P363 IXOSC Ufm1-conjugating enzyme, putative OS=Ixodes scapularis tr|B7P3A9|B7P3A9_IXOSC Coatomer delta subunit, putative OS=Ixodes scapularis GN tr|B7P3G6|B7P3G6_IXOSC Medium-chain acyl-CoA dehydrogenase, putative OS=Ixodes tr|B7P3N4|B7P3N4_IXOSC Cytochrome P450, putative OS=Ixodes scapularis GN=IscW_I tr|B7P462|B7P462_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes sc tr|B7P4M6|B7P4M6_IXOSC Tyrosyl-tRNA synthetase, putative OS=Ixodes scapularis tr|B7P557|B7P557_IXOSC Mapmodulin, putative OS=Ixodes scapularis GN=IscW_ISCW00 tr|B7P5C4|B7P5C4_IXOSC Translation initiation factor 4F, helicase subunit, puta tr|B7P6A9|B7P6A9 IXOSC ATP synthase subunit beta OS=Ixodes scapularis GN=IscW | tr|B7P6P0|B7P6P0 IXOSC Glycoprotein 25I, putative OS=Ixodes scapularis GN=IscW tr|B7P7P7|B7P7P7_IXOSC Apoptosis inhibitor, putative OS=Ixodes scapularis GN=I tr|B7P7U3|B7P7U3_IXOSC Chloride channel, putative OS=Ixodes scapularis GN=IscW tr|B7P839|B7P839_IXOSC DEK domain-containing protein, putative OS=Ixodes scapu tr|B7P9E4|B7P9E4_IXOSC Na+/K+ ATPase, alpha subunit, putative (Fragment) OS=Ixo tr|B7PB95|B7PB95_IXOSC Stathmin OS=Ixodes scapularis GN=IscW_ISCW003366 PE=3 S tr|B7PBJ3|B7PBJ3_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes sc tr|B7PDF5|B7PDF5_IXOSC Prolyl endopeptidase, putative OS=Ixodes scapularis GN=I tr|B7PEA9|B7PEA9_IXOSC 40S ribosomal protein, putative OS=Ixodes scapularis GN= tr|B7PEL0|B7PEL0_IXOSC Tetraspanin, putative OS=Ixodes scapularis GN=IscW_ISCW0 tr|B7PH43|B7PH43 IXOSC Alpha tubulin OS=Ixodes scapularis GN=IscW_ISCW003527 PE tr|B7PHG9|B7PHG9_IXOSC ATPase, putative OS=Ixodes scapularis GN=IscW_ISCW01829

longicornis

Mastigoproctus giganteus	1	0.000
Tetranychus cinnabarinus	1	0.000
Ixodes scapularis	1	0.000
lxodes scapularis	1	0.000
lxodes scapularis	1	0.000
Ixodes scapularis	1	0.000

trIB7PHT2IB7PHT2 IXOSC Histone H2A OS=Ixodes scapularis GN=IscW ISCW004478 PE= tr|B7PIN1|B7PIN1_IXOSC Heat shock protein 20.6, putative OS=Ixodes scapularis G tr|B7PJ70|B7PJ70_IXOSC Reticulon/nogo, putative OS=Ixodes scapularis GN=IscW_IS tr|B7PKH2|B7PKH2_IXOSC Mcm2/3, putative (Fragment) OS=Ixodes scapularis GN=Isc tr|B7PKL1|B7PKL1_IXOSC Neurofilament medium polypeptide, putative (Fragment) OS tr|B7PKP8|B7PKP8_IXOSC Spermidine synthase, putative OS=Ixodes scapularis GN=I tr|B7PL04|B7PL04_IXOSC Pyruvate decarboxylase (E-1) alpha subunit, putative (Fr tr|B7PL25|B7PL25 IXOSC Double-stranded RNA-specific editase B2, putative OS=Ix tr|B7PMC3|B7PMC3 IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN tr|B7PNG4|B7PNG4 IXOSC Alpha tubulin, putative OS=Ixodes scapularis GN=IscW ISC tr|B7PNN1|B7PNN1 IXOSC Proteasome subunit alpha type OS=Ixodes scapularis GN=Is tr|B7PPI3|B7PPI3 IXOSC Secreted protein, putative OS=Ixodes scapularis GN=IscW tr|B7PPL3|B7PPL3_IXOSC Microtubule-binding protein, putative OS=Ixodes scapular tr|B7PQP7|B7PQP7_IXOSC Hydroxyacyl-CoA dehydrogenase, putative (Fragment) OS=Ix tr|B7PR83|B7PR83_IXOSC Ubiquitin conjugating enzyme E1, putative OS=Ixodes scap tr|B7PT52|B7PT52_IXOSC Embryonic protein DC-8, putative OS=Ixodes scapularis GN tr|B7PVG5|B7PVG5_IXOSC GTP-binding protein, putative OS=Ixodes scapularis GN=Is tr|B7PVL8|B7PVL8_IXOSC Guanine nucleotide-binding protein G, putative (Fragment tr|B7PWM5|B7PWM5_IXOSC Alternative splicing factor SRp20/9G8, putative OS=Ixode tr|B7PWY6|B7PWY6_IXOSC Ubiquitin carboxyl-terminal hydrolase OS=Ixodes scapular tr|B7PZ24|B7PZ24_IXOSC Chaperonin complex component, TCP-1 delta subunit, putat tr|B7PZR4|B7PZR4_IXOSC Surfeit 4 protein, putative OS=Ixodes scapularis GN=IscW tr|B7Q0D6|B7Q0D6_IXOSC Phosphoserine aminotransferase, putative OS=Ixodes scapu tr|B7Q121|B7Q121_IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN tr|B7Q1V4|B7Q1V4_IXOSC Galectin, putative OS=Ixodes scapularis GN=IscW_ISCW008 tr|B7Q2W2|B7Q2W2_IXOSC UTP-glucose-1-phosphate uridylyltransferase, putative (F tr|B7Q3I2|B7Q3I2_IXOSC Citrate synthase (Fragment) OS=Ixodes scapularis GN=IscW tr|B7Q5F6|B7Q5F6_IXOSC Proteasome subunit alpha type OS=Ixodes scapularis GN=Is tr|B7Q645|B7Q645_IXOSC Secreted salivary gland peptide, putative (Fragment) OS tr|B7Q6Z1|B7Q6Z1_IXOSC Saposin, putative OS=Ixodes scapularis GN=IscW_ISCW01159 tr|B7Q8U6|B7Q8U6 IXOSC Adenosine kinase, putative OS=Ixodes scapularis GN=IscW tr|B7QAP3|B7QAP3_IXOSC Dihydropteridine reductase, putative OS=Ixodes scapulari

Ixodes scapularis	1	0.000
Ixodes scapularis	1	0.000
lxodes scapularis	1	0.000
lxodes scapularis	1	0.000
lxodes scapularis	1	0.000

trlB7QDB1lB7QDB1 IXOSC Ubiquitin carboxyl-terminal hydrolase (Fragment) OS=Ixo tr|B7QDV1|B7QDV1_IXOSC Histone, putative OS=Ixodes scapularis GN=IscW_ISCW01223 tr|B7QE67|B7QE67_IXOSC Proteasome subunit alpha type OS=Ixodes scapularis GN=Is tr|B7QF40|B7QF40_IXOSC Proteasome, subunit beta, putative OS=Ixodes scapularis tr|B7QFX7|B7QFX7_IXOSC RAB-9 and, putative OS=Ixodes scapularis GN=IscW_ISCW021 tr|B7QHA1|B7QHA1_IXOSC Ubiquitin carboxyl-terminal hydrolase isozyme L3, putat tr|B7QJ52|B7QJ52_IXOSC Transcriptional regulator DJ-1, putative OS=Ixodes scap tr/B7QJH6/B7QJH6 IXOSC Alpha-actinin, putative OS=Ixodes scapularis GN=IscW ISC tr|B7QLE3|B7QLE3 IXOSC Protein kinase C substrate, 80 KD protein, heavy chain, tr|B7QNN4|B7QNN4 IXOSC Protein arginine N-methyltransferase PRMT1, putative OS= tr|Q4PM51|Q4PM51 IXOSC Translation initiation factor 5A (Fragment) OS=Ixodes sc tr/Q4VRW1/Q4VRW1 IXOSC Nucleotidase 4F8 OS=Ixodes scapularis PE=2 SV=1 tr|A6N9P0|A6N9P0_ORNPR 40S ribosomal protein S14 OS=Ornithodoros parkeri PE=2 S tr|B0LAI9|B0LAI9_9ACAR Glutathione S-transferase mu class OS=Rhipicephalus annu tr|B2D2D4|B2D2D4_9ACAR Translation elongation factor EF-1 alpha/Tu (Fragment) tr|B5M792|B5M792_9ACAR Heterogeneous nuclear ribonucleoprotein (Fragment) OS=Am trlQ6X4W3|Q6X4W3 HAELO Actin OS=Haemaphysalis longicornis GN=Act1 PE=2 SV=1 tr|Q86G66|Q86G66_DERVA Putative beta thymosin OS=Dermacentor variabilis PE=2 SV

tr|B7PC41|B7PC41_IXOSC Scavenger receptor class B type I, putative OS=Ixodes s tr|B7Q9Z3|B7Q9Z3_IXOSC Proteasome subunit alpha type (Fragment) OS=Ixodes scapu tr|B7Q634|B7Q634_IXOSC Cap binding protein, putative OS=Ixodes scapularis GN=I tr|B7PVI7|B7PVI7_IXOSC RNA-binding protein musashi, putative OS=Ixodes scapula tr|B7P625|B7P625_IXOSC Prohibitin, putative OS=Ixodes scapularis GN=IscW_ISCW00 tr|B7P950|B7P950_IXOSC DNA-binding protein, putative OS=Ixodes scapularis GN=I tr|B7QMM1|B7QMM1_IXOSC Glycine C-acetyltransferase/2-amino-3-ketobutyrate-CoA I tr|B7QIG3|B7QIG3_IXOSC Electron transfer flavoprotein, alpha subunit, putative tr|B4YTT8|B4YTT8_9ACAR Heat shock protein 70-1 OS=Tetranychus cinnabarinus PE=2 tr|Q4PM16|Q4PM16_IXOSC Elongation factor Tu OS=Ixodes scapularis GN=IscW_ISCW00 tr|A6NA07|A6NA07_ORNPR 60S ribosomal protein L9 OS=Ornithodoros parkeri PE=2 S tr|B7QH63|B7QH63_IXOSC Putative uncharacterized protein OS=Ixodes scapularis G

Ixodes scapularis	1	0.000
Ixodes scapularis	1	0.000
Ornithodoros parkeri	1	0.000
Rhipicephalus annulatus	1	0.000
Ornithodoros coriaceus	1	0.000
Amblyomma americanum	1	0.000
Lloomonhuad"=		
naemapnysalis longicornis	1	0.000
naemapriysalis longicornis Dermacentor variabilis	1 1	0.000 0.000
Inaemapriysalis longicornis Dermacentor variabilis Ixodes scapularis	1 1 1	0.000 0.000 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis	1 1 1 1	0.000 0.000 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis Ixodes scapularis	1 1 1 1	0.000 0.000 0.002 0.002 0.002
Indernapriysalis Iongicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis	1 1 1 1 3	0.000 0.000 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis	1 1 1 1 3 2	0.000 0.000 0.002 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis	1 1 1 1 3 2 2	0.000 0.002 0.002 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis	1 1 1 1 3 2 2 1	0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis Ixodes scapularis	1 1 1 1 3 2 2 1 4	0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis	1 1 1 1 3 2 2 1 4 3	0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis	1 1 1 1 3 2 2 1 4 3 1	0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis	1 1 1 1 3 2 2 1 4 3 1 3	0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis	1 1 1 1 3 2 2 1 4 3 1 3 1	0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Indernapriysalis longicornis Dermacentor variabilis Ixodes scapularis Ixodes scapularis Ornithodoros parkeri Ixodes scapularis	1 1 1 1 3 2 2 1 4 3 1 3 1 3 1	0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
tr|B7Q0K8|B7Q0K8_IXOSC Ribosome biogenesis protein-Nop58p/Nop5p, putative OS=I tr|B7PJP9|B7PJP9_IXOSC Enolase OS=Ixodes scapularis GN=IscW_ISCW017666 PE=3 SV= tr|A7BFI9|A7BFI9_HAELO Valosin containing protein OS=Haemaphysalis longicornis tr|B7P0P1|B7P0P1 IXOSC DNA topoisomerase 2 OS=Ixodes scapularis GN=IscW ISCW01 tr|B7QGH7|B7QGH7 IXOSC Ataxin-10, putative OS=Ixodes scapularis GN=IscW ISCW022 tr|B7Q0R0|B7Q0R0_IXOSC Phosphoglycerate mutase, putative OS=Ixodes scapularis G tr|B7PZP2|B7PZP2_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes s tr|B7PXG2|B7PXG2_IXOSC Glycoprotein gC1qBP, putative OS=Ixodes scapularis GN=I tr|B7QF39|B7QF39_IXOSC Transcription factor Mbf1, putative OS=Ixodes scapulari tr|B7Q5K4|B7Q5K4_IXOSC Radixin, moesin, putative OS=Ixodes scapularis GN=IscW tr|B7P7A5|B7P7A5_IXOSC Ribophorin, putative (Fragment) OS=Ixodes scapularis GN= tr|A1DZP1|A1DZP1_9ACAR Elongation factor 1alpha (Fragment) OS=Rhysotritia dupli tr/B7Q6G7/B7Q6G7 IXOSC Flavonol reductase/cinnamoyl-CoA reductase, putative (F tr|B7PSK1|B7PSK1 IXOSC Vacuolar sorting protein VPS28, putative OS=Ixodes scapu tr|B7PDE1|B7PDE1 IXOSC 26S proteasome non-ATPase regulatory subunit, putative tr|A0SHR2|A0SHR2 AMBVA Protein disulfide isomerase OS=Amblyomma variegatum PE=2 tr|B7PJY6|B7PJY6_IXOSC Flavonol reductase/cinnamoyl-CoA reductase, putative OS= tr|B7Q6N4|B7Q6N4_IXOSC Proteasome subunit alpha type, putative OS=Ixodes scapul tr|B7Q2P8|B7Q2P8_IXOSC 16 kDa thioredoxion, putative OS=Ixodes scapularis GN=I tr|B7Q0Q1|B7Q0Q1_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes sc tr|Q4PLZ7|Q4PLZ7_IXOSC Signal peptidase, putative OS=Ixodes scapularis GN=IscW tr|B7PCD2|B7PCD2_IXOSC NADP-dependent isocitrate dehydrogenase, putative OS=Ixo tr|B7P585|B7P585_IXOSC Phosphoglycerate kinase OS=Ixodes scapularis GN=IscW_ISC tr|B7P595|B7P595_IXOSC Proline and glutamine-rich splicing factor (SFPQ), puta tr|B7PE36|B7PE36_IXOSC Nucleosome assembly protein NAP-1, putative (Fragment) tr|B7QN17|B7QN17_IXOSC Thioredoxin-dependent peroxide reductase OS=Ixodes scapu tr|B7Q1W5|B7Q1W5_IXOSC Elongation factor 1 gamma, putative OS=Ixodes scapulari tr|A6N9Z4|A6N9Z4_ORNPR 40S ribosomal protein S3 OS=Ornithodoros parkeri PE=2 SV tr|A8UY20|A8UY20_9ACAR Elongation factor 1-alpha (Fragment) OS=Hypochthonius I tr|B7QAW9|B7QAW9_IXOSC ATP synthase B chain, putative OS=Ixodes scapularis GN= tr|B7PUS2|B7PUS2_IXOSC Ribosome recycling factor, putative OS=Ixodes scapulari tr|A9QQC2|A9QQC2_LYCSI Cofilin OS=Lycosa singoriensis PE=2 SV=1

2	0.002
1	0.002
3	0.002
2	0.002
1	0.002
1	0.002
2	0.002
1	0.002
2	0.002
1	0.002
3	0.002
1	0.002
3	0.002
1	0.002
1	0.002
3	0.002
2	0.003
2	0.003
3	0.003
1	0.003
1	0.003
1	0.003
2	0.003
2	0.003
1	0.003
2	0.003
1	0.003
2	0.003
2	0.003
1	0.003
1	0.003
1	0.003
	2 1 3 2 1 1 2 1 3 1 1 2 1 2 1 2 1 2 1 2

tr|B7PEL3|B7PEL3_IXOSC Protein tyrosine phosphatase, putative OS=Ixodes scapula tr|B7P2S4|B7P2S4_IXOSC Acetyl-CoA acetyltransferase, putative (Fragment) OS=Ix tr|B7PR84|B7PR84_IXOSC Ubiquitin-activating enzyme E1, putative (Fragment) OS= tr|B7QIX6|B7QIX6_IXOSC Kinesin, putative OS=Ixodes scapularis GN=IscW_ISCW01433 tr|B7PC82|B7PC82_IXOSC Thimet oligopeptidase, putative OS=Ixodes scapularis GN tr|B7QI53|B7QI53_IXOSC Apoptosis-promoting RNA-binding protein TIA-1/TIAR, put

tr|B2ZWT4|B2ZWT4_HAELO Peptidyl-prolyl cis-trans isomerase OS=Haemaphysalis lo

sp|Q09JT4|RL38_ARGMO 60S ribosomal protein L38 OS=Argas monolakensis GN=RpL38 tr|B7QDB3|B7QDB3 IXOSC Ribosomal protein S27 OS=Ixodes scapularis GN=IscW_ISCW tr|B7PS62|B7PS62_IXOSC 26S proteasome regulatory complex, subunit RPN10/PSMD4, tr|B7P2W2|B7P2W2_IXOSC 60S ribosomal protein L14, putative OS=Ixodes scapularis tr|B7QIP4|B7QIP4_IXOSC 4SNc-Tudor domain protein, putative OS=Ixodes scapularis trlQ4PLY7|Q4PLY7 IXOSC Nucleoside diphosphate kinase (Fragment) OS=Ixodes scapu tr|B7P289|B7P289 IXOSC Prolyl 4-hydroxylase alpha subunit, putative OS=Ixodes s sp|A6NA00|RSSA ORNPR 40S ribosomal protein SA OS=Ornithodoros parkeri PE=2 SV= tr|B7PQS1|B7PQS1 IXOSC Phenylalanyl-tRNA synthetase beta subunit, putative OS= tr|B7PGC4|B7PGC4_IXOSC Uridine 5'-monophosphate synthase, putative OS=Ixodes sc tr|B7PEK1|B7PEK1_IXOSC Polypyrimidine tract binding protein, putative (Fragmen tr|B7Q1Y2|B7Q1Y2_IXOSC 6-phosphogluconate dehydrogenase, decarboxylating (Frag tr|Q64K74|Q64K74_IXOSC Calreticulin OS=Ixodes scapularis PE=3 SV=1 tr|B7PA03|B7PA03_IXOSC ATP-dependent helicase (DEAD box), putative OS=Ixodes s tr|B7PD56|B7PD56_IXOSC Peptidyl-prolyl cis-trans isomerase OS=Ixodes scapularis tr|B7PZG8|B7PZG8_IXOSC Aldehyde dehydrogenase, putative OS=Ixodes scapularis GN tr|A6N9N9|A6N9N9_ORNPR Ribosomal protein S7 OS=Ornithodoros parkeri PE=2 SV=1 tr|B7PGX4|B7PGX4_IXOSC Synaptic vesicle-associated integral membrane protein, tr|B7Q331|B7Q331_IXOSC Glucose-6-phosphate 1-dehydrogenase (Fragment) OS=Ixode tr|B7P5W3|B7P5W3_IXOSC Acyl-CoA synthetase, putative OS=Ixodes scapularis GN=I tr|B7PQP6|B7PQP6_IXOSC Acetyl-CoA acetyltransferase, putative (Fragment) OS=Ix tr|B7PTQ4|B7PTQ4 IXOSC ADP ribosylation factor 79F, putative OS=Ixodes scapular tr|B7Q5H9|B7Q5H9_IXOSC Fructose-bisphosphate aldolase OS=Ixodes scapularis GN=I tr|B5M728|B5M728 9ACAR Translocon-associated protein subunit alpha OS=Amblyomma tr|B7PSQ6|B7PSQ6_IXOSC 40S ribosomal protein S3A, putative OS=Ixodes scapularis

lxodes scapularis	1	0.003
Ixodes scapularis	1	0.003
Ixodes scapularis	4	0.003
Ixodes scapularis	1	0.003
Ixodes scapularis	1	0.003
Ixodes scapularis	3	0.003
Haemaphysalis Iongicornis	1	0.003
Argas monolakensis	1	0.003
Ixodes scapularis	3	0.003
lxodes scapularis	2	0.003
lxodes scapularis	1	0.003
Ornithodoros parkeri	2	0.003
lxodes scapularis	1	0.003
Ixodes scapularis	1	0.003
Ixodes scapularis	1	0.003
lxodes scapularis	2	0.003
Ixodes scapularis	1	0.003
Ixodes scapularis	1	0.003
Ixodes scapularis	3	0.003
Ixodes scapularis	2	0.003
Ornithodoros parkeri	1	0.003
Ixodes scapularis	1	0.004
Ixodes scapularis	2	0.004
Amblyomma americanum	1	0.004
Ixodes scapularis	1	0.004

trIB7Q396IB7Q396 IXOSC Secreted protein, putative OS=Ixodes scapularis GN=IscW tr|B7Q4L8|B7Q4L8_IXOSC Ribosomal protein, putative (Fragment) OS=Ixodes scapul tr|B7QCB3|B7QCB3_IXOSC Cytochrome B5, putative OS=Ixodes scapularis GN=IscW_IS tr|B7Q2P2|B7Q2P2_IXOSC Zinc finger protein, putative (Fragment) OS=Ixodes scapu tr|B7P2T4|B7P2T4_IXOSC Ribosomal protein S17, putative OS=Ixodes scapularis GN tr|B7Q9E5|B7Q9E5_IXOSC Alpha-2-macroglobulin receptor-associated protein, puta tr|B7P5B3|B7P5B3_IXOSC U5 snRNP-specific protein, putative (Fragment) OS=Ixode tr|B7PJP4|B7PJP4 IXOSC Dolichyl-di-phosphooligosaccharide protein glycotransfe tr/B7P7F7/B7P7F7 IXOSC Heat shock protein, putative OS=Ixodes scapularis GN=Isc tr|B7Q0B3|B7Q0B3 IXOSC Heat shock protein 70 (HSP70)-interacting protein, puta tr|B7PNL5|B7PNL5 IXOSC Syntenin, putative OS=Ixodes scapularis GN=IscW ISCW0057 tr/B7P5Y0/B7P5Y0 IXOSC ServI-tRNA synthetase, putative OS=Ixodes scapularis GN tr|B7PXR5|B7PXR5_IXOSC Chaperonin complex component, TCP-1 eta subunit, putativ trlB7PPR5|B7PPR5_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes sc tr|B7PCN1|B7PCN1_IXOSC Aldo-keto reductase, putative OS=Ixodes scapularis GN=Is tr|B6V3B5|B6V3B5_IXORI Glutathione peroxidase OS=Ixodes ricinus PE=2 SV=1 tr|B7QNR8|B7QNR8_IXOSC Importin beta, nuclear transport factor, putative OS=Ix tr|B7P573|B7P573_IXOSC Processing peptidase beta subunit, putative OS=Ixodes sc tr|B7P7M2|B7P7M2_IXOSC Signal recognition particle protein, putative OS=Ixodes tr|B7PNN7|B7PNN7 IXOSC Attractin and platelet-activating factor acetylhydrolase tr|B7Q4F2|B7Q4F2_IXOSC Cop9 complex subunit 7A, putative OS=Ixodes scapularis tr|B7PAS1|B7PAS1_IXOSC MCM2 protein, putative (Fragment) OS=Ixodes scapularis tr|B7PCK4|B7PCK4_IXOSC Splicing factor u2af large subunit, putative OS=Ixodes tr|B7QEF1|B7QEF1_IXOSC VAMP-associated protein involved in inositol metabolism tr|B7Q5L0|B7Q5L0_IXOSC ATP synthase OS=Ixodes scapularis GN=IscW_ISCW021200 PE tr|B7PQA7|B7PQA7_IXOSC Secreted protein, putative OS=Ixodes scapularis GN=IscW tr|A8UYT9|A8UYT9_9ACAR Elongation factor 1-alpha (Fragment) OS=Schoutedenocopt tr|A8UY35|A8UY35_9ACAR Elongation factor 1-alpha (Fragment) OS=Hormosianoetus m tr|B7PN29|B7PN29 IXOSC Steroid membrane receptor Hpr6.6/25-Dx, putative OS=Ixo tr|B7QAM9|B7QAM9_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes s tr|B7PQ08|B7PQ08 IXOSC U1 small nuclear ribonucleoprotein A, putative OS=Ixode tr|A9QQ29|A9QQ29_LYCSI Translation elongation factor 2 (Fragment) OS=Lycosa sin

Ixodes scapularis	1	0.004
Ixodes scapularis	1	0.004
Ixodes scapularis	2	0.004
Ixodes ricinus	2	0.004
Ixodes scapularis	2	0.004
Ixodes scapularis	3	0.006
Ixodes scapularis	2	0.006
Ixodes scapularis	1	0.006
Ixodes scapularis	1	0.008
Schoutedenocoptes aquilae	1	0.008
Hormosianoetus mallotae	1	0.008
Ixodes scapularis	2	0.008
Ixodes scapularis	1	0.008
Ixodes scapularis	1	0.008
Lycosa singoriensis	1	0.008

tr|B7PYP5|B7PYP5_IXOSC Heat shock protein, putative OS=Ixodes scapularis GN=Is tr|B7Q3T6|B7Q3T6_IXOSC THO complex subunit, putative OS=Ixodes scapularis GN=Is tr|B7QC21|B7QC21_IXOSC Annexin V, putative (Fragment) OS=Ixodes scapularis GN= tr|B7PSB7|B7PSB7_IXOSC Activator of 90 kDa heat shock protein ATPase, putative tr|B7QLI8|B7QLI8_IXOSC Tyrosine aminotransferase, putative (Fragment) OS=Ixodes tr|Q4PM83|Q4PM83_IXOSC Ribosomal protein L27A, putative OS=Ixodes scapularis G tr|B7PV22|B7PV22_IXOSC Poly [ADP-ribose] polymerase, putative OS=Ixodes scapul tr|B7PHM9|B7PHM9_IXOSC Isocitrate dehydrogenase, putative (Fragment) OS=Ixodes tr|A9QQ53|A9QQ53_LYCSI 60S ribosomal protein L13 (Fragment) OS=Lycosa singorie **Proteins identified with 1% < FDR < 5%**

tr|B7QCA7|B7QCA7 IXOSC Glucosidase II, putative (Fragment) OS=Ixodes scapulari tr|B7PR58|B7PR58 IXOSC GTP binding protein Rab-1A OS=Ixodes scapularis GN=IscW tr|B7QCB8|B7QCB8_IXOSC 26S proteasome regulatory subunit 7, psd7, putative (Fr trlA9QQ67|A9QQ67_LYCSI 40S ribosomal protein S3a OS=Lycosa singoriensis PE=2 S tr|B7Q760|B7Q760_IXOSC Nucleotide excision repair factor NEF2, RAD23 component tr|B7PRH5|B7PRH5_IXOSC T-complex protein 1, delta subunit OS=Ixodes scapularis tr|B7P971|B7P971_IXOSC Calponin, putative OS=Ixodes scapularis GN=IscW_ISCW0030 tr|B7PTK1|B7PTK1_IXOSC Multiple ankyrin repeats single kh domain protein, puta tr|B7PIP9|B7PIP9_IXOSC Ankyrin 2,3/unc44, putative OS=Ixodes scapularis GN=IscW tr|B7PKZ9|B7PKZ9 IXOSC BRI1-KD interacting protein, putative OS=Ixodes scapula tr|B7Q362|B7Q362 IXOSC Eukaryotic translation initiation factor 4 gamma, putat tr|B7P6L7|B7P6L7_IXOSC 26S proteasome regulatory complex, subunit PSMD5, putat tr|B7PU84|B7PU84_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes s tr|B7PD93|B7PD93_IXOSC Ran-binding protein, putative OS=Ixodes scapularis GN=I tr|B7QMM9|B7QMM9_IXOSC Polyadenylate-binding protein-interacting protein, puta tr|B7P9A9|B7P9A9_IXOSC HyFMR1 protein, putative (Fragment) OS=Ixodes scapulari tr|B7PAK1|B7PAK1_IXOSC Integrin beta (Fragment) OS=Ixodes scapularis GN=IscW_I tr|B7PAI0|B7PAI0_IXOSC Ribosomal protein L28, putative OS=Ixodes scapularis GN= tr|B7P230|B7P230_IXOSC Translation initiation factor 2C, putative OS=Ixodes sc tr|A8E4J9|A8E4J9_9ACAR Calreticulin OS=Haemaphysalis ginghaiensis PE=2 SV=1 tr|B7PM02|B7PM02 IXOSC Proteasome beta2 subunit, putative OS=Ixodes scapularis trlA6N9M1|A6N9M1_ORNPR 40S ribosomal protein S2/30S OS=Ornithodoros parkeri PE=

Ixodes scapularis	1	0.008
Ixodes scapularis	1	0.009
Ixodes scapularis	2	0.009
Ixodes scapularis	1	0.010
Lycosa singoriensis	1	0.010
Ixodes scapularis	1	0.010
lxodes scapularis	2	0.010
lxodes scapularis	1	0.010
Lycosa singoriensis	2	0.010
lxodes scapularis	2	0.010
Ixodes scapularis	1	0.010
Ixodes scapularis	1	0.010
Ixodes scapularis	1	0.010
Ixodes scapularis	2	0.010
Ixodes scapularis	1	0.010
Ixodes scapularis	1	0.011
Haemaphysalis	1	0.011
yingnalensis Ivodes scapularis	1	0.012
Arnithodoros parkari	י כ	0.012
on in tout to parkell	4	0.013

trlQ4PM69IQ4PM69 IXOSC Histone H4 OS=Ixodes scapularis GN=IscW ISCW019498 PE=3 tr|B7Q3Z3|B7Q3Z3_IXOSC 26S proteasome regulatory subunit rpn1, putative OS=Ixo trIB7Q7H2IB7Q7H2 IXOSC Kinesin light chain, putative OS=Ixodes scapularis GN=I tr|B7PXJ6|B7PXJ6_IXOSC Glyoxylate/hydroxypyruvate reductase, putative (Fragmen tr|B7PUB0|B7PUB0_IXOSC Secreted protein, putative OS=Ixodes scapularis GN=IscW tr|B7PJZ9|B7PJZ9_IXOSC Dynein light chain OS=Ixodes scapularis GN=IscW_ISCW003 tr|B7P377|B7P377_IXOSC Lim and sh3 domain protein 1, lasp-1, putative OS=Ixode tr|B7Q310|B7Q310 IXOSC Putative uncharacterized protein OS=Ixodes scapularis G tr|B7P8J4|B7P8J4 IXOSC ATP-dependent RNA helicase, putative (Fragment) OS=Ixode tr|B7PAG0|B7PAG0 IXOSC THO complex subunit, putative OS=Ixodes scapularis GN=I tr|B7PXG9|B7PXG9 IXOSC Glutathione S-transferase, putative OS=Ixodes scapulari tr|B7PKQ6|B7PKQ6 IXOSC Cell division protein, putative (Fragment) OS=Ixodes sca tr|B7PVP6|B7PVP6_IXOSC Rho/RAC guanine nucleotide exchange factor, putative OS= tr|B0LUH3|B0LUH3_IXORI Thioredoxin peroxidase OS=Ixodes ricinus PE=2 SV=1 tr|B2YGD3|B2YGD3_9ARAC Actin (Fragment) OS=Galianora bryicola PE=4 SV=1 tr|B7QFT9|B7QFT9_IXOSC Lectin, putative OS=Ixodes scapularis GN=IscW_ISCW01262 tr|B7PR90|B7PR90_IXOSC Ribosomal protein L13A, putative OS=Ixodes scapularis GN tr|B7QL56|B7QL56_IXOSC DNA replication licensing factor, putative (Fragment) O tr|B7Q4R6|B7Q4R6_IXOSC Ku P70 DNA helicase, putative (Fragment) OS=Ixodes scap tr|B7PKK7|B7PKK7_IXOSC Ubiquitin carrier protein OS=Ixodes scapularis GN=IscW_ tr|B7PCH9|B7PCH9_IXOSC Histidine triad nucleotide binding protein, putative (F tr|B7PT80|B7PT80_IXOSC Spindle pole body protein, putative OS=Ixodes scapulari tr|B7QF74|B7QF74_IXOSC Microsomal glutathione S-transferase, putative OS=Ixode tr|B7QMF1|B7QMF1_IXOSC Reductase, putative (Fragment) OS=Ixodes scapularis GN=I tr|B7P555|B7P555_IXOSC Coronin, putative (Fragment) OS=Ixodes scapularis GN=Is tr|B7P1Y7|B7P1Y7_IXOSC Transcription factor S-II, putative OS=Ixodes scapulari tr|B7QF45|B7QF45_IXOSC 3-keto-acyl-CoA thiolase, putative OS=Ixodes scapularis tr|B7PGP8|B7PGP8_IXOSC Replication factor C, subunit RFC3, putative OS=Ixodes s tr|B7PWX1|B7PWX1_IXOSC Phospholipase A-2-activating protein, putative (Fragment tr|B7Q0N5|B7Q0N5_IXOSC Heat shock protein 70 (HSP70)-interacting protein, puta tr|B7Q0E8|B7Q0E8_IXOSC Serpin 7, putative OS=Ixodes scapularis GN=IscW_ISCW009 tr|B7QDS2|B7QDS2_IXOSC Matricellular protein osteonectin/SPARC/BM-40, putative

Ixodes scapularis	2	0.013
Ixodes scapularis	2	0.014
Ixodes scapularis	1	0.014
Ixodes scapularis	2	0.014
Ixodes scapularis	1	0.016
Ixodes scapularis	1	0.017
Ixodes ricinus	1	0.017
Galianora bryicola	1	0.017
Ixodes scapularis	1	0.018
Ixodes scapularis	1	0.018
Ixodes scapularis	1	0.019
Ixodes scapularis	1	0.020
Ixodes scapularis	1	0.020
Ixodes scapularis	1	0.020
Ixodes scapularis	2	0.021

trIB7P367IB7P367 IXOSC Putative uncharacterized protein OS=Ixodes scapularis GN tr|B7P3D3|B7P3D3_IXOSC FKBP-type peptidyl-prolyl cis-trans isomerase, putative tr|B7QD48|B7QD48_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes sc tr|B7PIZ2|B7PIZ2_IXOSC ADP-ribosylation factor, putative (Fragment) OS=Ixodes tr|B7PCU5|B7PCU5_IXOSC 2-oxoglutarate dehydrogenase, putative OS=Ixodes scapul trlA6N9M5/A6N9M5_ORNPR 40S ribosomal protein S20 OS=Ornithodoros parkeri PE=2 tr|B7PVQ8|B7PVQ8_IXOSC Putative uncharacterized protein OS=Ixodes scapularis G tr/B7Q347/B7Q347 IXOSC Putative uncharacterized protein OS=Ixodes scapularis G tr|B7PSJ2|B7PSJ2 IXOSC Proteasome subunit alpha type OS=Ixodes scapularis GN=I trIA5HLD6IA5HLD6 9ARAC Heat shock protein 70kDa (Fragment) OS=Diguetia mojavea tr|B5M794|B5M794 9ACAR Damaged-DNA binding protein DDB p127 subunit (Fragment) tr|B7PRG2|B7PRG2_IXOSC 60S acidic ribosomal protein P0, putative OS=Ixodes sca tr|B5M799|B5M799_9ACAR Histone H2B OS=Amblyomma americanum PE=2 SV=1 tr|B7PFQ0|B7PFQ0_IXOSC 60S ribosomal protein L27, putative OS=Ixodes scapulari tr|B7PHX7|B7PHX7_IXOSC Adenylate kinase, putative OS=Ixodes scapularis GN=IscW tr|A9P773|A9P773_BOOMI Glycogen synthase kinase OS=Boophilus microplus GN=GSK-3 tr|B7PU34|B7PU34 IXOSC P2X purinoceptor, putative OS=Ixodes scapularis GN=IscW tr|B7PVV2|B7PVV2_IXOSC Procollagen-lysine, 2-oxoglutarate 5-dioxygenase, putat splQ4PMB3|RS4_IXOSC 40S ribosomal protein S4 OS=Ixodes scapularis GN=RpS4 PE=2 tr|B7PIV8|B7PIV8_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes s tr|B7PZ79|B7PZ79_IXOSC Proteasome subunit alpha type, putative OS=Ixodes scapu tr|B7Q650|B7Q650_IXOSC Reductase, putative (Fragment) OS=Ixodes scapularis GN= tr|B7QCU0|B7QCU0_IXOSC CDK inhibitor P21 binding protein, putative OS=Ixodes s tr|B7QLS5|B7QLS5_IXOSC Numb-associated kinase, putative OS=Ixodes scapularis G tr|B7P9Y8|B7P9Y8 IXOSC Protocadherin-16, putative OS=Ixodes scapularis GN=IscW tr/B7Q2Z7/B7Q2Z7 IXOSC Ribosomal protein S28, putative (Fragment) OS=Ixodes sc tr|B7PAM5|B7PAM5 IXOSC Peptidyl-prolyl cis-trans isomerase, putative OS=Ixodes tr|B7PKB9|B7PKB9 IXOSC Lumican, putative (Fragment) OS=Ixodes scapularis GN=Is tr|B7P9W6|B7P9W6 IXOSC 26S proteasome regulatory complex, subunit RPN5/PSMD12, tr|B7QF31|B7QF31 IXOSC Caspase, apoptotic cysteine protease, putative (Fragment tr|Q4PMB6|Q4PMB6_IXOSC 60S ribosomal protein L7a OS=Ixodes scapularis PE=2 SV= tr|B7Q1G1|B7Q1G1_IXOSC Methylmalonyl coenzyme A mutase, putative OS=Ixodes sca tr|B7QL45|B7QL45_IXOSC La/SS-B, putative (Fragment) OS=Ixodes scapularis GN=Is

Ixodes scapularis	1	0.021
Ixodes scapularis	1	0.021
Ixodes scapularis	1	0.021
Ixodes scapularis	1	0.022
Ixodes scapularis	1	0.023
Ornithodoros parkeri	1	0.023
Ixodes scapularis	1	0.023
Ixodes scapularis	1	0.024
Ixodes scapularis	1	0.024
Diguetia mojavea	1	0.024
Amblyomma americanum	1	0.025
Ixodes scapularis	1	0.025
Amblyomma americanum	1	0.025
Ixodes scapularis	1	0.025
Ixodes scapularis	1	0.026
Boophilus microplus	1	0.026
Ixodes scapularis	1	0.026
Ixodes scapularis	1	0.026
Ixodes scapularis	1	0.027
Ixodes scapularis	1	0.031
Ixodes scapularis	1	0.033
Ixodes scapularis	1	0.033
Ixodes scapularis	1	0.035
Ixodes scapularis	1	0.036
Ixodes scapularis	1	0.036
Ixodes scapularis	1	0.040
Ixodes scapularis	1	0.041
Ixodes scapularis	1	0.042
Ixodes scapularis	1	0.045
Ixodes scapularis	2	0.046

tr|B7Q0T6|B7Q0T6_IXOSC Acetylcholinesterase, putative OS=Ixodes scapularis GN= tr|B7PXM3|B7PXM3_IXOSC Putative uncharacterized protein OS=Ixodes scapularis G tr|B7PXA7|B7PXA7_IXOSC Golgi reassembly stacking protein, putative OS=Ixodes s tr|B7QIF6|B7QIF6_IXOSC Golgi protein, putative (Fragment) OS=Ixodes scapularis

Proteins identified with 5% < FDR < 10%

tr|B7QDQ3|B7QDQ3_IXOSC Molecular chaperone, putative OS=Ixodes scapularis GN=I tr|B7QAM6|B7QAM6_IXOSC Protein disulfide isomerase, putative (Fragment) OS=Ixo tr|B7QJ34|B7QJ34 IXOSC OTU domain, ubiquitin aldehyde binding protein, putativ tr|B7Q1W9|B7Q1W9 IXOSC Dihydrolipoamide acetyltransferase, putative (Fragment) tr/B7P2P0/B7P2P0 IXOSC Membrane protein, putative OS=Ixodes scapularis GN=IscW tr/B7Q792/B7Q792 IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes s tr|B7PV46|B7PV46 IXOSC Putative uncharacterized protein OS=Ixodes scapularis G trlQ6W976|Q6W976_9ARAC Sodium/potassium ATPase alpha subunit (Fragment) OS=Opi tr|B7PSW5|B7PSW5_IXOSC Programmed cell death 6-interacting protein, putative O tr|B7Q6Y7|B7Q6Y7_IXOSC RNA-binding protein musashi, putative OS=Ixodes scapula tr|B7PGQ2|B7PGQ2_IXOSC Calnexin, putative OS=Ixodes scapularis GN=IscW_ISCW003 tr|B7P924|B7P924_IXOSC Rap1 GTPase-GDP dissociation stimulator, putative OS=Ix tr|B7Q5F9|B7Q5F9_IXOSC Glyoxalase, putative OS=Ixodes scapularis GN=IscW_ISCW0 tr|B7PAD5|B7PAD5_IXOSC Microtubule-binding protein, putative (Fragment) OS=Ixo tr|B7PYD1|B7PYD1 IXOSC ATP-dependent RNA helicase, putative (Fragment) OS=Ixod tr|B7Q3D3|B7Q3D3_IXOSC ATP-citrate synthase, putative OS=Ixodes scapularis GN=I tr|B7P163|B7P163_IXOSC Eukaryotic translation initiation factor 3 subunit C, p tr|B7PXW1|B7PXW1_IXOSC Ribosomal protein S25, putative (Fragment) OS=Ixodes sc tr|B7PT39|B7PT39_IXOSC Putative uncharacterized protein (Fragment) OS=Ixodes s tr|B7PYR8|B7PYR8_IXOSC Putative uncharacterized protein OS=Ixodes scapularis G tr|B7QMC8|B7QMC8_IXOSC Alpha-macroglobulin, putative (Fragment) OS=Ixodes scap tr|B5TMF7|B5TMF7_DERVA Glyceraldehyde 3-phosphate dehydrogenase OS=Dermacentor tr|B7QLA4|B7QLA4_IXOSC Phosphatidylethanolamine-binding protein, putative OS=I tr|Q4PLY0|Q4PLY0_IXOSC F1F0-type ATP synthase subunit g OS=Ixodes scapularis P tr|B7PMA8|B7PMA8_IXOSC Putative uncharacterized protein OS=Ixodes scapularis G tr|B7PF38|B7PF38_IXOSC (S)-2-hydroxy-acid oxidase, putative OS=Ixodes scapular tr|B7PQ21|B7PQ21_IXOSC DEAD box ATP-dependent RNA helicase, putative (Fragment

Ixodes scapularis	1	0.047
Ixodes scapularis	1	0.047
Ixodes scapularis	1	0.048
lxodes scapularis	1	0.049
Ixodes scapularis	1	0.050
lxodes scapularis	1	0.051
lxodes scapularis	1	0.051
Ixodes scapularis	1	0.052
Ixodes scapularis	1	0.052
Ixodes scapularis	1	0.054
Ixodes scapularis	1	0.054
Opiliones sp.	1	0.054
Ixodes scapularis	1	0.056
Ixodes scapularis	1	0.056
lxodes scapularis	1	0.056
Ixodes scapularis	1	0.059
Ixodes scapularis	1	0.060
Ixodes scapularis	1	0.063
Dermacentor variabilis	1	0.063
Ixodes scapularis	1	0.066
lxodes scapularis	1	0.068
lxodes scapularis	1	0.080
lxodes scapularis	1	0.080
Ixodes scapularis	1	0.081

tr B7QIE9 B7QIE9_IXOSC Nudix hydrolase, putative OS=Ixodes scapularis GN=IscW_	Ixodes scapularis	1	0.082
tr B7P4E1 B7P4E1_IXOSC Glutamate dehydrogenase, putative OS=Ixodes scapularis	Ixodes scapularis	1	0.082
tr B7QH59 B7QH59_IXOSC Nuclear distribution protein NUDC, putative (Fragment)	Ixodes scapularis	2	0.083
tr B7PLL8 B7PLL8_IXOSC Estradiol 17-beta-dehydrogenase, putative OS=Ixodes sca	Ixodes scapularis	1	0.084
tr B7PPR8 B7PPR8_IXOSC FK506 binding protein (FKBP), putative OS=Ixodes scapul	Ixodes scapularis	1	0.084
tr B7PKP9 B7PKP9_IXOSC Glyceraldehyde 3-phosphate dehydrogenase OS=Ixodes scap	Ixodes scapularis	1	0.087
tr Q26229 Q26229_RHIAP Autoantigen OS=Rhipicephalus appendiculatus PE=2 SV=1	Rhipicephalus appendiculatus	1	0.088
tr B7PL00 B7PL00_IXOSC Antiviral helicase Slh1, putative OS=Ixodes scapularis G	Ixodes scapularis	1	0.088
tr B7PYA7 B7PYA7_IXOSC Putative uncharacterized protein OS=Ixodes scapularis G	Ixodes scapularis	1	0.090
tr B7PZS8 B7PZS8_IXOSC Protein transport protein sec23, putative OS=Ixodes sca	Ixodes scapularis	1	0.090
tr B7PKV8 B7PKV8_IXOSC RNA-binding protein, putative OS=Ixodes scapularis GN=I	Ixodes scapularis	1	0.095
tr B7PNU5 B7PNU5_IXOSC Glutamine synthetase, putative OS=Ixodes scapularis GN=	Ixodes scapularis	1	0.095
tr B7P7A4 B7P7A4_IXOSC Importin, putative OS=Ixodes scapularis GN=IscW_ISCW016	Ixodes scapularis	1	0.097
tr Q17248 Q17248_BOOMI Angiotensin-converting enzyme-like protein OS=Boophilus	Boophilus microplus	1	0.098

^a Number of peptides by which proteins were identified. ^bFalse discovery rate (FDR) is used as a measure of statistical significance of peptide identification and is calculated using the refined method proposed by¹⁷⁴.

Sample	n	Т	% pol	SNP	Private	Р	H。	HE	F _{IS}	π
	Mid West									
Wisconsin	12	3,365,898	7.08	589,587	51,068	0.989	0.013	0.016	0.012	0.017
Indiana	10	3,368,281	4.76	581,843	22,650	0.990	0.013	0.014	0.006	0.015
				North I	East					
Maine	10	3,654,874	6.31	622,432	35,573	0.989	0.013	0.016	0.011	0.017
New Hampshire	10	3,433,477	6.40	594,562	34,352	0.989	0.013	0.016	0.011	0.017
Massachusetts	7	3,362,822	5.52	584,514	26,532	0.989	0.014	0.015	0.007	0.017
				South	East					
Virginia	10	3,180,531	5.22	555,145	44,662	0.989	0.016	0.016	0.005	0.020
North Carolina	5	3,709,763	5.56	636,280	66,486	0.988	0.015	0.017	0.011	0.019
Florida	5	2,741,357	7.48	500,178	80,789	0.988	0.016	0.018	0.010	0.019
Reference										
Wikel	5	3,786,899	3.80	628,131	22,051	0.990	0.014	0.013	0.003	0.015

Supplementary Table 36. Summary of F statistics for filtered RAD loci. Heterozygosity within a subpopulation of *I. scapularis* collected from different geographic regions and the Wikel laboratory colony.

n - number of analyzed individuals from each population; T - the number of RAD loci; % pol - percentage of polymorphic loci; SNP - total number of SNPs; private - the number of private SNPs; P - average frequency of the more common allele; H_0 , H_E – observed and expected heterozygosity at polymorphic sites; F_{IS} - fixation index across polymorphic sites; π – average nucleotide diversity (calculated across polymorphic and non-variant sites)

Supplementary Table 37. Genetic variation among populations of *I. scapularis* collected from different geographic regions of the U.S. and the Wikel laboratory colony. F_{ST} values are shown as a measure of differentiation. $F_{ST} = <0.05$, low genetic variation (light tan shading); $F_{ST} = 0.05-0.15$, moderate genetic variation (tan shading); $F_{ST} = 0.15-0.25$, high genetic variation (orange shading); $F_{ST} = >0.25$, very high genetic variation¹⁷⁸.

Location	Sample	IN	ME	NH	MA	VA	NC	FL	Wikel
Mid	WI	0.045	0.037	0.040	0.042	0.100	0.119	0.102	0.072
west	IN		0.055	0.057	0.064	0.132	0.153	0.124	0.106
North	ME			0.038	0.043	0.106	0.127	0.106	0.078
East	NH				0.046	0.105	0.125	0.104	0.079
	MA					0.119	0.139	0.113	0.092
South East	VA						0.091	0.079	0.142
	NC							0.072	0.161
	FL								0.123

Abbreviations: Indiana, IN; Maine, ME; New Hampshire, NH; Massachusets, MA; Virginia, VA; North Carolina, NC; Florida, FL; Wisconsin, WI.

Acari Classification	Species/Geographic Region	Diseases Transmitted ^a	Sequencing Priority
Superorder Acariformes	Leptotrombidium deliense Asia	Scrub typhus	Tier 1
Superorder Parasitiformes	<i>lxodes scapularis</i> Nth. America	LD, HGA, babesiosis, POW	
Family Ixodidae (hard ticks)	<i>Ixodes pacificus</i> Nth. America	LD, HGA	
Lineage Prostriata	<i>Ixodes ricinus</i> Africa/Eurasia	LD, TBE, babesiosis, HGA	
	<i>lxodes persulcatus</i> Eurasia	LD, TBE	Tier 2
	<i>Dermacentor variabilis</i> Nth. & Central America	RMSF, tularemia, anaplasmosis, tick- induced paralysis	
Lineage Metastriata	<i>Amblyomma americanum</i> Nth., Central & Sth. America	HME, STARI, tularemia	
Family Argasidae (soft ticks)	Ornithodorus turicata Nth. America	TBRF	Tier 3

Supplementary Table 38. Proposed tick and mite genomes, clinical significance and sequencing priority.

^aFrom^{186,187}; human babesiosis (*Babesia microti*); HGA, human granulocytic anaplasmosis (*Anaplasma phagocytophilum*); HME, human monocytic erhlichiosis (*E. chaffeensis*); LD, Lyme disease (*Borrelia burgdorferi*); POW, Powassan virus; RMSF, Rocky Mountain spotted fever (*Rickettsia rickettsii*); scrub typhus (*Orientia tsutsugamushi*), STARI, southern tick-associated rash illness (*Borrelia lonestari*); TBRF, tick-borne relapsing fever (*Borrelia turicatae*.); ND, not determined.

Supplementary Note 1

Predicted Protein Sequence of Ixodes scapularis Gustatory Receptors (GRs)

>IsGr1FIX

MLRGFQLQSKFCRVSGCLFLPGLLTNPLETVSVTWKSWYSFYSALCFLFFVGYESNLITRYVLKIDGSDHLFSQSLI VLMHVVVVLKSVVNYISMITGSRSILDFLRESALFEEAIDFPSCKCCIPKEYFRADVKRILLFVVFFLVYCVGTHFQ LNDVFGSEKPWSAQYVMYRVCGMLTGILFFTYDSLHFVSVKVCSKVLGEYIKTQLKVIETCVSHSPGGSLEQAAKDV EAVRMRLCIIRNLKTTLNDVWNRSIVTSCACQILVLCIAIFTVCTGGLARQDLWMALAYSLYTVYETVDLANVSQSM ANNVQNVKEACKRAATFDGPEFFIQQIQYLHNSINPQDFTVVGGDFFSIDMPLLVSITGSVITYSVILVQTSQEFDT NTNVDGANGTRPGSVPGS

>IsGr2FIX

MLRSFQLQARFCRVCGCLFLPGLLTNPLDTVKVTWQSWYTFYSAACFIFFVWYEFNLITRYVLMIDGSDHLFTQSLH VLMHIVVVLKSLVNYVSMISGSRSILDFFREAESFEGTIDIPSCKCCVFKTFMWADVRRMLLFVAYLAIYLAGTHFQ LIDVLGGQELGSEQYVLYRVGAVFAGILFFTYDSLHFVSLKVCSLVLEEYVKTQCKVIEVCVSLRPTGSMDQTAKEV ETVRVRLCVIGNLKTTLNDVWNRSIVTSCACQILVVCIAIFTICTGGLARQELWLALIYSLYTVYETVDLASVSQSL SNSMKKIKNACKGAPTFEGTEAYNKQIQHLHNSINPQDINVVGGDLFRIDMPLLVSITGSVITYSVILVQTSQEFDT NTNVEGANGTRPGY

>IsGr3FIX

MLQRCVPFAIACRLFGCFFIHNFPGKSLDQAKVSWKSLYTLYSFTCFIAYLVSEIAYVIRYVDELGKISRSFSRSLL LLVHVVITARIATNVAAMLMGPEKLLAFFRQSESFEKAIDFTTRQRSLRTSAFERWAALRAFLSLSGMAFCYAAGVN FLMGQLEESLGSRWVIPTRIVGFFMITAVLLYDSLLYLFLRSSAKVFGEYMHTLLGAFKKCKRYRSIRSRSGVSCHI EFIRSNMNEVKRLKEALSDIWTWPLMVASASLVIMNSFVFSAVIQDGLKKELWWAVTYSLYSTLSFIDLAYVSQALV NEARKLKDAILVVPTYDATDDFSQQLRYLHETIDPDGMCFGGGGGFFALKNSLLVSMTGAILVYTVILVQTSDTMDHK MDAT

>IsGr4CTE

MISFMHQRCVPYAILGRLYGCFFVHNFWRKSLGDAHVTWKSLYTVYSFGFFVIYLLGEIMFATSFARDVKDVSDAFS RHLLILVHGVVTTRVLANSVAMLTKPNKLLAFFRKSEAFEKDTAFSLRTYSLCSSVAHRWNAMRAFAAFLGLTLSYS VAIQFLAMEHGEQILSQMAVPVKLVGFIMTTGFFVYDSMLYLFLRSCINVLVEYTQFQLVVFREQNLLFRPGEPSKI EAMRLSLNKMRKLKELLNDIWAGPLIVACASTVITDCVILDAMFYDGMKQELWIIAAYALSASLSFIDLACTGQTLI DEARKLKSAMLMVRAYGEPDRYLKQLRYLYEGFDPEGMCLDGGGFFVLRKSLLLP

>IsGr5INT

MISLMQRQFLPYALLCRLGGCFFIPRFWKPLEDAKVTWRSLYTAYSAFAVASWFSVELTFIVKRCHIYSNLSYHDFP SLVLLILRATVSLKALLNFVTMATGSSGLVKFFRKASVFEKTTGFLPSSRCPKGVWKDRWSFLRRFFVVQGIVSSYV FSTLLSSVSLTADLPADFGFLGKLGAVLTGMYYLLYDVFPYIVLSSCSSVLVAYLQAQVKMFERCCRFEAVHNNMQL SQQLEVIRHNLGGIRDLKHSLNAIWEAPLVAMSVGVLLDVCVVFYAIFHDGFFRSHVRLAMSYCLYSSFAFMDMACI SQALTDEAQKLKDATKAAYTFAATNGYVQQMAGTMITYTVILSQTSDGLANKAVPRN

>IsGr6CTE

MSSYMQRQFVPYAILCRLGGCFFIQNFWKPLENAKVTWKSLYTAYSVFFIALNFSLDIVLIVQESYVFRDLSQAFSP SLILVLRMVVTSKILLSAGTMATGSLGLLEFFKKSSLYEKITGFSPARRDFRAFWKHRWSLFRRILVLIGFICTYII SMLPFMYSLGELLPASFSFLGQISAVLGAWCYLLYDALPYMVLRSCSAVLVEYLHVQLKTVQRCCKVKPSRNERKSL

>IsGr12FIX MNSFMLKRFAAYGMLCRLGGCFFIKDLRRNTLEKARVSWKSPYLLYSASCLTSIIAFQVTYIMKRVEVFNNISQTFS RLLLIILQTIITLKIGINFASMTTGSAKLLEFFRKSATFEKSTGFPVCKGSWTTSSTSPWSLLRRLCFAVALINSYV ITMHFFVGGLANNLPPQWILAGKIVGCIAGLFFFLYDSLPYVVLRCCSSVLVEYIRAQLITFERCNESNVFRLESQT TLQLEAIRCNLGFVKELKDSLNAAWKCPLAAMSTSIIFLVCVVFYSMFQDGVYKEQIWIALSYCVYSSLSFVEMAYV

>ISGr11FIX MSSYMLRRFARYGRLCRVGGCFFIKNFNEKSLEKATVTWKSLYTVYSTLCFCFFFWFEAAFIVQKAYVITFFSRSFA HSLLFILHTVVSCKIFVNFSAMVVGSAKLLDFFRKSDTFEKSTGFAQPQKRRSPMVRRSLVIVALVISYVIGIHLFV GDITNELPRQWVIAAKVSGYIAGVGFFLYDSLPFVVLMCCNEVLVEYTHAQLVHFKVCDRSKAACSDLDASRHMETI RINLCQIRKLKDTLNTVWKWPLAAMSASILLILCIVLYAVFDGGLFLRDIWIILAYSVYSTLCFVEMTFVSQALMSE AQRLKDATKAVLTTDATDPYGKELRYLHDVIDPVDMCLTGGGFFRLKKSLLVSMAGAIITYAVILVQTSDALAERIG GDFSTTLKNWFNVTSSRNTTGESG

>IsGr10 MRSFMLQRFAGYGKLCRIGGCLFIQNFHKESLASARVTWKCPYTLYSILCVCFVFSFEVAFLALRMRVLSLFSSRFT QSLLFILHITIIFKIFINFWAMATGSGKLLDFFRKAVIFEKSTGFSCVKGRFRWPIPRRCLVLAALVANYVIGVRLF IGEVVNALPRQWILAATICGYVAGFGFVLYDSLPFVVLRCSTEALVEYTHSQMLAFKGCDRTKGACTDMNASRRIET IRLNLCNIRELNRLLNDMWKCPLTAMCANVILMSCIVLYSLFENGIYMREVWVVLLYTLYSALCFFELTLISQALSD EVQRLKDATRAVITTDATEDYLHQLRVLHDTIEPLGMCLSGGGFFSLKKPLLVSMTAAIITYTVILVQTSDDITEKT DVYSAFPRR

QTSDELTSKMESVGAPPGS

>IsGr9 MKSLMLHRFYAYGLLCRIGGCFFIQNFNRHSLDKARIAWKSLYTLYSALCVLFSFGFFIWFDVAFIIREASTAYGLS GLFSETLSLTLHAVVSSRILINLSLMIAGSGKLLDFFRRAVIFEQTTGFEPAKCCAPLSRKPGWSLLRRTLVVVTLA TSYVLLVNFYIVHYTGAISPEWALTSKVVGSIAAVFLFLYDSLCYVVLRCCSGVLLEYVSAQLRAFQDCSKPKDILP QMQASRQLETIRLNVCSIRELTQILNSIWKASLAGKCAGIILANCVVLYSMFHDGVFKRQIWVTLSYCAYSSLAFLE LVFISQALIDETQELKNATKKVRTSDATDNYAQELQYLHQSIDPKGMCLSGGGFFRLSKSLLVTMAGSIITYTVILV

EAENFKIASKKAFAFEAVDGIRHQ

>IsGr7INT

>IsGr8PSE MQWQFVSYAIIIWIGACFCIQNFZKSPDNAKATWMSLYIACSACLVVVFFCFEITPILKIFIAFNDLSHVFSSSLVF ILRCLVCFKVLVNRASMATGTNRLLEFFKKSSIFEKKKTEFSPCSRGTRDILRPRWSFZRRSLVVLVTVSTYAILTZ NLMSSLKQVYPLMZTFWASVLLSYLGZPTSSTILPHSWSZGTTLQSWWSIFKLNZNFWNVAVNDSLFELRSCLNNLV IHHNIGNMZYLKDSLNVMWQVPLIVMSAGIILLVCVACHPMFFRLXFAPKFPLTASSSVYPSLAFIDMVFSSQSLPG

MTSFMQRQFVPYAIPFRVGGCFFIENFWKPLEHARITWSNLYVAYSASLVGVSFGVEMWDIVESSDILNNLSHALYP CLLLILRAITNFKLLLNVVTMATGSIKFLEFFKKASIFEKATRFSPVRRGFWFFLTNHWSFMRQLVLIISLTSNCVI SMVAFAVTVTNLLPNSFRFIGGLIAALICTCYLIYDVLPYIVLRSCSAVLVDYLQAQLRLFESCCNAKAVRAEGHLS RQLEAIRHNFGMIRDLKESLNAIWQLPLAVMSVTVLLLVCVDCYGMFHDTFQGLGILLAVSYCLYAAFALVDLACVS QFLTDEAQKFKNATKMALTFEVTGRHVQQMAGTFITYTVIIAQTGEELRNKATSGNSTIPN

EQLEVIRHNMAKITDLKDCLNAIAQVPLATMSAGVLIFDCVVCYAMFNDGFFATDVPLALSYCVYSSFAFLDLAFAS QALTDEAQKLSNATKVAPTFGASDEYVQELRYLHKTIDPDGMCLSAGGFFRLNKSLLLT

SQALMDEAQKLKDATKRVHTSHATDDYARQLRYLHDSIEPKGMCLSGGGFFRLNKSLLVSMAGAMITYTVILVQTND GLSNKIDSSNASMVGGIVVREPL

>IsGr13FIX

MSSFMQRQFMPYAVLCRLGGCFFIRNFRKPLENSNVVCKSVYTAYSAFIILLCFSFQVILFIRKAHVFKNFSHDFSP FLLHIVRTIMILKALLNAVIMATGSATLLEFFRKSSAFEKTTGFSPSTQGVRGIWRRRWSFFRQSLVVIGAVITYFI SAIPFITSLTEMLPTDLHFLRKLGVVIITAYYLLYDALPYMVLRSCSTVLIAYLQFQRKMFERCCELKSSYNKTELS GQLEVIRHHLGHIRDLKDFLNTIWQVPLAAMSAAILLCACIVCYTMFHDGFSAEDIPLAVSFCVYSSLAFVDMALVS QTLHDEAQKLKNATKTAFTFEAADVCVQQLRYLHETIDPKGMYLCGGGFLRINKALLVSMAGTMITYTVIISQTSDG LANKAAPTD

>IsGr14

MQSVMLERFSLYGQLCRYGGCFFIQQLKSLENAKVVWKDLYTLYSATCVIFSFSFFLLLEVLFVLETNNFSTSIQSD KFSDILIQTQHVVVSSKVLVNFLSMATGSGDLLNYFKKAAAFEKRSGFVPSKRCVRTLGEERWSLFRRVLVLVALAT SYILFMHFYVAHVADTVARVWAIACKIIGPIAGFLFFLYDTLCYGVLRCCSGVLLEYIRAQLREFEDCTRSNGALSG TEACRRLERIRLNMCSIRELSQNLNSTWNASLAATVAGIILANCVVSYSIFIDGIFEREVWIALAYCVYTSLVVLEL VYMSQALMDETQKLKNATKNIRPFDLSRDCSQELRYLHDSIDPKDMCLTGGGFFRLNKPLLVSITGSIITYTVILVQ TSNKLTSSTDFVVAPPAPYHK

>IsGr15

MSSYMLQRFAGYGMLCRFGGCFFIQNFSKKSLEKATVTWKSPYTVYSILCFCFFFWFEAAFIVQKAYVLTIFSRSFA RSLLFILHTVVTYKIFVNFSAMVMGTTKLLDFFRMSGAFEHSTGFRIPEKHRWPMARCCLVVAVLVISYAIGIHFFV GEVTNGLPRQWVIAAKVCGYIAGAGFFLYDSLPFVVLRCCTEVLVEYIHAQSLSFRDCDRSKVARTDQDASREIENI RINLSQIRKLKDTLNDVWKLPLAAMSASILLILCVVLYSVFDNGLYLRDIWIILTYSAYSTLCFLEMTCVSQALMDE AQRLKDAVRAVPTTDATEAYVQQLRYLHDVIDPVDMCLTGGGFFCIKKSLLVSMAGAIITYTVILVQTSDELAQKID DALPTTSLKNWFNFSSTNAISQDG

>IsGr16FIX

MSSVMLRNFLPYGRFCRFSGCLFIQNFRKRPESMRVQWMSWYTIYSAFCFAVFAIVQASYIFERVILFLTNIRLFTK SLFIVMQFAIVTKIVVNLSSNILGAASMVRFFRECAVFETSTGFSPPKPARRLKFCHCIRLAMLTAFLVCSVLSTTF LIRRLLSPASGVLDVFVKIASVFSNYLFFVYDTHHFLILRPCSEVLILYIKAQADILSSALRVPDCWKRAATVDAVE RVRLNNCKIRNLKTNLNGVWKASIVTSSVVILLMVCVAVYSAFDAGVPRSHLVLSMAYGVYSTLDFVDMATLSQTLV NEAQKIKDSLKKVLTCQASESYVNQVHYLHNSLNPSDMALSGGGFFRLDMALLVSITGSIITYTVILVQTSEGAEHS MARNITRYYVRVSNRTNFRTLRLTHSPP

>IsGr17CTE

MSSYMLQKFATYAMLCRLGGCFFIQNFRKDSLTNARVSWKSPYTLYTASCLAVIAIYQVTYMVKRVDILEDISRNFS LSLILILQATITLKIAINFVSMVAGSARLLEFLQNSAAFEKSTCFLLCKGHGPSSSRRPWSLLRRLCIICALINSYV LAMHFFVGGLLTKALPAEWILAGKIMGSVTGLFFYLYDSLPYVVLRCCTAVLVEYVRAQLIIFERCNRSNVFTLGSQ ASQLLQVIRCNLVTIKELKQSLNAAWQCALAASSTGILFVVCIVVYSLFHEGLYKYHILTALSYCVYSSLSFMEIAY VSQALADE

>IsGr18

MSSFMQRQFVPYAILCRLGGCFYIQNFRKPLENAEVTWKTLYTVYSALIVSFFFAFEMSSIIKISFVFRDLSRAFTA SLMLLLRCMLCLKILVNTATMATGSSRLLEFFEKSSTYETISGFSPASRGVRGLWRHRWSFFCRSLVVLGVISTYVM LTMYFTVSLMKLLPANLRFLGIPSGVLFGVNYILYDALPYMVLRSCSAVLVDYLQAQLKSFESCCKSRSARCDRQLP RQLEVIRYNLGVIRDLKDSFNAIWHVPLAAMSAGLILLVCVVWYAIFYEGLFAPQITLSASYCLYSSFAFIDMACVS

>IsGr24 MVSVMVQRCVPYAILGRLQGCFFIHNFRGKSLRNAKVTWKTPYTFYSISCYIFYILLETLFATHFARVIRNISDALS RSLLLVVFGVVVVKVIANLSVMLTKPDELLVFFRKSEAFETTTGFSSCTRRSQDSAAVRWKVLRKCGVYMGQVLYFT LTERFIMVDIAQSMPPEWSVPTKIFAFFLGIGFLCYESLSYFFVRSCTEVLVEYIQIQVELFQKAGELSHVGFQPPF SSQVDAMRLRIDSIRKLKESLNNIWAGPLIVSCANTIIVDCVVVDAVFHDGIRTELWLVAGYSVYASLCFVDLAYTG

>IsGr23PSE MAGHSLATGQRTIAIHWPMTGQICDAWGCSFIHDFKRKSLNNAQVDWKTPYTFYSFSCFVIYLFLTTLFATRFAYVI KGISDALSRTLLLVIYSVIVVKITTILAVMFTKWNKLLACVRKSEAFKSNTSFFVXPHSAWHSAAZIWSVGRVLAVF VGLALYFAAAEWILMVELTSSMPPEWSDLVRLFDFFMGIGSMVYDPVLYLFLTTCTZVLEEYIHVQMKPFQEAXRED FNIHPQFLLQIEAMRLRIFKVRQLKESLNIIWADTIIVACAITXADCVVLDAVFHDGTRKELWIAVSCELYASLCFN DLAYTGQTLIDEXLPPTVVSRADYPYNQKVVYLHESVDAEKICLGGGGSFFLKKSLLPSMTGAIIIFGVILVQTSNF QKLNIKAA

VAFKINTT

>IsGr22PSE MSSTMVQRSALHAIFSRLHGCFFIQNFHGKSLKNAKVTWKTPYTFYSFSWFAVYIFIEILFSIRFAYVIQNISDALS RSLLLVVLSVAVVKLTTNLAVMFTKPDKLLAFFRKSEAFETNTGFSPRSYSLLHSAADRWNAVRALAAFMGLVMYFS LAEWFIMVELIQTVPTQWSVPVGNIGFLHGNRFLSFYDSLSYFFLRNCTNVLIEYIQVTVEGFQEANKWKHFHFQPD APLQIEAMRLRINKFGSSRDTEZHLGRTLIVACAGTVIIDCVVVDAVFHDGIKKELWLGAGYFVYSSLCFIDLAYTG QALVNEVRKLKSAILMVPAFGAPDTYLQQLRYLHESVDPEGMSFGGGSFFVLKKSLVLSMIGSVIIFGVILVQTSNS

LSQNSDDLAHKIDLYS

>IsGr21FIX MQPKAPLSPVMLRNFAGFGMLCRLAGCFFIQSFSSKSVENAKVNWKNFYTIYSVTCLLSIVSFQVAYVIHRAEMISN ITHSFSRSILLIVSSTVSLNMIINFVSIVVGSYRLLQFLRNSARFEASTGFLSARPFASVATNHLWSKFHRVLVVVA LLNSYAVGFHFLVSGLTVLLPPQWILTGNIFGAFVCALFHLYNSIPYMVLRCCSSALVEYMRAQFVIFELCKGFQGA RSDAHASQVIETVRLNLGVIRELKESLNSIWHWSLGATCSGIIFMTCVVLFTLFQDGVHHREVWVSVSFLVYSWLSF VDMIYVSQALVDGAQKLKNATKVAPMLHAMECYIQQLRYLHDTIDPKGMCLSGGGFFRLKKSLLVLMTGTIITYTVI

>IsGr20JI MQPKGPLSPVMLRRFAAFGMLCRLGGCFFIQTFSSKSMENAKVSWKNFYTIYSASCFVSIASFQVAYVIQRAEILSD ITHSFSRSIILIVGSTIALNMIINFVSIMAGSSRLLEFFRNSARFEALTGFLSARPFAIIATNHLWSKFHRVLVAVV LAISYAVGFHFFVSGLTELLPPQWILTGNILGVFVCALFHLYNSIPYMVLRCCSSVLVEYMQAQFVQFEGCAQKLKD ATKVAPMLHATEGYIQQLRYLHDTIDPKGMCISGGGFFRLNKSLLVSMTGSIITFTVILSQNSEDLAHKIDLYS

LSQNSDDLSQKIDLYS

>ISGr19FJ MQPKGPLSPVMLRRFAAFGMLCRLGGCFFIQTFSSKSMENAKVSWKNFYTIYSASCFVSIASFQVAYVIHRAEILSD ITHSFSRSILLILSSTVSLKMIINFVSIMAGSSRLLEFFRNSARFEASTGFLSARPFASVATNHLWSKFHRVLVAVA LAISYAVGFHFFVSGLTELLPPQWILTGNILGVFVCALFHLYNSIPYMVLRCCSSVLVEYMRAQFVQFEGCKGLQGD SSDAHASQAIEVVRLNLGVIKQLKDSLNSTWHWSLGATCSGIIFMTCVVLFTMFQDGVHHREIWVSVSFLVYSWLSF LELVYVSQALVDEAQKLKDATKVAPMLHAAEGYIQQLRYLHDTIDPKGMCLSGGGFFRLNKSLLVSMTGSIITYTVI

QALTDEAQKLKNVTKIAFTFEVTDGYTQQLRYLHETIDPDDMCLSGGGFFRLNKSLLVSMAGTMITYTVIISQTSDG LTNNATPTN

>IsGr30FIX MSSTMVQRSALYAMLGRLHGCFFIHNFHGKSLKNAKVTWKTRYTIYSFSWFAVYIFIETLFSVRFARVIQSISDALS RSLLLLVLCVAAVKLMTNLAVMFTKPDKLLAFFRNSEAFETNTGFSPRSYSLLHSAADRWNAVRALAAFMGLVMYFS LAEWFIMVELIQTVPTQWSVPVVIFGFFTGTGFILYDSLSYFFLKNCTNVLIDYIQVQVEFFQNAGKWKNFQLQPQS

>IsGr29FIX MSSTMVQRVALFSLLCRLYGCFFIQNFRGKSLADAKATLKSPYTLYSFSCFGLYFLLEAMFSTQYEGSVETISATLS KTLLLVAYGVVVVKLIVNLAVMFTKPDKMLTFFRKSDAFERSTSFTPRTYSWRRSAKQRSSRVRARVVFMVYALYLT VAEWYIMAEVLQSIPPRWSVPVIILGIIMGIGFFVYDSVSHVFLRSCTHVLVQYIRVQAEFIKEAGKLTNFPLHPKS SLQMEAVRLRINKIRKLKDLLNDIWAGPLIVHCASTLLVDCVTLDAVFHDGIRKELWIIVICSLYTSVGFIDLAYTG QTLIDEAHRLKNTILMLPAFGAPDSYLQQLRYLYESVDPKEMCLGGGGFLALRRSLLVAMTGSVITFGVVLVQTSKS MARLVNAA

LALKNNAT

>ISGr28 MRSLMLQRAAPYAILCRLHGCFFIHNFRGNSLRNAKVNWKTPYTIYSLSFFGLYLILEEMYATRFTYVIRNISDTLS KYLLLVIYGVVMVKIIANLTVMLAKPDKLLAFFLKSEVFETNTGFSPRTYSLQHSTFHRWNAVRAIWVFMAFVLFFT EAERFMIAELTRSMPPQKSVPLTIFGFIMGSGFMVYDSLSYLFLRCCTKVLVEYIHVEVQGFQEAGKLQNIPFHLHS PREIEATRLRMNNIRKLKESFNEIWEGPLILACASTIMVNCVVLDAMFHDGMRKELWLAVAYSLYSSLCFIDLAYTG QSLIDEVRKLKSAILMVPAFEAPDCYLTQLRYLHEVVDPEGMCLGGGGFFVLKRSLLVPMTGSIIIFGVILVQTSNT

>IsGr28

MALKINAA

>ISGr27 MSSTMVQRVALYSLLCRLYGCFFIQNFREKTLANAKATWKALYTLYSISCFVLWFVIEMLCFTNYTDVVRSISDTLS KTLLLVAYGVLVVKLIVNLAVMFTKPDKMLTFFRKSEAFENNTGFTPRTNSLLRSATDRWNMVRALAVFMGFALYLT GALWYVRTELLKSIPPLWFVPVIILGTYMFIGFLLYDSVSHLFLRSCTNVLVQYIRAQAEVIKEAGKLTNFHLQSQS PLQMEAVRLRINKIRKLKESLNEIWAGPLIVHCASTLVVDCVILDAVFHDGIRKELYIILICSLYTSIGFIDLAYIG QTLIDEARSLKNTILMLPAFGAPDSYIQQLRYLHESVDPEGMCLGGKGFFALKRSLLVAMTGSVIIFGVILVQTSKS

>IsGr27

MTLKVNAA

>ISGr26 MTSMMVQRSTPYAIFCRLCGCFFIHNFRGKSLRNAKVALKSRYTFYSFSWFLLYMFLEALFSKRFGYVIRNISDPLS RALMLVVLGVGLVKLITNLAVMILKPDKLLAFFRESEAFEMTTEFLPQAHSLRNSAAYGWHAVRAFSAVVGLGLFFI EAERFIIVELSQSLSPQWSVPLRVIGFVAGTGYVAYDSLSYFFLRNCTKVLVKYIQVQVELFQKVGKLNNFYFLAQS PHQVEAMRLRINKIKKLKESLNAIWAEPLIVACAGTIIIDCVVVDALVHDGIKKELWLAAGYSVYSTLCFIDLAHTG QTLIDEVRKLKSAILMVPAFGAPESCLQQLRYLHESVQPEGMGLSGGSFFVLKRSLLLSMTGSIIIFGVILIQTSNT

• = ======

>IsGr25 MVSIMVKRSLPFAIVARLQGCFFIPNFGGNSLRNVKVTWKTPYTIFSISCFAFYMFLEFLFAKQFSHVVANISDTLS RSLLLVVFGVCVVKVLVNLSVMLTKSKKLLAFYRKSEAFETSTGFSLHTHSLRHSSAHRWNAVRACGVYMALALCFT NVERFILVDMAQSVPTEWSVLMKIFGVSLGFGFIFYESLSYFFLRSCIQVLGEYIQVQVELFQKDVQCSNVHLQPQF SSQVQAVRLHMSKIKELKELLNDIWAEALIVTCANAIILDCVVLDAVFHDGIRKELWLAAFYSLYAPLCIVDLAFTG QGLINEARKLQGVILMVPAFGAPESYLQQLRYLHESVDPDGMCLGGGGFFLLKRSLLLSMTGSIIIFGVILVQTSNT VTLKINAG

QAFIDEVRKLKSAILMVPTYGASDSYLRQLRYLHESVDPDEMCLGGGSFFVLKRSLLLSMTGSVIIFGVILVQTSNT MSLRINAA

>IsGr36INT MSNLAEQFDAVAKFGHATGSLFITRTSDGTSPKYRTMFRSLYSLYAMFIVGGCVIYEIFLLHFKVSGNSSLTTFSNT VFNTLLVIIAIRIAANVSIILSLSGKLADVLNHAEDFKASLPVKSGLQRKNRSFIDLIRRFLMFLSFAVFTLSRYLF FGELTSERPPSTATMATSAFVIVSTVVLTSACNFVHAIATLVYDLFTDDLGDLVAVAKVRLSPGSMLWGPRTARVLE

>IsGr35 MTFAYSQFRYSTRLLRWGGVWIVAEATNPGKQSFKTTLKRPYFWYCVLCLSTLVGTEFGNIIWALLFSFKHRKVFVS GVYTATQITVLVKTMLSSLMVALAAGRLKKLVARANQFEIIRNIKIAPRSKKVTWRDIRIWGRVLFMVLFVSIRNMD NLSILDVENIFGLGALVVVMTASSMLLVIYDCLYSTVFKSLVEIFIEYLRYEIRVLKKMKMELNSGPSMKMVEDCRI EFNTIQGFVKSTNQVMRYAFVMAYAGNLIMLCNIVYLLVDTAATPWALRIFSSTYGILMWIDMIDNGVVAEGIKASK MKWLLQSMPFQGLPDSFAKQVRFLHDIVDDSAMYFTGAGFFRINLPQLVSMGSTIITYTVILIQTSQGLQA

>IsGr34 MTVIETRFRRSTRILRWAGAWFIEDATNPARQPLKTMLTRPYTWYCIFCFSILFCIELSLIFWTLLFSFGERKMFLN TLFVVLHITVVTKTLLSVVSLALSASKFKKLVNKARHFEVSRNFKPLPQHKKRITKASLRIWGQAILIVVFVVVRNT DMMLMVEISNIFLAIVLNVVMGAASVLLVIYDGMYSTVLKGLVEIYVAYLKKEVDILKKARTATGPQASSILEDCRL DVNSVQTLIRYTNRIMKYAIVIAYGGNLIMLCGIAYCLVDPTSKWSLRIFCFCYGVLISLDMVDIGFLVESLKMQAS KMKWVLQSMNFLGLPDSFSKQVRFLHDCLESGQMDFSACGFFKVNLTLLISMGGAIITYTVILVQTSQGLSM

AA

>IsGr33 MSSYVEREFKFVARSCRLSGCLFVSNSWSGRFAEFRPNFRSWYALYFGFLGVVTCGFEITLLHRRISYIYMREKDFS ELLFMIIHIVIGLNIATNTLVFILGTERLIDILRSTKRLEGAMGFEPARSSRVDDARKLFKMFLFAIFQAAFVLSRL ASSKEIFQEPSTALTVIVTICFSLSCVGYAIHGTVVLNANMFFYSVLSEYLKPQVAIVETLSSQILARNPRYTAKIL ERTRLHFVSIRNIVRSVDRLFEWGLVVSFLTCAFTLCFTLYSLFDASTSWSKMYIYIIYSVNSSANISELTHAAFRM KQQALHIKHVLEKTPLVNLPRRLVLQVEFFAENIEAEQLCVTGSGFFTVDKPVLTSPKEHRAAISVLLIGRSAVDEI

DAA

>IsGr32FIX MVERSTIPAIVFRVFGCFFVPNFSGESLAQAKVTWKSFYTCYSLACFVVYIFAETAFVIRSLDVLRDVSHSFSRSLM LTVHVIVTARITGNLVAMLTGQEKLLEFFWNSESFEKNIGFLPHARSKRGKRSTRRWATMRMFLVVFGMVLCYAAGV YYRIGQSAQSIGASWVLPVKIIGVCMAAGLVVYDSLSYLLLRNSATVLAEYIRAQLEAFKECRRSSSINLQNKVSGQ IESIRLNMSKVKKLKESLNNIWNWPLMVASASLVIMNCIVFNGIFHDGFKQEIWLSITYALHASLCFIDLAFASQAL VDEARELKNATLVVPTFETMEDLLHQLRFLHETIDPDAMCFSGGGFFSINNSLLVSITGSIIVFTVILVQTSDTIDA

>IsGr31FIX MSSTMVQRCALYAILGRLHGCFFINNFHGKSLKNAKVTWKTPYTIYSFSWFAVYIFIEILFSIRFAYVIQNISDALS RSLLLVVLSVAVVKLTTNLAVMFTKPDKLLAFFRKAEAFETNTGFSPRSYSLLHSAADRWNAVRALAAFMGLVMYFS LAEWFVMVELMQTVPTQWSVPVGIFGFFTGTGFILYDSMAYYFLKNCTNVLIEYIQVQVELFQKAGRWKNFQFQPQS PLQIEAMRLRINKIRKLKETLNNIWAGTLIVACAGTVIIDCVIVDAVFHDGIKKELWIGAGYSVYSTLCFIDLAYTG QALVDEVRKLKSAILMVPTFGAPDTYLQQLRHLHESVDPEGMFFDGGGFFVLKKSVLLSMIGSVITFGVILVQTSNS LTLKINST

LTLKINST

PLQIEAMRLRINKIRKLKETLNNIWAGTLIVACAGTVIIDCVVVDAVFHDGIKKELWIGAGYSVYSSLCFIDLAYTG QALVDEVRKLKSAILMVPTFGAPDTYLQQLRYLHESVDPEGMCFEGGGFFVLKKSLVLSMIGSVIIFGVILVQTSNS

>IsGr43CTE

CVYGSAAQTQ

>IsGr42CTE MIKRRNSSIYNEVIRFPSFKDGFQTLSTFHRCLGYSFFTWQERQGITQVIVSVWRPYLLYALCSWTFFVFVMLQDT YHVLFLAAEDNGDALKVIDKCILIFYFVRCIGIQIANSITVLLRSGRLREVVVALDTLETSFNRDTHLRSVAKIILS LNVLFSVTALVSILDEISGFDGYMEPLHMKITYSVFSLLFAETVCMLCYTWAMFFGKVFEAFIRCINEDIESLATLK QVRQLELDVLHNRFCDLSNAFGECNAILNTSLAVSVPLNILNASPWGYFILSTDGDAFHVFTDVLGFGTMCAELLVL

>ISGr41JI MDGRVPAAYPGYRFFLAVARISGCCFIDGVLFKTGPWMLRPNFRLLSLVHFAFCVFLSLWPPASFVMVRAQSRKTLS QIHSITGYGFYAAIYGQALVNILNMAFKRSDLVDVVRMASQLERRLQVPKKAVERRLRQVSLMCFAFVLFDGFKYML GLRTVMLLAFSLLDESHVVFRAVFIPGFLLGCVLVTVWYNLSFWMIVYFSEMVRQYFAALNDSLELALSTSKESFEA AERIRTNLVALRKLLKKINSIIGVQALSYYAGSVFFLCATLYRILISEGALTDRVSRLTYLATMSAGIVISTRASHL MSQELHMLVLAAEDAQGCLTGCGMFVINLPLIVVVVGAVITYTIVLVQTSDSAMNIKCLHGGITP

VQTDEEAVRQCV

>IsGr40 MPAVREAYSAIYSGYRPFFLFCKLTGCCSIQGLWTKTLFDELKVKMTIWSALYSFLLLTCYVWTLVLFVEILVKQHF QHPSSPISTVKGLFYGYYVLLYLQSTVNAFTLVRHAGALLAIIRDCSSLETQIGLEKDRVRRRLIIVSRGCLGFMVL DCIKSLTLAYRVVPAAWLHLSWMHDWVKIVCVAFFLIGVMLVGLWFSMSFWMIVYNAYVLRHYFARVNELLVEGLSM GGDCGRALQRVRWYQAEIRDIVSRFNSVLGLQSTFYYGGSVYFMCATVFGAFLSNISVLVRIVRSVFVITMAIGLLV SARAGQKMTSERHLKKGEVPRCLFAFLRVKKVTWFLHLLLVTSEAGEKAFTGCGLFKVNLSMLVAISGAVITYTVVL

TSE

>ISGr39CTE MGNNKMPAIYAGYRQFFVFCRIAGCCFVDGAFIRHGCSDLKIKIWSWYILYSLAGLWFYFWAMAVLIGSESNRPIFD TPNMIFYGYNVLINIQAAISMLSLLRHSGTYLEIIKTCGDLEVAIGLPREQAQRKLEKISRRCLIFMILDSARGLAI NKRVLPLSLRFMWSLHDWVKMGLLACFEVGVYLVGIWASLSFWLVVYNASVLKEYFACVNARMVQALTDPTGPAESL QRVRLNHAALRGMVLKINNAFDLQVTLYYGISIYFLCASLYGVLLFPLTYADRAIRAIFVVCLATSVYVSARAAHNM

>IsGr38CTE MYFARARFAIDAGLLAVAGCSFPPLNDSLKGSFTTWREAYAVACICVAVALEAFAYVGKFTSNPALSSLFNNTLFFV IRIVNLVKVVALRFFLRAEARRVTELITQAEAYEESRNIRVRYRAPLFKTAYRCVSFVAVMSFFAARWHVYVKRLFS NSPLPLKAFLDFLTVLSASCMTVWDGIHTILVRYFADVFLEYLKAENVALTALTQRKVVGFGRAMSTALRGIESNYE EILRMVATARSVLRSLVFFGFTCNAVIVCAVLYSYTDGTSTISLLLSGTLYAAYTIAETLDITFAAETLATE

MLLMKQQQSSLRTYECRPDSFFAGIAVGAYVATIEPRRRMKDTDRLNTTIYILFLTSVNVEAVINNFLMFVKAPKFV ELLHLCAKIEMNIGTPPYVQHDTISFTWKIMAFQAVLSCCNFVLNIISDFGTALVLSAEGQVSVDVMVIGILYSILG VVYVSSLCLVTRLWMTYFSKAFTLYLSCIYRNLDQCLRSRSTPESRKVSLVDHTRVQLTLLKNCADLASSLLGPSLL YAYAYSVALLCAAAYYTIIPELSNKIRLFFLCFGVLHWISILLPTVSAHRIKGAVIELRSIVQGVSMADFSDDLLAQ LRMMLNSIRHDDLKFTGCGFFVVDLSTFADIMGAVITYTVVLVQTNDSYLKGSLEHCLENSTII

DTRLKYLAMRKIIQELNDVLQYSTFVTVTCTLLTLCTCAYLISETESSWGKLVFTASYAVASSLELVHITVSMSQLK EQVQLFKESLDIQLFCASGLGFFTVDKPLLVSIFFSRLAYSLKVMQLCFDLLAIIIKISALRRMFI

>IsGr37

MITSEKQIQQKAQQKMFRRNLYMQVLETGSKGLLDKIGILKWPLLLVAYAYTVHTTINVFLTFMRIHNMMKVLDIAG YAARSFFACLNLRQAFQISTPSNRLLQRLSFGENQRRCFEVSTFLKVFVLVYFVVEVSLSIDFVLNGDIGEYVTSFL YGTNISTTNMTQEVIKAATFFNLTLFDILSIVPGLLMADYIAACLRLRRLLASFRITVMDGRVKKTVTCTEVKRYQD LSYDAWRELKRIDDIYTTVVFLWYLDIIINLVLSMRNLSKGISSROFALDSAYYIVIFVTLSLSASSVDTEAKDLMO EVKQLRSNIDEDDWQTGGQILLLETGLQSSRIVLNSGHFCVIDRPFILGVVGAIATYTILVVQLTPPG

>IsGr49

>IsGr48

MORNIIVTSKTPVMPFNAKAWAFKPESEHDTKKKTDDDRGTTWDYIKMTLMYIYATHIVSNAIAGSIRTGSMMYLIE TMTYTVRSVVSTVTTTYCFVKRGEINEIAQELQTFEGPEPTELLQKASRKRKYLRFSILCYSCLLIAMTSLFFVLVP AOKYFDKCFYGINLEKAGIPNAPAIMIGLIEWNSYNIIVTGSPLLMPWYMYLCDHLRAOMLYFRVSORGILDSGPLN LAKFKRIQFMCAKMIDVERRLDNLFAPVLFLWIVDLLVNIVLPIRTLVNGIASFTLANVMSFFIEVIYSVSFFMILS FSLAQVDKEYRDLDEEMYRVRNSVPGEDWQLCQQVVHMETGIKSSRFTLTGWGLFEVDRSFILTIVGAVATYTVVLI OLTPGEETY

>TsGr47 MLDQWHLAVPKNEGVEPTLFRVPDLGLDSSRSRNPRKVFLQDTRPSVWRARELMIPGVLMCAVAMPGPFFQFMNPRF KLIMRMYOGLLYVGFTAYEAYRLIEFVEEFMKDEKTSLICFFHSLINTFLFPFVYIYVARKSESLGPLLSRWEDGHG HLKFIPERNVLKPKFLVNVYMALTVFLIVLFHSVNAARSCYEIAWNYSNRTFPVKAVIFMGKTAHHYVLQTMYSGLE SLAFSLMFLLWLLYNDFSCEVKTAPTLTIKTITAIREKYRSLCIVTEATANFLNSLLFLFFFRTSFDFMSSVIYYSM ODGRAMKLWILVYEGILTFINVFHNTALAEMSSLLSLOAKDTLYEVSKVPAEPOAYKDLLLFLEVYRKRPEAMAGCG VLQVDRALVLKLCGSTVTIVLILFQLDPNLSHKVSL

>IsGr46FC MLRRFLRMTRLAGCCFVEGLFASTEAGPKLTARRAVAVPPVLFVWPGVSWYHSFKSVLRNSSKATLDGDIYVALSAS FFLATNATAISMVLHAPKLVELIHMCDAFELKRPLRQRRKLNRLCTWIVLLLCAFTLHQNAFRLQRLVTTATALHFV RRLFTLLGVLFOLAWTHISPAGVFLMSRVLNAYAEEAHAALELIGE

CGELTGHFPLTVVTNYSR

>IsGr45CTE MLSAPSKTRYGEHRPSIASVLIREEWNKAPEAHVIIERFLKMTRLLGCGFIEGLFTDNASTLRPQRASWYLVYTLTC IGFIFACAVHGVRTNISRGTMDGDIYLAVCVFYLLQALATFLTMFMYAPQLVEIVTMCIEFEVRRPLALDQRRCLNH FFMAVVVWLTLDFVVKNFLRMALVALSPSVYEFFLNATIVSGVLLMLSWSTIPOVGVVVMSRWLTVFLCETONMLVR

STE

>IsGr44CTE MFTESIMSPTSSTKTFHAAFHOVNRLHRTFGYSFISRSFSPSGEHITCNRLGPYTVYFVLSWSMTVGVFVYDAIEAL AVYEDDEVLDKATTLLYSVRTISIQLCTMVAAVITAPKIRKVAAELGELEARLQRPTSLTRVSRNVLAANAIYSVVS FVALMPLMFQFRELSKNQLYWNIVYIGVNLFYGQTSVMITYSWSMFFSKVFAELIRSINQELREMCSPSYSRESRDV GDVHALFYGVIEAFEQCNSTFGISLVVLFSLNMLMAAPWGYWLIRNVGKPEVVSVNFLGFMVLCAQMAFVAIYSFYP

TICAEMLATGVYARATNRE

MRVLRPRVLAVSPPSSAMLASPFKIQPSYPSGKSLLSGFSVIAYFHRLLGFCFISKDANGRPVSKIIGPYMIYAFIS WALYLFVIGSDIVRVSILLQDIRNRAIDKAIQILACVRCIGIEIATIVLLVTKSSQLVELLVTLEELEERLNRATSL RATAIRVVILNVIFSVTSVLSISAEIYGFDEYSAEAYMKILYGVFSLVFAENVCMISFSWLMFFCRVFGVYLSHVNE DIDCMSNELVVSIPELAELHRLFVNVGWAFARLEQLLGVAILVSFPLNIVSAAPWGYYMLKADKGTTMFMLDLIGFF

>IsGr50

MKVSSSFFGQSSARSRWAVKRLVWTVERSRNAKNQDVAIDVQVSQLANVGPFRFALKKALLLPTLWLLLCYGLHLAA TIGSAGSTLTSFAYLLAVGNLIRAFTSIVSIVHIITFRNDILNILTSIENIFHDSLSEFVSRTRRFSLNLCAFCFGS CLFHGTLICVSSLSGPWRDFYQARFYGVNCSRLPSAVRVIPILLDAPLLSITSSVTAMMACLFITVCYMLSLVTLHF SHTMNLMLSLSASGKLTPGRVKDALLRLFLTGDAVCKLNMTYGPIMFWWYVDLLRSFLFSIPALLVAVTTSKEFFHY SFVVVDLTRDVIVFLLMSLVASDMARHIEESVVHSLKVADSMDDVRSDVRLAVNVEMLVNAVQETKVQLSGREFFHV DRSLINRVLSIVATFAIIVFOFLS

>IsGr51

MNSAQRSQTKKGPPQIDRSDVLRMFRGLFAMMKLVGLLPRDLPEVIEAEVDARSIARRMRRAGVLLFIVFGYLIHFS AATVYNVTHDGGFFGFFANCGYVLRNIFAALSLVHFLVFQRVLLRIVVDGFRIFEHPPLSIERKVRRATVLAACFVV STFVALQNTTVWVGFVDVQKYFNYYLYKGDVTQGTIPRQLGYLFSFIDATTYAIMESTLNCIITFHACVSLYLGCLC ENFVRIIREVSQQTSVSGGQVKALRRLMTRLSDVMVRFDRVGSPVVFCWYANIVGSLILSTPGILLGMRRAAPSDYA YMLTDLLTMLVILVALTFALADPTSLLRSSYVHALKISTKVDIDDEEVNHSAHVLMDSIISTKVAVTGCKCFQVTRD MVLSILTMTSTYIIVVYQYIEHAM

>IsGr52

MNWAQYNLIKSGSSEIGRNDVLHMFRAMLVMMKLLGVLPRDLEGDIGHEIDARSIAKSMRRAGVLLFIVFGYLIHFS AATIYNVTHDGGFFGFFANCGYVLRNIFSALCLIHFLVFQRVLLRIVVDGFHIFEEPPRGIERRIRRATVLAVCFDV VSYLAIVNASSYCGYKDVQKYFNFYLYKGDVSNGTIHKQLGYVLSTLDATAYATIMSVIYWFISFHACVSLYLGYLC ENFAEIVRKVSRQSSVSGGQVKSLRRLTTRLSDILVRFDRVGHPVVFCWYLNIVSTLILSAPGILLGMRKASPYDYG YMLTDLITMLIVFVGVNFALADPARVFRSSFVHALKISTKVDINNEEVNHSAHVLIVSINSAKVAATGCKCFQVTRG MVLAILSMVSTYIIVVYQFIENAL

>IsGr53

MEKSTPDRFRRVIRVSAAASRAFESNREHLQEDKNWLEMLFKELLVALKIHGIVIFKPDPNSVAPRKGNAKSLLRNV RPSVILLVVFTSYGIHYAASSFTSLGRNPNGLLSLFSDVAYLFRIATALFTAFYMTSVSTSVSSLLSDSTTIFQKTL PQNAIKSIRGYVIGMSVFAFANLLAFLGVKVTELYQSGFDGYYNYNLYDLAPKSKSVIYYAVPALDIAFCTIIITMP KWIMGFHVSVCKYLGCQAVSLSGTFASERVVVLKRAREFREYHSALCELIFRFDEIFNLVLFFWYADIIISFVLSVP YIIIRTDNSTPWTYAFVMVDVACNVALLVVFNMAASDPGRLARDAQLVVLKMSSRADPDDVRLNHELLLLANAVKVA KVEMSGWNCFDVQRGLTITVLSMLSTYVVIVYQMMHHTL

>IsGr54

MPSSPVVSPETASKSVTMLEKCTRAAEEGTSITVPLKDVLKALRVFGIGPLTPRKLESRIKQGPSQDLTTHQIRYNQ LAWVIMHIWIVRLLLRLGQVFLGKGKVGEAAVELLRGLASSVSLNRIILYRRVCHFFWSVDHVTDRSLSYGKLSSF TSVYTIGIWLYILVRLILDVANLFTTVGFKGYMEQWLLVDTIPGSLTFAVYIIAVPDTVIRRLILSGPTIFMISFYS QLMWVIVSQFNSFHCTLKRKCTGSRNFGSDRLRQLRIRHADLCLLVQDVDDIMSPLAFLWHAMMVLGACAEATHLLQ LKISEDAWAIVHISLDLAYMLVFFGIVSFSSAAVCQAYNATLNYVNLMSARMSQVDDAEFARQALLLMSQMQSISVS VTAWKFYDMNRAALITTLGAVVTYVVVVFQMAPKLLQGPSE

>IsGr55

MKVGVRSFSTMIIFAPPRSKLLSQLEMLFKPLIYSFGSFSGPPGVSVSLRSRLTAYTTTLVVLTTLTCHLALLIMSL SRGFEHASIRRGCTCVRLACSLIIVVLLIRRSHEVIAFKSRLLSLYSHLPVLDPSSVRLGKAKLVVWCTAAFVYLQI SYATFQGFLPDTNEESMAAYFKELWFGLDNKHFPPLLTRCLWNLESFVFHVTTEAVVRVPVLFYVAACFLLKARLRD FRLMLGRQRWKQSMTTLTTLTVKELRDLQRLHGILTEAAQQLEDVFSPIIFCSYTTFVVHIIASLYNIFDRNLLYFS GAPGKIHLIRQVEVYLEFGLTVWFFLLLTVAAAFVNDEPSRLLPVVEKMILDVDELSVSSSFRAAFLLARFSRPFAQ LTAWRVCVISRGLVLTVMGAFLTYGVIFFQFVHLGNSAAK

>IsGr62CTE MSSRIFTVEPRSCDDDPDTTDPFRIILTSLNLLGVFSLGPSSGGTIFRRCVIAYRSVATFYIHYVAFAHLYSLCSGV RGWTDIITSFIACSSVFTLDSLSLRRERMECLLLSMRTC1aEGSVKARWAVLRKSRVCTVCIWTYLAAFIVNSICSV

AVVLTGWGFFYFSRGFVLTLAGALLSYVIIILQLNSDLDKEKEIGKDG

>ISGr61 MYTSRRTTKLFVIRHVDEKVDPENNRTVFKQLRPILWSLKLLGFYSDLYEDAERPVRPWYHDVSTWTCVTLGLLHAY ALASLTACIEGDFWATAYNFFRAGSAVVSSQAVISKGPQACALIHRLGTFSSRPGHNLKKTCTVMVLVVLGYVILRI AVHSMVLLDYNAHDLSKHAKIAWFGIESQLPASVLLPLCLVDVVLNSILVTGSLLLSVALYLALTVALRHRYEAFND AINRHVRDNVVRQEETQDQSWTTTRENRGLDVHELRELRQIQTDLGVAVLEMETHFSPTAFAWVSFFVLGVCAEVSR FLGHHESGLSDEHRILVIGLNLGSVTLLFVLLAVMSSRLSETSNASMMPLHRALGLSSDRPQEYHEGLLLISQLRAP

DGQTCNQVMLLQEEVANCRMAFTGWNCFNIDRSFILTVIGAIITYAVVLQQLT

>IsGr60NC AGSSTELTKFIMVRQTVPKHTHKTIIDVTYVQVKHFRSLVRVCAKNSDVQAGPVKRLHSIYTSLWNAVQKLDSQLSL AVFLWYVDLVLNIIISVRMVQHTLSQFNPYSAAGAYVQALYLGLMFLLMSYAAANLIVEVRHVDHDVCQLVCALTAV

PKAMKTINKLVTTALNNTGNGTASSE

>IsGr59NC SVFFTEANPKHSDRTLLFFVALIWYLNTLFVYGTLVFVPILFISFCLVLARAFKVHNVVIRNVHKSGLSLEADSLAQ VRIFYERICTLVTDLNEIFGPVIFSWYIMIVLSVCIDMTQLFSDTNLLKNTKEDEGFLFSLRGIYSLLSFLGTCLAA SRVSEEALAPLPHLHELTLRSWRLDMDTKMEAHFFLSRLSSSPVSMTGWNFFTINRSFILSVCAALTTYVVIIIQMN

MLTZAFVWYQIGPRSQRSAAIYTNSG

>IsGr58PSE SFLLKVSIDVTQAKLLSDAFTZQTVNLVLYGXRILTANVLFIISAXQXRSLRKVLKDLSDKAGCLLPLQKQZEIQTL NCTLAGLSRIIIGAFLSGPAYILFFTDKLLQTDLLSHFVAYFNEVCFALVIWYTLCFMPIMFVTVSZTSARLLSQYS EMILKRFXTEDYDICSLDCKFTDTTKQRHKMCRLLDDCCKIFAPCFFVWYGPTFLGCCAELSTFMRQSDSWMQRYYK AVTSAHGXLAMLANPVYATRRVSWGILQECTLRLSLDVVVHMELVILKEDSRDIVMAFTIGRFYELTLKTAFSVLSC

G

>IsGr57PSE MKKKPIPKLFVPRSRNKESNAIFKIPLVALKFTSFFWNTTSRSARLLSFVLKISIDVTQTKLLSDEFAZQTVNLVLY GSRILTANVSFIIFALQERSLRKVLKGLSDKAGCLLPLQKQZNIQMLNCTLACLSAIIIGVFLSGPAYIIFXTEKZL QKDLLSHFVAYLNEVCFALVIZYPLRFMTTLFVTVSQTFAELLSQYNEMIPKRLCTEDYYIYSLDXKFTNSRKQRHR MCHLLDVRVKIFASCLFIWYGPTLLGCCAELGTFMRQSDSWVQRYYKAVTSARGWAIFWXVSLVANPVYATRQVSWG ILQDCTLTLSVDVVVHMELVMLKEDSREILKAFTIGGFYMLTLIPAFSVFSCMLTZVFVWYQIGPGSQRSAAIYTSS

D

>IsGr56 MKKKPISKVFVPRSRNSESDAIFKIPMAALKFTGLFWNTTCRPARLLSFLLKISIVTTQAKLLSDAFTYETVDMVLY GSRILTANVSFIIFALQERNLRNAIKDLSDKASFLLPLQRQRKIRTLSCSLACVSAIIIAVFLSGPAYVLFFTDKRL QTDLLSRFVAYLNEVCFAVVIWYPLCFMPILFVNVSQTFAELLSQYNEMIPKLFCTENHNIYSLNCKFRHSREQRHE MRRLLSVCGKIFAPCLFIWYGPTFLGCCAELSNFMRQSDAWVHRYYKAVTSAHGWAMFWGVSLAAHHVYATGRASWD VLQDCTLRLPLDVGVHMELVMLKEDCRKIAMAFTIGGFYKLTLRTAFSVFSCMLTYAFVWYQIGPGSQPNVASHTNS TLSNPQSSWDSYLLGANASRVSERKAKAVALVATTLRLYLVDGPWFFVMALFVLSCWVLRASFRDLEEKVTEDMSAEDVSRLKERYCQLTAVVNELDDNLSPSLFVWYVAVLVALCSRFSAIVTRTSHEVQIFWWLTHLLGLLWTLAILFGVS

Supplementary Methods

Selection of Ixodes scapularis Wikel strain for genome sequencing

The *lxodes scapularis* Wikel strain, established by Dr. S. Wikel (Quinnipiac University, Hamden, CT) was selected for genome sequencing. This colony was established in 1996 using approximately 30 pairs of field collected adult male and female ticks from New York, Oklahoma and a Lyme disease endemic area of Connecticut. At time of sequencing, the Wikel strain had been continuously in-bred from brother-sister crosses for twelve generations. Ticks derived from this colony have been found competent for transmission of *Borrelia burgdorferi* (strains B31 and 297) and *Babesia microti* isolates.

Genome Size

Prior to sequencing, flow cytometry was performed on propidium iodide-stained nuclei prepared from synganglia cells and used to estimate the haploid nuclear genome size of *I. scapularis* Wikel strain ticks as approximately 2.31 Gbp¹.

Construction of Genomic Libraries

Construction of Small, Medium and Large Insert Genomic Libraries

Total DNA was extracted from a single batch of *I. scapularis* Wikel strain embryos using Qiagen Genomic Tips GS-100 (Qiagen, Piscataway, NJ) according to manufacturer instructions. Embryos were surface sterilized in 10% bleach solution for 10 minutes prior to DNA extraction. Genomic DNA was used to construct small (~ 4 kb) and medium (10-12 kb) insert genomic, and large (40 kb) insert fosmid libraries at the J. Craig Venter Institute (JCVI) and The Broad Institute of Harvard/MIT.

Construction of a Bacterial Artificial Chromosome (BAC) clone library

An *I. scapularis* 10X BAC clone library with an average insert size of ~120 Mbp was produced by the Clemson University Genomics Institute (CUGI). The library comprised 184,320 independent clones which were arrayed to nylon filters. ³²*P*-labeled *I. scapularis* genomic DNA was hybridized to the filters and used to identify clones with a high repeat content using published procedures². Forty-five clones that failed to demonstrate a strong hybridization signal were selected for complete BAC sequencing and assembly (Supplementary Table 4).

Genome Sequencing and Assembly

Ixodes scapularis Nuclear Genome

The genome of *I. scapularis* Wikel strain was sequenced in a joint effort by the Broad Institute and the JCVI and funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH). Sequence data were generated by Sanger shotgun sequencing of the genomic libraries described above. Sequence reads were assembled with the Celera Assembler (CA) software, which is available as open-source (<u>http://wgs-assembler.sf.net</u>). The original version of the CA software³ had been modified to assemble at low sequence identity⁴, to report high quality SNPs and longer variants^{5,6}, and to trim reads based on partial overlaps to other

reads⁷. Running on Sanger data only, the *I. scapularis* assemblies did not use the CABOG unitig module developed for 454 pyrosequencing data⁷. An initial assembly was generated with CA version 3.1 before the completion of sequencing. Subsequent assemblies used CA version 4.0. The final assembly incorporated parameter settings and process modifications chosen to increase assembly contiguity on this data. The final assembly, labeled Assembly D in Supplementary Table 1, was deposited in GenBank as JCVI_ISG_i3_1.0 and has the VectorBase designation IscaW1.

Analysis of reads. K-mer analysis indicated high polymorphism in these data, where K-mer is defined as K consecutive basecalls in a read. For a read of length N, M=N-K+1 is the precise number of K-mer instances and an upper bound on the number of distinct K-mer sequences. Each distinct K-mer sequence has some frequency F across all the reads. Distinct K-mers with F=1 are single-copy. Single-copy K-mers may be induced by sequencing error, low coverage across polymorphic loci, or low coverage in general. Single-copy K-mers are useless as alignment seeds. Celera Assembler uses K-mer matches to seed sequence alignments and thus to detect pair-wise read overlaps. At K=22, CA's default, 50% of *Ixodes'* distinct K-mers are single-copy and single-copy K-mers cover 12% of the data. Smaller values of K were required for sensitive overlap detection, especially in polymorphic regions of the genome. At K=16, the single-copy K-mers make up 25% of distinct K-mers and cover 2.6% of the data.

K-mer analysis also indicated high repetitiveness in these data. An F value of 50 was considered high frequency for a K-mer in these data. At K=16, just 1.8% of the distinct K-mers displayed high frequency in the reads, but these K-mers covered 56% of the data. This indicated that larger values of K would be required for specific overlap detection, especially in repetitive regions of the genome. Obviously, there were compelling and competing demands on the assembly parameter, K.

Trimming of reads. Reads were trimmed using CA's overlap-based trimming (OBT). The initial assembly used CA defaults. The trimming was based on each read's partial overlaps (local alignments) to other reads, where overlaps were discovered with the K-mer seed size K=22 using K-mers whose frequency in reads was greater than 1 and less than the frequency of the top 1% of most frequent K-mers. The software trimmed reads that (a) had a span confirmed by overlaps and (b) had some position at which overlaps consistently broke off. Analysis of the initial assembly uncovered anecdotal evidence of insufficient trimming. In an effort to improve trimming of this data, the later assemblies incorporated pipeline modifications designed to uncover additional partial overlap evidence. Assembly B was run with parameter changes that specified small seeds (K=16) and a low frequency threshold for seeds (freq<=50) at the default minimum overlap (length>=40). These parameters were chosen for high sensitivity among non-repetitive or polymorphic sequence. Assemblies C and D also incorporated large seeds (K=28) and high frequency threshold (frequency<=8000) with a large minimum overlap (length>300). These parameters were chosen for high specificity among repetitive sequences. Thus the OBT stage of assemblies C and D used the union of overlaps computed under two regimes. Celera Assembler's chimer detection option was disabled during assemblies C and D because the ratio of partial overlaps per read seemed to induce over-calling of chimera.

Overlaps and unitigs. Celera Assembler computed full overlaps between reads that shared a K-mer subsequence. Without changing the reads, the CA optionally corrected the observed error rate per overlap for all reads whose overlap collection

indicated a correctable basecall error. It then filtered the overlaps by error rate and used the surviving overlaps to construct unitigs, or high-confidence contigs.

Assemblies A and B used default settings, including 22-mer seeds, an alignment error threshold of 6% before correction, and 3% threshold after correction. Assemblies C and D used more permissive parameters: small K-mer seeds (K=14), a high frequency threshold for K-mers to use as seeds (frequency<=8000), and high tolerance for alignment error (mismatch<=20%). In assemblies C and D, 99.98% of the distinct K-mers were used as seeds, and the seeds covered 90% of the sequence data. The resulting overlap collection included 55 billion overlaps. In assemblies C and D, the correction option was disabled to avoid using high-error overlaps for correction. The unitig module was tested with several values of the overlap error rate filter and finally run with a permissive value (mismatch<=13%).

Contigs and scaffolds. Celera Assembler built contigs and scaffolds from unitigs and the mate pairs that unitigs incorporated. Unitigs were evaluated by the A-stat statistic that compares observed to expected coverage³. Unitigs with high coverage, presumed collapsed repeats, were precluded from nucleating contigs but reserved for possible incorporation into multiple scaffolds later. For assembly D, the genome size was set explicitly (size = 1 Gbp) to a smaller-than-expected value, effectively increasing the expected coverage. The goal was to incorporate more unitigs early in the scaffold building process. Assemblies A, B, and C had used the default behavior in which genome size is estimated from the unitigs at run time.

Assemblies A and B used default settings that allowed up to 6% error when merging unitigs into a contig, and up to 6% when recovering trimmed sequence from reads at contig ends to close a gap. Sequence analysis of contig ends in initial scaffolds indicated that polymorphism was preventing well-supported merges. In assemblies C and D, the error tolerance was increased to 20%. The CA consensus module failed on seven contigs, possibly due to accumulation of pair-wise error in the multiple sequence alignment. These seven alignments were inspected visually and adjusted slightly so as to permit continuation of the CA computation.

Supplementary Table 1 captures the effects of our assembly interventions. Adding $1/3^{rd}$ more reads after assembly A increased the sizes of the maximal scaffold and contig, but had little effect on total span or N₅₀ values (compare columns A and B). Adjusting K and other overlap parameters greatly increased maximum, mean, and N₅₀ values (compare columns B and C). The drop in total span of scaffolds and contigs was partly due to combinations of previously separate contigs. The result of adjusting the genome size parameter was to increase the mean and N₅₀ for values for scaffolds while slightly decreasing them for contigs (compare columns C and D). Each successive assembly incorporated more reads into contigs. Assembly D incorporated 44% of input reads in contigs. Assembly D left 2.2M reads (13% of input) in unincorporated unitigs called "degenerates" and 7 M unassembled reads (42% of input) called "singletons." Of the 15.6 M reads that had a mate constraint after trimming, assembly D scaffolds satisfied the constraint for 3.8 M reads (24%).

The size and distribution of DNA on the IscaW1 scaffolds is shown in Supplementary Table 2. The longest scaffolds range from 1-4 Mb and comprise approximately 3.6% of the genome. Approximately 48.9% of the genome is represented by scaffolds ranging from 10-100 Kb and scaffolds of 10 Kb or less comprise approximately 23.6% of the genome.

Sequencing, Assembly and Analysis of Ixodes scapularis BAC Clones

Forty-five BAC clones selected from the *I. scapularis* 10X BAC library were shotgun sequenced and assembled (Supplementary Table 4). BAC sequence accession ranges are: AC192414-AC192429, AC192742- AC192744, AC200531, and AC205630-AC205654. More than 185,000 BAC clones were end-sequenced and trace reads are available at VectorBase (<u>https://www.vectorbase.org/</u>).

The assembled BACs were aligned to the *I. scapularis* IscaW1 annotated scaffolds using Mummer (Supplementary Table 4; Supplementary Fig. 4). Of the 45 BACs, only 12 align to a single IscaW1 scaffold, six align with between two to four IscaW1 scaffolds, and the remaining BACs align to ten to more scaffolds. Analyses of BACs with multiple hits to IscaW1 scaffolds failed to identify any potential coding sequence. Repeat-rich regions were identified in assembled BACs utilizing an in-house repeat library built using RepeatScout. Of the 45 sequenced BACs, 21 are composed of low complexity regions and do not contain gene structure suitable for annotation (data not shown). Pfam genome alignments show that repeat associated domains are common and include extensin like, formin, reverse transcriptase, integrase, endoexonuclease phosphatase, Pao, and PF00075, an RNase H domain for an enzyme involved in retroviral replication, that is often found in association with reverse transcriptase domains (data not shown). The most prevalent retroelement had the following arrangement of domains: PF03372 (Endo-Exonuclease phosphatase)-PF00078 (Reverse transcriptase)-PF00665 (integrase). Some element regions were found that lacked the PF03372 Endo-Exonuclease phosphatase domain, and less often the Integrase domain. To determine gene content in the BACs, homology searches were performed using protein databases (NR Genbank non-redundant database, Pfam domains, and annotated I. scapularis IscaW1 peptides), and I. scapularis EST data (Supplementary Table 5). The remaining 24 BACs contain various amounts of coding sequence.

Ixodes scapularis Mitochondrial Genome

The mitochondrial (mt) genome of *I. scapularis* was assembled from trace sequence. The genome assembly and manual annotations are available at VectorBase (<u>https://www.vectorbase.org/</u>). Phylogenetic analyses were performed to compare the *I. scapularis* mt genome to that of published mt genomes from other species of Ixodida and other arthropods. Supplementary Fig. 10 shows the organization of the mitochondrial genome of *I. scapularis* and comparison of mitochondrial gene arrangement between *I. scapularis* and other ticks and arthropods.

Rickettsia Endosymbiont of *Ixodes scapularis*

Analysis of *I. scapularis* trace reads revealed a substantial amount of reads comprised of bacterial DNA. Extraction of 16S rDNA sequences and subsequent comparative analysis with other bacterial species suggested that one organism with close affinity to members of the genus *Rickettsia* (Alphaproteobacteria: Rickettsiales) was simultaneously sequenced with *I. scapularis*. This organism was named <u>R</u>ickettsia <u>Endosymbiont of *Ixodes scapularis* (REIS)</u>. The genome of REIS was assembled and annotated as a separate effort⁸. Briefly, ten previously sequenced *Rickettsia* genomes were used to recruit REIS reads from the *I. scapularis* read set, with subsequent

scaffold recruitment and assembly yielding 109 contigs linked into one chromosome spanning 1.82 Mb. In addition, four rickettsial plasmids (pREIS1-4) were obtained. The annotated genome is available at GenBank (<u>ACLC01000000</u>) and PATRIC⁸. A rickettsial isolate cultured from *I. scapularis* ovaries was recently named as *Rickettsia buchneri* sp. and may be identical to REIS⁹.

Among sequenced *Rickettsia* genomes, REIS is the largest to date (>2Mb) and contains 2,309 genes across the chromosome and four plasmids¹⁰. The 109 gaps in the assembly reflect the extremely high repeat nature caused by an extraordinary proliferation of mobile genetic elements (MGEs), which are dominated by >650 transposases (TNPs). TNP-mediated recombination events have resulted in dozens of pseudogenes, and also contribute to limited synteny with other *Rickettsia* genomes. An integrative conjugative element named RAGE (Rickettsiales amplified genetic element) is present on both the REIS chromosome and plasmids, encoding F-like type IV secretion system genes and many genes characteristic of the intracellular mobilome. The abundance of TNPs relative to genome size, together with the RAGEs and other MGEs that encompass ~35% of the genome, place REIS among the most repetitive bacterial genomes sequenced to date. Despite the proliferation of MGEs in the REIS genome, a typical core rickettsial genome was obtained, characteristic of reductive genome evolution as a consequence of an obligate intracellular lifestyle dependent on the utilization of host metabolites. Robust phylogeny estimation places REIS ancestral to the spotted fever group rickettsiae, containing the agent of Rocky Mountain Spotted Fever, among other pathogens.

Ixodes scapularis Genome Annotation

The annotation of the *I. scapularis* genome was performed via a joint effort between the JCVI and VectorBase. The genome annotation release IscaW1.2 is available at VectorBase and GenBank (accession ID: ABJB010000000). A total of 18,385 scaffolds (17,365 >10kbp and 1,020 <10kbp; ~5% of the assembled scaffolds) were annotated, containing 20,486 protein-coding genes, and 4,439 non-coding RNA genes. Supplementary Fig. 5 shows that the majority of *I. scapularis* expressed sequence tags (ESTs) map to scaffolds of 10 Kb or greater in length, thus providing justification for this approach. *Ixodes scapularis* gene, intron, and exon statistics are shown in Supplementary Figs. 1-3 and Supplementary Table 3 in comparison to those for multiple sequenced invertebrates.

The JCVI and VectorBase annotation pipelines utilize complementary approaches; the former focuses on *ab initio* gene predictions, while the latter utilizes primarily similarity-based methods. Both pipelines were run independently and the resulting outputs were merged by JCVI into a single consensus gene set. Several iterations of merging and manual review were performed. Updates to the gene set are performed on a regular basis at VectorBase.

Repeat Identification

The *I. scapularis* genome sequence was masked for repeat sequence prior to annotation. Publicly available repeat sequences were obtained from GenBank and *de novo* repeat identification was performed by JCVI using RepeatScout¹¹ and by VectorBase using RECON¹². Repeat sequences were merged into a single library that serves as input to RepeatMasker¹³ to mask the genome (data not shown).

J. Craig Venter Institute Gene Prediction Pipeline

An initial set of *I. scapularis* protein predictions were generated using dipteran protein sequences obtained from GenBank and aligned to the *I. scapularis* genome sequence using the programs AAT¹⁴ and GeneWise¹⁵. The *I. scapularis* EST set comprising 193,151 EST and cDNA sequences was aligned to the genome sequence (Supplementary Fig. 5) and high quality alignments were used to produce automated annotations based on gene structure using the software package PASA¹⁶. ESTs were also used to evaluate and capture potential genes in small contigs that were not initially included in the annotated scaffolds. EST hits to small contigs that are not part of the annotated scaffolds typically represent transcripts derived from transposable elements such as non-LTR type elements and do not contain an open reading frame. Finally, the *ab initio* gene prediction programs Augustus¹⁷ and GeneZilla¹⁸ (formerly known as TIGRscan) were used to generate gene models. VectorBase homology-based gene predictions were then incorporated into JCVI database and the gene sets were subsequently combined using EVidenceModeler¹⁹.

VectorBase Gene Prediction Pipeline

The Ensembl pipeline²⁰ was used to predict non-coding and protein coding genes based on mRNA, EST/cDNA and protein evidence. The supercontigs were masked with the repeat libraries described above. UniProt protein sequences²¹ were mapped to the *I*. scapularis supercontigs using the Genewise program¹⁵. Two gene sets were produced based on the taxonomic origin of the proteins: (1) a "targeted" gene set from *I*. scapularis proteins only, with strict criteria, and (2) a "similarity" gene set from the remaining proteins. In the "similarity" gene set, gene predictions were prioritized according to protein origin: genes based on phylogenetically close species were placed first on the genome, then non-overlapping models based on more phylogenetically distant species were added, and finally eukaryota- and metazoa-based gene models were used to fill in gaps. Independently, the *I. scapularis* EST and mRNA sequences were mapped to the supercontig sequences using the Exonerate program²², generating a third gene set. Finally, a fourth ab initio gene set was produced using the SNAP program²³ and supercontig sequences, and retaining only those predictions containing a Pfam domain. The four gene sets were merged into a single gene set that was then subsequently combined with the JCVI gene predictions.

Supplementary Figs. 1-3 show a comparison of haploid nuclear genome size (in Mb) to features associated with the coding fraction of the genome (gene/exon/intron number and length) for 12 sequenced arthropod genomes based on EnsemblGenomes release 12. While *I. scapularis* has the largest haploid genome of any sequenced arthropod, the gene number and length, exon number and length, and intron number and length statistics for *I. scapularis* are similar to those for other sequenced arthropods. Together, these analyses suggest that the genome size of *I. scapularis* reflects the accumulation of significant amounts of non-coding sequence.

Sequencing of the Ixodes scapularis Transcriptome

As part of this project, 183,834 *I. scapularis* EST sequences were generated by Sanger sequencing of a pooled *I. scapularis* stage and tissue library and are available at GenBank and VectorBase (ESTs accession range: EW781064-EW964897). The cDNA library was constructed from total RNA extracted from the following stages: *I.*

scapularis embryos, blood fed larvae, nymphs blood fed for 1-3 days, fully engorged nymphs, unfed males, unfed females, and adult females blood fed for two, four and seven days. The majority of ESTs align to IscaW1 scaffolds ranging in size from 10-500 Kb (Supplementary Fig. 5).

Gene Ontology Analysis of Ixodes scapularis Expressed Sequence Tags (ESTs)

Methodology. The predicted protein sequence of the 24,925 *I. scapularis* gene models (protein coding and non-coding RNA genes) was downloaded from VectorBase (https://www.vectorbase.org/) in March 2012 and the program Blast2GO²⁴ (http://blast2go.de) was used to predict functional classification for each sequence. The Blast2GO program performs a homology search against the NCBI non-redundant (NR) database and assigns sequence to one of three gene ontology categories (biological process, cellular component and molecular process). Statistical analyses were performed using default settings and pie charts showing assignment to predicted functional category (Supplementary Fig. 6) were generated using a cut-off minimum of 1,000 sequences.

Blast2GO annotations were obtained for approximately 50% of the 24,925 *I. scapularis* predicted protein sequences. The majority of annotations were inferred based on similarity to sequences for *I. scapularis* and the tropical bont tick, *Amblyomma maculatum*, followed by sequences for *Homo sapiens*, *Mus musculus* and *Pediculus humanus*. The majority of GO classifications were inferred based on electronic annotation only. Blast2GO classified the *I. scapularis* sequences into thirteen "Biological Process" functional groups (Supplementary Fig. 6a). For the "Cellular Component" category, the program classified sequences into six functional categories, namely "cytoplasmic part", "intracellular organelle", "nucleus", "intracellular non-membrane-bounded organelle", "integral to membrane" and "protein complex" (Supplementary Fig. 6b). For the "Molecular Function" category, more than 50% of the sequences were classified as either "hydrolase activity", "protein binding" and "transferase activity", while the remaining sequences were classified as "zinc ion binding", "nucleic acid binding", "transposase activity", "oxidoreductase activity" or "purine ribonucleoside triphosphate binding" (Supplementary Fig. 6c).

Ixodes scapularis Gene and Genome Evolution

Comparative Evolutionary Analysis of the Ixodes scapularis Gene Repertoire

Molecular Species Phylogeny. To estimate the average rate of amino acid substitutions in the conserved cores of orthologs shared across multiple invertebrate and vertebrate species and to reconstruct the arthropod phylogenetic tree, single-copy orthologs from www.OrthoDB.org²⁵ were selected from *I. scapularis* and 11 additional species, including the Crustacean water flea, *Daphnia pulex*, five insects: *Pediculus humanus*, body louse; *Nasonia vitripennis*, jewel wasp; *Tribolium castaneum*, flour beetle; *Anopheles gambiae*, malaria mosquito and *Drosophila melanogaster*, fruit fly; and five outgroup species: human, mouse, chicken, zebrafish and *Nematostella vectensis* (sea anemone), resulting in 524 Strict Single-Copy (SSC) Orthologous Groups (OGs), with one gene from each species. Multiple protein sequence alignments were performed with MUSCLE²⁶ for each OG, and conserved well-aligned cores were extracted using GBlocks²⁷ (>66% conservation, 100% flanking, maximum of 8 non-

conserved positions, minimum block size of 4) resulting in 90,763 aligned amino acids, of which 67% showed variation. The phylogenetic tree was computed with PhyML²⁸ employing the JTT substitution model, estimated proportion of invariable sites, four substitution rate categories, estimated gamma distribution parameter, empirical amino acid equilibrium frequencies, optimized tree topology search, branch lengths, and substitution model parameters, with 100 bootstrap replicates (Fig. 3a).

Intron Evolution. The identification of introns in well-aligned sequence regions of single-copy orthologs across representative arthropod and non-arthropod species was performed in a manner similar to that employed in other studies²⁹. 524 Strict Single-Copy (SSC) orthologous groups (OGs) were selected from www.OrthoDB.org²⁵ with one gene in each of the 12 selected species (NVECT, Nematostella vectensis; HSAPI, Homo sapiens; MMUSC, Mus musculus; GGALL, Gallus gallus; DRERI, Danio rerio; ISCAP, Ixodes scapularis; DPULE, Daphnia pulex; PHUMA, Pediculus humanus; NVITR, Nasonia vitripennis; TCAST, Tribolium castaneum; AGAMB, Anopheles gambiae; DMELA, Drosophila melanogaster). A second, larger set of OGs was selected allowing no more than three paralogs in three species and selecting the longest protein per species, resulting in 1,529 Relaxed Single-Copy (RSC) OGs. The introns were mapped on to the protein sequence alignments, allowing for small splice site changes (one amino acid difference) [as observed in other studies³⁰], and conserved regions with an intron in at least one species were identified by requiring >30% amino acid identity in the aligned blocks of five columns before and after the intron position, and no species with any missing sequence in the region, resulting in sets of informative intron positions in each species (Supplementary Fig. 11). From a total of 44,222 SSC and 135,216 RSC introns, between 32% and 52% of introns in each species are located in well-aligned core regions of the ortholog alignments and may therefore be compared across the 12 species. Using strict or relaxed orthologous groups (SSC or RSC) does not affect the proportions of informative introns. The nonarthropod species have the most introns, the Dipterans have the least, and ISCAP has the greatest number of introns and informative introns among the arthropods. Informative intron positions from the five outgroup species (NVECT, HSAPI, MMUSC, GGALL, and DRERI), and the five insects (PHUMA, NVITR, TCAST, AGAMB, and DMELA) were compared to ISCAP and DPULE to quantify shared and unique intron positions across all 12 species in the strict (SSC) and relaxed (RSC) sets of orthologous groups (Fig. 3b; Supplementary Table 7). Comparing the 18,987 SSC and 53,322 RSC informative introns identified 4,621 and 13,459 intron positions, respectively. Only 42 SSC and 113 RSC intron positions are conserved across all 12 species. Examining pairwise conservation of intron positions between ISCAP and each of the other eleven species shows the greatest sharing with the non-arthropods (NVECT, HSAPI, MMUSC, GGALL, and DRERI), about 3 times more than with AGAMB and DMELA, and about 1.5-1.8 times more than with DPULE, PHUMA, NVITR, and TCAST (Supplementary Table 8).

To reconstruct the 12-species phylogeny based on conservation of intron positions, presence/absence matrices for the 4,621 SSC and 13,459 RSC intron positions across the 12 species were used to compute Euclidean distance matrices with 1000 bootstrap samples in R (Development Core Team 2011). These matrices were used to compute Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and Neighbor Joining (NJ) trees using the neighbor program from PHYLIP³¹. The resulting

trees were ordered and compared using the Newick Utilities³² to identify bootstrap support values for the consensus trees. Employing the intron presence/absence data as a phylogenetic signal successfully reconstructs the species tree from both the strict and relaxed sets of orthologs using both UPGMA and NJ algorithms (Supplementary Fig. 12). *ISCAP* consistently shows greater similarities to the outgroup species - vertebrates and the sea anemone - than to the pancrustaceans.

To compute intron gain/loss estimates across the phylogeny, the presence/absence matrices for the 4,621 SSC and 13,459 RSC intron positions across the 12 species were analyzed using the MALIN suite for maximum likelihood analysis of intron evolution in eukaryotes³³. Intron gain/loss rates were first optimized, and then presence/gain/loss estimates were computed with the Dollo Parsimony (DP) and Posterior Probability (PP) algorithms (Supplementary Fig. 13; Supplementary Table 9). The greatest numbers of losses are estimated to have occurred on the Pancrustacea branch, from 1.6-1.7 (DP) to 3.4-3.5 (PP) times more losses than on the Arthropoda branch. *DPULE* stands out as having a large number of intron gains, in agreement with results from the analysis of the *D. pulex* genome³⁴.

To compare lengths of introns among the 12-species, the base-pair lengths of all identified pairwise orthologous introns for the strict and relaxed sets between *ISCAP* and each of the other eleven species were collected from their corresponding General Feature Format files. Wilcoxon tests were performed in R (Development Core Team 2011) to evaluate statistical differences in length distributions between species (Supplementary Fig. 14; Supplementary Table 10). Examining the distributions of orthologous intron lengths shows that *ISCAP* introns are most similar to those of *MMUSC* and the other vertebrates, but more than an order of magnitude longer than introns shared with pancrustaceans.

Orthology. Examining groups of orthologs delineated across 33 arthropod species from www.OrthoDB.org²⁵ identified about a quarter of *I. scapularis* genes with recognizable orthologs in each of the representative species selected from six different arthropod lineages: Crustacea, *DPULE*, *Daphnia pulex*; Phthiraptera, *PHUMA*, *Pediculus humanus*; Hymenoptera, *NVITR*, *Nasonia vitripennis*; Coleoptera, *TCAST*, *Tribolium castaneum*; Lepidoptera, *BMORI*, *Bombyx mori*; and Diptera, *DMELA*, *Drosophila melanogaster* (Supplementary Fig. 9). A further quarter of *I. scapularis* orthologs are less broadly conserved across Arthropoda, with gene losses in other species resulting in more patchy phyletic distributions. Of the remaining genes with no identifiable orthology, about half exhibit homology (BLAST *e*-value <1*e*⁻⁰⁵) to genes in the other six representative species or to other *I. scapularis* genes.

Gene Duplications in Ixodes scapularis

Protein clustering of arthropod genes was performed for *I. scapularis* and ten other arthropods, using reciprocal BLASTP and OrthoMCL clustering methods. Proteome sources for *I. scapularis* and two additional chelicerate species, three Crustacea, five Insecta and two vertebrate outgroup species, as available in 2011, used for these analyses are listed in Supplementary Table 11. To address a deficit of non-insect arthropod gene sets, two transcriptome datasets were included in the analyses, one for the dog tick, *Dermacentor variabilis*, and a second for the shrimp, *Pandalus latirostris*. Similar genes, measured with reciprocal best BLASTP were clustered using standard methods outlined for OrthoMCL³⁵. OrthoMCL has practical advantages over related techniques in identifying orthology, and compares favorably in detecting true

orthology³⁶. In the present study, significance criteria were applied as per recommended options. Specifically, these criteria were a similarity *p*-value $\leq 1e^{-05}$, protein percent identity $\geq 40\%$, and MCL inflation of 1.5 (this affects granularity of clustering). Reciprocal best similarity pairs between species, and reciprocal better similarity pairs within species (*i.e.,* recently arisen paralogs, or "in-paralogs") were added to a similarity matrix. The matrix was normalized by species and subjected to Markov clustering (MCL) to generate orthology groups, including recent in-paralogs. One aspect of the OrthoMCL method that is important to the results is the fact that the program eliminates partial genes from clusters. Thus, short protein sequences that otherwise represent a family, were excluded.

Computational analyses were performed to evaluate the contribution of gene duplications to the complement of *I. scapularis* genes and to explore the possibility of one or more whole-genome duplication events in the evolution of this species. Putative duplicated sequences (paralog pairs) were identified in the *I. scapularis* transcriptome using a method based on that of³⁷. Briefly, 20,901 tentative consensus (TC) sequences, produced by alignment of 192,461 *I. scapularis* ESTs, were downloaded from the Dana Faber Cancer Institute – The Gene Index Project (compbio.dfci.harvard.edu/tgi) on February 19, 2008. The program *getorf*³⁸ was used to identify all possible open reading frames (ORFs) for each TC sequence. The longest ORF for each sequence was selected using *longorf* and Vmatch (http://www.vmatch.de) was used to perform an "all-against-all" nucleotide sequence comparison of each ORF translated in six reading frames. Sequence pairs with at least 75% nucleotide similarity within a predicted open reading frame were identified as candidate paralog pairs.

Predicted protein sequences for *I. scapularis* and other arthropods, as identified by OrthoMCL, are summarized in Supplementary Table 11. This table shows groups of genes clustered based on orthology groups (singletons or duplicates) and unique groups of paralogs. The number of orthology groups found in *I. scapularis* approaches that for insects, while the other two Chelicerate species, Tetranychus urticae and D. *variabilis*, have considerably fewer groups. The tabulation of missed orthology groups (OrMis1) is somewhat higher for the Chelicerata, with *I. scapularis* missing the fewest number of groups. This result may be either partly or entirely explained by shorter, partial genes that predominate in the datasets available for species of this clade. By comparing species protein sizes to the median size for each gene family, we found that I. scapularis has a -123 amino acid (aa) average difference, and 24% short outliers (2 standard deviations shorter), T. urticae has -25 aa, 10% short outliers, and D. variabilis has 75% short outliers (note that analyses were based on an artifactually incomplete transcriptome for this species). The Crustacea range from -80 aa to +10 aa average difference from the median, while the Insecta average above the median gene family size. While these results suggest that *I. scapularis* may be missing common gene families, the more likely interpretation is that the tick has fragmented, artifactually short genes, and the same may also be true for T. urticae.

Analyses of the *I. scapularis* transcriptome revealed no signatures of large-scale gene duplication or entire genome duplication events. Nucleotide sequence comparison of the longest ORFs corresponding to each of the 20,901 unique *I. scapularis* TCs identified 4,786 putative paralog pairs, suggesting that approximately 22% of *I. scapularis* transcripts are derived from tandemly duplicated genes. This percentage is consistent with estimates of paralog content in the genomes of other organisms. For

reference, paralogs are estimated to comprise approximately 10%, 15% and 20% of the total gene content of the yeast, *Sachharomyses cerevisiae*, *H. sapiens* and the roundworm, *C. elegans*, respectively³⁹.

An improved *I. scapularis* gene set assembled from RNAseq data is publicly available here: <u>http://arthropods.eugenes.org/EvidentialGene/arthropods/deertick/</u> A summary document summarizing this improved *I. scapularis* gene set and other arthropod gene sets is available here:

http://arthropods.eugenes.org/EvidentialGene/arthropods/Arthropod_Orthology_Compl eteness/

Analysis of Repetitive Sequences in the Ixodes scapularis Genome

Identification of Tandem Repeats (TRs) in a Small Insert *Ixodes scapularis* Genomic Library

The Tandem Repeats Finder software⁴⁰ was used to analyze DNA sequences obtained from end-sequencing of a small-insert *I. scapularis* gDNA library described previously⁴¹ (Supplementary Table 12). Only end-sequences with a sum total of TRs \geq 100 bp were included. TRs from both the 5' and 3' end sequences for each corresponding clone were summarized together.

Identification and Analysis of Repetitive DNA in the IscaW1 Assembly

Repeat sequences were identified with RECON¹² and RepeatScout¹¹, and collated into a library that was then used to mask the genome with RepeatMasker¹³. *Ixodes scapularis* Class I and II TEs were identified based on structural features and sequence similarities to other reported TEs (Supplementary Table 13), and are available for download from the TEfam database at: <u>http://tefam.biochem.vt.edu</u>.

Miniature Inverted Terminal Repeats (MITEs). The repeat library IxRepeatlib022908fsa was used to run FINDMITE⁴² (no requirement of direct repeat; terminal inverted repeat at 12 bp with no mismatch, and MITE length was set at 100-700 bp). The resulting candidates were used as guery to run TEalign, which is a pipeline that runs BLAST against the *I. scapularis* genome, retrieves matching copies plus flanking sequences, and performs clustal alignments. TEalign results were used to manually assess whether each element is a MITE and to classify them, on the basis of clear boundaries shared by multiple copies, terminal inverted repeats, and target site duplications. After obtaining the initial list of MITEs using methods described above, multiple rounds of self-BLAST were performed to remove redundancy using a cut-off of overall 80% identity. The non-redundant MITEs are used as a library to perform RepeatMasker (-div 20). Run RepeatMasker output was used to count MITE copy number and % genome occupancy (Supplementary Table 13). RepeatMakser may overestimate the copy number of elements as one copy may be broken into multiple pieces. Relatively stringent FINDMITE parameters were used for these analyses and it is likely there are additional MITEs await annotation.

LTR Retrotransposons. LTR retrotransposons were identified in the genome assembly and 45 BAC clones using both structure and homology-based approaches (Supplementary Figs. 7-8; Supplementary Table 13). LTR_STRUCT (Version 1.1)⁴³ allowed the identification at the structural level. For the homology-based approach, the strategy defined by⁴⁴ was employed with refinements⁴⁵. Briefly, the canonical

sequences of LTR retrotransposons from several insect genomes were recruited from Repbase⁴⁶ and Tefam. TBLASTN⁴⁷ was used to search for sequence homologous to the *pol* region of representative LTR retrotransposons in the *I. scapularis* genome. Those hits showing at least 30% amino acid identity over at least 80% of the length of the query sequence were subjected to further analyses to identify both LTRs of each element by means of BLAST2 sequences⁴⁸. This first part of the strategy allowed the identification of canonical sequences representing complete copies that are putatively active and/or consensus sequences corresponding to those constructed after alignment of at least three complete copies of each LTR retrotransposon element in the tick genome. BLASTN searches⁴⁷ were then performed using as query each one of the consensus/canonical sequences for each LTR retrotransposon element and providing a list of coordinates of putative each element in the genome. The final criterion used to define two copies as belong to the same LTR retrotransposon element was an identity of 80% or greater at the nucleotide level.

Non-LTR Retrotransposons. Non-LTR transposable elements were identified using a homology-based approach, named TESeeker⁴⁹. To classify the putative TEs obtained from TESeeker, BLASTN searches were performed with each putative TE and the top hit was identified. Next, the longest intact ORF was identified and analyzed using a "classifier." The classifier operates as follows: a library of reverse transcriptase conserved domains (CD)^{50, 51} for insect non-LTR retrotransposons was used to classify the ORFs, and, in turn, the original hits. First, the longest ORF of the putative TEs was aligned using MUSCLE²⁶ to the available CDs for the clade used to generate it. Next, the ORF was trimmed according to the average length of the CD for that particular clade. Only sequences that were at least 95% of the average length of the CD were trimmed and further analyzed. Next, the resulting putative non-LTR was aligned to the entire set of Class I CDs, again using MUSCLE, and an element was inferred from the maximum likelihood tree built from the previous multiple sequence alignment using PhyML⁵². A putative element was considered part of a clade if the branch length for that clade was less than 3.0 and the clade was the closest.

To obtain the representation within the genome, TBLASTN searches were performed using the putative TEs as queries, each of which represented an element within the clade. Hits were counted if they were at least 80% identical to the query and were at least 40% of the query length (shown as "Copy Number" in Supplementary Table 13). Next, to estimate the total genome percent and total base pairs, an assumption was made for each element having intact conserved domains, that the reverse transcriptase was full-length. Knowing the average length of an element for each clade enabled extrapolation of the amount of base pairs for a full-length element, and it is recognized that this may produce an overestimate.

Transposable Element Coding Sequences. A search of the *I. scapularis* genomic DNA for transposable element coding sequences was devised by (1) performing PSI-BLAST of the coding regions of representatives of the diverse families of transposable elements against the non-redundant database from NCBI; (2) constructing matrices from the alignments to be used by the tool RPS-BLAST; (3) retrieving genomic matches by RPS-BLAST against this database that were larger than 500 nucelotides (nt) and with an *e* value < $1e^{-15}$, with an additional 500 nt of flanking regions; (4) identifying terminal repeats (direct and inverted) and trimming the sequences accordingly (sequences without repeats were trimmed on their coding

sequences); (5) clustering the data set of 7,461 elements having 90% identity over 90% of the sequence length to obtain 5,522 clusters of elements, then (6) comparing the consensus sequences to several databases by BLAST, and finally (7) running a program to classify these elements. The data were displayed on a hyperlinked excel spreadsheet from which any element, as well as the corresponding database matches, can be retrieved. The results are summarized in Supplementary Table 14.

Several mariner and piggyBac elements were found containing a full length transposase without stop codon or frame shifts and having inverted repeats. The database is freely available from http://exon.niaid.nih.gov/transcriptome/l_scap_te/ls-te-web.xls and the FASTA file from http://exon.niaid.nih.gov/transcriptome/l_scap_te/ls-te-web.xls and the FASTA file from http://exon.niaid.nih.gov/transcriptome/l_scap_te/is-te-web.xls and the FASTA file from http://exon.niaid.nih.gov/transcriptome/l_scap_te/is-te-web.xls and the FASTA file from http://exon.niaid.nih.gov/transcriptome/l_scap_te/is-te-Web.xls and the FASTA file from http://exon.niaid.nih.gov/transcriptome/l_scap_te/is-te-JoseRibeiro-fasta.zip.

Repetitive elements comprise a dynamic component of the coding and noncoding regions of eukaryotic genomes^{53,54} (Supplementary Tables 13-14). In addition to the 38 well-represented LTR retrotransposon elements identified in the *lxodes* genome by means of a homology-based approach, we identified an extra set of 83 lower quality LTR retrotransposon elements in the *I. scapularis* genome assembly and 45 BAC clones by means of LTR STRUC software, most of which probably correspond to remants of ancient mobilizations. Only 20 out of these 83 elements had intact or wellconserved ORFs that permitted further classification (Supplementary Table 13). The I. scapularis genome has a moderate amount of non-LTR retrotransposons (Supplementary Table 13). Most of these non-LTRs are non-functional, and have frameshift mutations and indels. For those with a complete reverse transcriptase (RT) ORF, necessary for accurate classification, the CR1 clade contributed the most copies to the genome. The fact that a high number of distinct TE families were observed in the relatively young and evolutionarily close CR1 and L2 clades^{51,55} may be explained by the lack of a controlling mechanism within the *I. scapularis* genome, which allowed propagation and maintainance within the genome. Unlike other arthropods, the I. scapularis genome seems to lack a number of non-LTR clades such as R2, RTE, and LOA that are present in mosquitoes and *Drosophila*^{56,57,58,59}. It is possible that these elements may have been present in the *I. scapularis* genome but may have been controlled and degraded, thus preventing their identification. A large number of non-LTR retrotransposons could not be classified to clade due to a low level of conservation and degradation of their RT ORF. For the purpose of this analysis, these elements were grouped into the "unclassified non-LTRs" category.

Arrangement of DNA on the I. scapularis Chromosomes

Physical Mapping Using Fluorescence in situ hybridization (FISH)

Mitotic chromosomes were obtained from passage 31 of *I. scapularis* cell line ISE18^{60,61}. Demecolcine (0.1 µg/ml) was added to the culture for 6-8 h to stop mitosis in metaphase and increase yield of chromosomes spreads for FISH. ISE18 chromosome preparations were held at -20°C in fixative until use. C_ot -1 DNA was prepared for *I. scapularis* according to previous protocols⁶² and used for FISH. Forty-five clones, corresponding to those fully sequenced and assembled herein, were selected from the 10X BAC library and grown in overnight cultures prior to BAC DNA isolation, according to². FISH probes were prepared by labeling BAC DNA with either a biotin- or digoxigenin nick translation mix (Roche Molecular Biochemicals, Indianapolis, IN).

Unincorporated nucleotides were removed from the samples with the QIAquick Nucleotide Removal Kit (Qiagen, Valencia, CA). A small insert (approximately 4 kb) gDNA clone library was prepared from sheared *I. scapularis* egg DNA (Wikel strain) using the TOPO PCR 4.0 cloning vector (Invitrogen, Carlsbad, CA)⁴¹. End-sequencing of a 384-well plate from this library was conducted at the Purdue University Genomics Core Facility, and the sequences are available at GenBank (Accession numbers GU318418–GU319109). Clones with end sequences comprised of at least 100 bp of tandemly-repetitive DNA, as identified with Tandem Repeats Finder software⁴⁰, were selected for FISH experiments (Supplementary Table 12). Clones were grown in 5 ml of LB medium + antibiotic, and plasmid DNA was extracted using the QIAprep spin miniprep kit (Qiagen, Valencia, CA). Plasmid DNA was labeled and used for FISH according to published methods⁴¹. Probes based on the (TTAGG)n motif used to localize the telomeres were also constructed and the protocol for FISH and imaging processes was carried out as described previously^{2,41}.

FISH using *I. scapularis* C_o*t*-1 DNA showed strong hybridization signals to the termini of nearly all chromosomes prepared from ISE18 cells (Fig. 2a). This pattern mirrored that observed with FISH probes for the ISR-2 tandem repeat family (95-99 bp repeat units) and high molecular weight *Hpa*II-insensitive gDNA of *I. scapularis*, also believed to contain these same tandem repeats⁴¹. FISH using clones containing tandem repeats other than the ISR1-3 tandem repeat families were tested and these experiments showed several examples of tandem repeats that had prominent hybridization patterns dispersed among the presumed euchromatic regions of the chromosomes (Fig. 2c; Supplementary Table 12).

A total of 45 clones from the 10X BAC library, representing those that were completely sequenced and assembled, were hybridized to ISE18 chromosomes (Supplementary Table 15). Fig. 2d-f depicts a representative example of these experiments, where a non-specific hybridization pattern was observed that is thought to reflect repeats dispersed among euchromatic regions of the chromosomes. Note that the terminal regions at one end of nearly all chromosomes are devoid of a hybridization signal to the representative BAC clone shown; this is the area to which the C_0t-1 DNA-fractionated DNA hybridized (as well as the ISR-2 repeats and high molecular weight *Hpa*II-insensitive gDNA of *I. scapularis*) and is thought to represent the centromere. Only three BAC clone hybridizations resulted in specific hybridization signals; these patterns matched that of hybridizations with markers for either the NORs or the ISR-3 tandem repeat family⁴¹.

Analysis of the *I. scapularis* genome for signature telomeric sequences resulted in the discovery of a mixture of (TTAGG)n and (TTAGGG)n motifs in short stretches interrupted by other DNA sequences. This information agreed with previous findings⁶³, where the (TTAGG)n telomeric motif was characterized by stretches <3 kb in the related tick, *Ixodes ricinus*. This feature of *Ixodes* species is in contrast with that reported in other arthropods typically having (TTAGG)n motifs in stretches of ~20 kb⁶³. FISH hybridization of a (TTAGG)n probe to *I. scapularis* chromosomes showed a "two-spot" hybridization pattern at the termini of all sister chromatids of mitotic chromosomes (Fig. 2b)⁴¹. The position of the telomeric repeats relative to the nearly adjacent centromeric heterochromatin supports a telocentric (or acrocentric) chromosome structure, consistent with the original description of ISE18 chromosomes⁶¹.
An ideogram (Fig. 2g) of *I. scapularis* chromosomes (2N=28 with an XX, XY sex determination system) was constructed based on the relative hybridization patterns of several tandem repeats to mitotic chromosomes prepared from cell line ISE18^{41,61}. These repeats include a telomeric (TTAGG)n motif, the nucleolar organizing regions (NORs), and major repeat families ISR-1, ISR-2a, ISR-2b, and ISR-3⁴¹. Physical mapping of these markers provided a basis to distinguish individual as well as several different groups of chromosomes. Those that can be readily distinguished include the sex chromosomes X (the largest) and Y (the smallest), as well as three pairs of chromosomes that hybridize to only ISR-1, ISR-2a, and ISR-2a + ISR-3, respectively. Also, an additional pair of chromosomes can be identified based on hybridization to ISR-2a over approximately half the entire chromosome. The other chromosomes in the karyotype were grouped according to their hybridization signals to these markers, but could not be reliably paired or distinguished from similar chromosomes. These groups include those that show signals for ISR-2a + NOR (4 chromosomes), ISR-1+ISR2a (4 chromosomes), and the remaining chromosomes that hybridize only to ISR-2a (10 chromosomes), respectively. This ideogram representing the current *I. scapularis* physical map serves as an anchor to position additional FISH markers as they are further developed.

Ixodes scapularis Genes and Gene Families

The Ixodes scapularis Sialome

The saliva of blood sucking arthropods consists of a complex mixture of peptidic and non-peptidic compounds that disarm their hosts' hemostasis, inflammation and immunity, thus helping blood feeding. Antimicrobial compounds are also commonly found, and these may protect the ingested meal from bacterial overgrowth, as well as protecting the feeding lesion in the case of hard ticks. While hematophagous insects have near one hundred salivary polypeptides identified from transcriptome analysis, saliva of hard ticks may contain several hundred polypeptides. Comparative transcriptome analysis of related arthropods indicates that salivary gland gene products are evolving at a fast pace, perhaps due to the immune pressure imposed by their hosts. Indeed, while salivary peptides can belong to ubiquitous protein families, unique salivary protein families are found at a genus and even subgenus level. These unique families probably derive from a gene common to the family or order ancestor but rendered unrecognizable by divergent evolution^{64,65}. Gene duplications are commonly associated with salivary genes, even within insects having relatively compact genomes, such as the mosquito An. gambiae (~278 Mb, three pairs of chromosomes)⁵⁴, where the uniquely Nematoceran D7 family consists of eight genes, and the uniquely anopheline G1 protein family has six genes⁶⁶. In insects with larger genomes, or perhaps more importantly, larger number of chromosomes, such as the kissing bug *Rhodnius prolixus* (~600 Mb, 11 pairs of chromosomes)⁶⁷, dozens of gene products coding for salivary lipocalins have been described, and are possibly derived from both gene duplication and genome duplication events 68,69. In *I. scapularis* (~2.1 Gb, 14 chromosome pairs) 1,61, a large expansion of the lipocalin family (associated with anti-complement and antiinflammatory activities), as well as proteins containing Kunitz domains (associated with serine protease inhibitory activity as well as channel blockers, functioning as anticlotting and possibly as anesthetics or vasodilators)^{70,71,72,73} were identified, in addition

to other gene expansions for numerous unique protein families^{74,75}. Sialotranscriptome analysis based on ~8,000 ESTs from nymphs and adults at different stages of feeding led to the identification of 26 different groups of proteins (not including housekeeping proteins)⁷⁴. Of these 26 families, 16 are either unique to ticks, or found only in the genus *lxodes*, based on available sequence data⁶⁴. When the deducted protein sequences were compared within a family, and a smaller than 90% sequence identity was used as a threshold level, 197 sequences were identified as possibly derived from individual genes (Supplementary Table 16); more closely related sequences are possible alleles or may derive from conserved gene duplication events. The large amounts of gene duplicates may provide a mechanism for antigenic variation, by differential expression of genes during the feeding process, as observed for *l. scapularis* cystatins⁷⁶, while polymorphism may be maintained by frequency dependent selection of antigenic epitopes⁷⁴.

The availability of the draft genome of *I. scapularis* allows for verification of these salivary gene expansions and provides a platform for determining temporal and tissue specificity of these genes. In particular, it provides evidence for the large expansion of proteins with Kunitz domains, as well as for the apparent lack of genomic evidence for the expansion of unique protein families, such as the WC-10 family, or the anti-complement ISAC family.

Kunitz-domain family. Seventy-four of the 20,452 annotated tick proteins possess one or more Kunitz domains (Supplementary Table 16), making the tick genome the richest source of proteins with this domain. Only 25 of the 46,704 human proteins, or 33 of the 26,255 bovine proteins have this signature as revealed by the KU Smart signature⁷⁷ (Ensembl Proteome sets obtained at 7/31/2008). For comparison with insect proteomes the mosquitoes Aedes aegypti, Culex guinguefasciatus and An. gambiae have five, eight and four proteins respectively, with Kunitz domains (mosquito proteomes obtained from VectorBase in Dec/2009). Interestingly, no Kunitz domaincontaining proteins were found in sialotranscriptomes of these three mosquitoes, but they occur in the sialomes of *Culicoides*^{78,79} and *Simulium*⁸⁰, indicating a case of convergent evolution in the salivary recruitment of genes to assist blood feeding. Two I. scapularis proteins, Ixolaris and Penthalaris, containing two and five Kunitz domains, respectively, have been functionally characterized as potent inhibitors of the extrinsic pathway of blood clotting^{81,82}. It is possible that this large family contain also channel blockers with toxic or vasodilatory properties, as recently identified for a Kunitz protein from a metastriate tick⁷³.

WC-10 and Isac families. The WC-10 protein family codes for mature proteins with masses near 10 kDa and a tryptophan-cysteine dipeptide motif at their carboxyterminus. Their function is unknown. Twenty-one members of the WC-10 family were identified in previous sialotranscriptome studies, but only four such proteins are found in the deducted tick proteome (Supplementary Table 16). Inspection of shotgun sequences indicates that some additional members of this family may be found, but not all. Similarly, four members of the Isac family of anticomplement proteins have been described, but only one protein of this family is found in the deducted proteome, coding for a protein that is only 65% identical to previously reported anticomplement proteins. Shotgun sequences, however, are found that code for three of the Isac proteins, indicating these may not have assembled into the genomic scaffolds. On the other hand, tick salivary proteins may be under strong evolutionary pressure imposed by their

host's immunity and thus may differ among geographical strains, which differed between the salivary EST and genome sequencing sets.

Ixodes scapularis Innate Immunity/Tick-Pathogen Interactions

Computational analysis to identify putative immune-related genes within the *I. scapularis* genome was performed using information available in GenBank⁸³, VectorBase^{84,85}, Ensembl⁸⁶, and OrthoDB²⁵. An extensive BLAST search (default parameters) was performed to identify sequences sharing homology with previously identified members from *D. melanogaster*, *An. gambiae* and *Ae. aegypti*. When multiple similar sequences were available for BLAST search, the longest isoform was used as a query. Sequences were then analyzed within Ensembl, OrthoDB and VectorBase to address gene prediction as orthologues and/or paralogues. Proteins sequences were also retrieved based on lists of significant BLASTp hits, and analyzed using Pfam⁸⁷ and PROSITE⁸⁸ for conserved domain identification. The results illustrated here (Supplementary Figs. 22-23) correspond to sequences obtained as orthologues for *I. scapularis* following subsequent manual curation. Retrieved *I. scapularis* sequences were further analyzed using PROSITE and the Conserved Domain Database for JAK-STAT domain identification⁸⁹.

Toll pathway. Our in silico approach identified four protein sequences annotated as peptidoglycan recognition receptors (PGRPs) (Supplementary Table 17; Supplementary Fig. 22a). However, our group did not assign a function to these genes, as PGRP isoforms may be categorized either in the Toll or the IMD pathways. We did not identify any Gram-negative binding protein (GNBPs). All bioinformatics comparisons using Drosophila GNBP1 or 3 as a query against the I. scapularis genome yield high evalues and no apparent functional correlation. Spaetzle processing enzyme (SPE) is a CLIP domain-containing serine protease. Multiple sequences could be found carrying CLIP and trypsin-like serine protease domains in the *I. scapularis* genome. However, their precise role is unclear. Modular serine protease (ModSP) and Grass leads to SPE cleavage. ModSP carries four low-density lipoprotein-receptor class A domains and a complement control protein (CCP) module. We did not identify any sequences carrying both domains. Grass, which shows a trypsin-like serine protease characteristic domain, shares similarity with several secreted salivary gland peptides (*e*-values $< 1e^{-45}$). However, further studies are needed to properly identify a precise Grass and persephone counterpart in *I. scapularis*. We identified ten Toll sequences in the *I.* scapularis genome. Five of these sequences encode for either the characteristic Toll/Interleukin-1 receptor (TIR) or Leucine Rich Repeats (LRR) domains, but not both. An *I. scapularis* homologue of the adaptor molecule myd88 was uncovered, as well as homologues containing Death domains (DD) characteristic of the Pelle-Tube complex. We have also identified an embryonic polarity Dorsal homologue and a Cactus-like inhibitor of IkB carrying ankyrin repeats. Similar to what has been described in mosquitoes^{90,91} we did not observe any homologue of the NF- κ B factor dorsal-related immunity factor (DIF).

IMD pathway. Our *in silico* approach failed to identify a significant number of molecules involved in the IMD pathway (Supplementary Table 17; Supplementary Fig. 22b). Diaminopimelic (DAP)-type peptidocglycan (PGN) recognition leads to intracellular signaling through the adaptor molecule IMD, a DD-containing adaptor molecule that interacts with the PGRP receptors and triggers association of Fas-associated protein

with DD (FADD). We did not observe any IMD or FADD homologues in the *I. scapularis* genome. These results can be explained by either a high degree of gene dissimilarity between species (*i.e.*, IMD was also not identified in the louse⁹² and pea aphid genome⁹³), or these sequences were not represented during *I. scapularis* genome assembly). Furthermore, the large evolutionary distance between ticks and dipteran insects made it challenging to uncover genes using homology-based methods. By searching the *I. scapularis* genome for DREDD-like caspases, we uncovered six caspases, four of which are annotated as "caspases" in VectorBase and Genbank. Two other sequences were also identified but are annotated as caspase-2 and 3. The cleavage of IMD exposes an inhibitor of apoptosis binding motif to allow recruitment of inhibitor of apoptosis proteins 2 (IAP2). We uncovered an IAP2 homolog in *I. scapularis*. In Drosophila, DIAP2 interacts with IMD and leads to IMD K63-ubiguitination. This ubiquitination involves Uev1a, Ubc13 (also known as Bendless) and Ubc5, or Effete. Our analysis indicated that these enzymes are highly conversed in the *I. scapularis* genome. Polyubiquitination of IMD seems to be essential for recruitment activation of the downstream Transforming growth factor β -activated kinase 1 (TAK1) and the IkB kinase (IKK) complex, as well as for binding of TAB2 (TAK1-binding protein 2). We identified *I. scapularis* homologues of TAK1, TAB2 and the IKK complex. Once IKK complex is activated by TAK1, it phosphorylates relish, a bipartite NF-kB protein that has both a Rel homology domain and $I_{\kappa}B$ -like ankyrin repeats. A relish orthologue was successfully uncovered in the *I. scapularis* genome. Similarly, the negative regulators Plenty of SH3 domains (POSH), Caspar and Caudal were also observed in the I. scapularis. Recently, akirins have emerged as another nuclear factor regulating immune responses in parallel with NF-kB in mice and in the context of the IMD pathway in Drosophila⁹⁴. We have also identified an akirin homologue in *I. scapularis* – subolesin⁹⁵.

JAK/STAT. Candidate orthologues for all three core members of the JAK-STAT pathway (*e.g.*, receptor, JAK kinase, and STAT activator) were identified along with putative orthologues for the following regulators: suppressor of cytokine signaling (SOCS) and protein inhibitor of activated STAT (PIAS) (Supplementary Table 17; Supplementary Fig. 23).

RNAi pathway. The RNAi pathway is found in many eukaryotes^{96,97}. Generally, the RNAi pathway can be categorized in two main signaling cascades: the siRNA (short-interfering) and the miRNA (micro) networks. The siRNA pathway is activated in response to endogenous or exogenous dsRNAs (double stranded) and has been associated with defense against viruses and transposable elements. Conversely, the miRNA cascade is only activated in response to endogenous dsRNA and differences in target mRNA complementarity may affect the final post-transcriptional gene silencing (*i.e.*, mRNA cleavage or translation arrest)^{98,99,100,101}. In the *Drosophila* siRNA pathway, the RNaseIII-like Dicer-2 enzyme cleaves a long dsRNA into a small 20-25bp dsRNA molecule. R2D2, a RNA-binding protein, interacts with Dicer-2 to promote loading of a now single-stranded siRNA into a RNA-inducible complex (RISC). A major component of RISC is the RNase-H enzyme Argonaute, which degrades the target mRNA, complementary to the sequence encoded by the antisense siRNA, and promotes gene silencing. We have identified two Dicer homologues in the I. scapularis genome (Supplementary Fig. 23b). We did not identify a homologue for R2D2. However, five sequences sharing homology with Argonaute were discovered in the genome. Recent studies have indicated the RNAi antiviral response is extremely complex in

invertebrates, and an increasing number of molecules have been implicated in this pathway, controlling production of a range of virus-derived small RNAs. A list of other *I. scapularis* homologues is provided in Supplementary Table 17.

Other immune-related genes. We identified homologues of several immunerelated gene in the *I. scapularis* genome (Supplementary Table 17) but the precise pathway controlling their expression cannot be predicted solely by comparative genomics. Differential expression of antimicrobial peptides (AMPs) after infection, particularly, corresponds to a key component of immunity in Drosophila and mosquitoes. While Drosophila has seven AMP families, each one having several members, we identified only defensins and defensin-like molecules in *I. scapularis*. In mosquitoes, families of defensins and cecropins are the most predominant AMPs and they are represented by multiple members¹⁰². In a more extreme case, extensive searches in the pea aphid genome failed to identify any AMPs⁹³. Our bioinformatics analysis confirmed the presence of genes previously annotated as AMPs: defensin, scapularisin, microplusin and two unnamed AMPs. Based on a more robust computational approach, a recent publication has suggested an expansion of the defensin family in *I. scapularis* genome¹⁰³. We were unable to find in the *I. scapularis* genome any gene sequences sharing similarity with attacin, diptericin, drosocin, drosomycin or cecropin. Other important homologues uncovered include the enzymes Dual and NADPH oxidases, which control production of reactive oxygen species, and lysozymes, fibrinogen-related and thio-ester containing proteins, all of which contribute to the immunological process upon microbial infection.

Ixodes scapularis Mevalonate-Farnesal Pathway Genes

A BLASTX and BLASTN search of the *I. scapularis* genome for the insect enzymes involved in the synthesis of juvenile hormone (JH) III revealed the presence of all but two of the enzymes involved in the farnesyl-PP pathway (Supplementary Fig. 18; Supplementary Table 18). The genes found were acetoacetyl-CoA thiolase, hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase and farnesyl diphosphate synthase. Shown are the *I. scapularis* supercontig numbers and gene accession numbers. The top insect BLAST results from these I. scapularis messages had e-values ranging from $1e^{44}$ to 0.0. Isopentenyl diphosphate isomerase and geranyl diphosphate synthase were not found. Transcripts for all but two of the enzymes involved in this pathway have been found in the adult synganglion transcriptomes of the hard ticks, *I. scapularis* and the American dog tick, *D. variabilis*, and only one missing from the soft tick, Ornithodoros turicata. In the insect JH III branch (Supplementary Fig. 18), only two enzymes were found in the *I. scapularis* genome, farnesol oxidase and methyl transferase (MT), the former also found in the *I. scapularis* and *D. variabilis* synganglion transcriptomes and MT in all three synganlion transcriptomes. The farnesol oxidase transcript has the classic SDR family motif and shares 60% identity with the pollinating wasp, Ceratosolen solmsi marchali (e-value, 1e⁻ ⁹⁹). MT with a top BLAST hit for JH MT from the insect, Schistocerca gregaria (e-value, 4e⁻¹⁸) was found (Supplementary Table 18). Whether this enzyme functions as a JH MT in ticks is not known. There has been a large expansion of the MT gene family (Supplementary Fig. 19). It appears the MTs in *I. scapularis* examined so far do not have a JH binding domain. Farnesyl diphosphate pyrophosphatase, farnesal

dehydrogenase and JH epoxidase were not found. JH epoxidase in insects in the P450 family CYP15A1 is responsible for the addition of the C10-11 epoxide to methyl farnesoate to produce JH III; this family of P450s was not identified in the *I. scapularis* genome.

Biochemical studies of tissue extracts further support the hypothesis that ticks lack JH. In published work¹⁰⁴, radio HPLC was unable to detect methyl farnesoate, JH I, JH II, JH III, or JH III bisepoxide in different tissues, including the synganglion of the soft tick (Ornithodoros parkeri) and the hard tick (D. variabilis) at different stages of development; the lower detection limit for JH and methyl farnesoate in these studies in the synganglion was 1.3 fmol for 10-tick equivalents in a 3 hour incubation. In the same study, no JH I, JH II, JH III, JH III bisepoxide, or methyl farnesoate was detected in adult hemolymph at the time of egg development in the same ticks as determined by EI GC-MS; the MS sensitivity was 1.6 pg in the scan mode from 40 to 300 AMU and 750 fg in the SIM mode for fragments at m/z 76 and 225. The same study failed to identify any lipid soluble material from whole body extracts of eggs, larvae, nymphs and adults of D. variabilis that would result in the retention of larval characters in the Galleria moth bioassay. The lower detection limits for eggs, larvae and nymphs were 28 pg for JH I and JH II and 980 pg JH III per g of tick tissue. For adults, the detection limits were 116 pg for JH I and JH II and 4069 pg JH III per g tissue. To date, JH has only been found in insects and only methyl farnesoate in the sister group to insects, the Crustacea. Finally, published work¹⁰⁵ does not support the hypothesis that ticks regulate egg development via JH¹⁰⁶ in *D. variabilis*; ecdysteroids initiated the synthesis of vitellogenin in *D.* variabilis but not JH III. Most evidence to date suggests that JH is not produced in ticks and that JH is not involved in tick metamorphosis and reproduction. The discovery of most of the farnesyl-PP (mevalonate) pathway and two enzymes, farnesol oxidase and methyl transferase, in the farnesal (insect JH) branch in both the *I. scapularis* geneome and adult syngnalion transcriptomes studied suggest these pathways are involved in reproduction at least and warrants future research in the potential role of these enzymes in the endocrinology and regulation of tick development.

Ixodes scapularis Heme Synthesis and Storage Protein Genes

To identify genes coding for enzymes in the heme pathway, heme biosynthesis genes from a range of animals, fungi and prokaryotes, including multiple *Rickettsia* species were used in TBLASTX similarity searches of the *I. scapularis* assembly (ABJB01000000) and trace files and the REIS assembly¹⁰. Genes were manually annotated using Artemis software (v.11, Sanger Wellcome Trust) (Supplementary Table 20). To provide further support for functional predictions additional curation of each gene model was facilitated based on E.C. number. Putative hemelipoglyco-carrier protein (CP) genes were identified via TBLASTN search of the *I. scapularis* ISCW1 assembly at VectorBase using sequences from the tick, *D. variabilis*¹⁰⁷ and other invertebrates (Supplementary Table 22). Gene models were manually annotated using Artemis software v.8¹⁰⁸ and corresponding accession numbers were identified, where possible.

Adaptation to hematophagy has developed multiple times within the Arthropoda and even within a particular group such as the Diptera^{109,110}. Despite the abundance of heme from the host hemoglobin, triatomine bugs (Order Hemiptera: Family Triatominae) apparently have the ability to synthesize heme as evident by the functional expression

of delta-aminolevulinic acid dehydratase, the rate limiting enzyme in the heme biosynthetic pathway¹¹¹. However, investigators were unable to demonstrate heme biosynthesis in the southern cattle tick, *Rhipicephalus microplus*¹¹¹. Several steps in the heme biosynthesis pathway were found in the *I. scapularis* genome (Supplementary Fig. 15; Supplementary Table 20). In the light of these findings, the question of the role of heme biosynthesis enzymes in the processing of host blood versus *de novo* heme synthesis should be re-examined. In addition, the importance of these processes compared to heme sequestration by unique heme-binding proteins in ticks as described below, requires further evaluation.

An important adaptation that co-evolved with blood feeding is heme sequestration by heme-binding proteins along with heme excretion, both of which prevent oxidative stress and tissue damage. Free heme results in reactive oxygen that leads to lipid peroxidation and cytotoxicity¹¹². Heme is also important as a prosthetic group for respiration, enzymatic detoxification and oxygen transport¹¹³. In *Rhodnius prolixus*, host hemoglobin is digested to free heme which is then absorbed into the hemolymph and sequestered by a 15-kDa heme-binding protein (RHBP), reducing lipid peroxidation^{114,115}. Other heme-binding proteins present in *R. prolixus* include nitrophorins for nitric oxide transport¹¹⁶ and which have been implicated in host vasodilation during blood feeding. This suggests multiple uses for heme and heme binding proteins in blood feeding insects and possibly in other organisms like ticks.

Two storage proteins are found in tick hemolymph, a heme lipocarrier protein (CP) and the yolk protein (Vg), which share a common evolutionary origin^{107,117}. These proteins have similar structural motifs that include the LPD_N, the C-terminus vWD, the unknown function DUF1943 domain, cleavage sites (RXXR) and the GL/ICG domain (Supplementary Fig. 16). CP in hard ticks is found in both sexes and in all developmental stages and tissues studied. All CPs studied are composed of two subunits, 92 and ~100 kDa. Research suggests that the main source of CP mRNA in *D. variabilis* is the fat body and the salivary gland¹⁰⁷. They also showed that host attachment and blood feeding initiated CP expression in virgin females while mating and feeding to repletion reduced the level of CP protein. Potentially, 10 CPs were found in the genome of *I. scapularis* (Supplementary Table 22), although all but one are incomplete gene models. This is by the far the greatest number of CPs found from a single tick species. It is not clear whether these genes are expressed, and if so, the importance of their protein products in tick physiology.

The regulation of full-length yolk protein messages was studied in the hard tick, *D. variabilis*. Studies showed that DvVg1 and DvVg2 are exclusively expressed in females after mating and feeding to repletion and are up-regulated by ecdysteroids not JH III. Both Vgs are not expressed in males (fed and unfed) or females before mating and feeding to repletion. The main source for DvVg1 and DvVg2 is the fat body and the gut cells. In the soft tick, *O. moubata*, studies have shown that the source of OmVg is the fat body and the gut and is regulated by ecdysteroids similar to the case in *D. variabilis*¹¹⁸. The same study observed a major difference between *D. variabilis* and *O. moubata*, where in the latter, Vg expression was initiated by engorgement in both virgin and mated females but increased further in mated females.

Multiple incomplete CP gene models and two Vg genes were identified in the genome of *I. scapularis* (Supplementary Table 22). The alignment of these sequences with homologous sequences from *D. variabilis* is shown in Supplementary Fig. 16. The

conceptual CP proteins are similar in amino acid length and have the characteristic domains (LPD_N, DUF1943, vWD, RXXR and GLCG). The N-terminus sequence for the small subunit is FEVGKEYVY which is 100% identical to that determined for the *R. microplus* CP¹¹⁹. This sequence is directly downstream from the secretion signal and marks the start of the LPD_N domain. The N-terminus of the larger subunit is DASAKERKEIED which has high sequence similarity to the *R. microplus* CP¹¹⁹ and exists directly downstream from the only predicted cleavage site. The tick Vg genes contain three domains (LPD_N, DUF1943 and vWD). Additionally, the RXXR cleavage site may be absent, as is the case for the *I. scapularis* Vgs, or variable in number and locations as observed for Vgs from other tick species. In ticks, Vg proteins typically consist of several subunits with variable N-terminus sequences while CPs consist of two subunits produced by only one RXXR cleavage site. We also found that all tick Vgs have an amino acid spacer (10-20 amino acids) between the secretion signal and the LPD N which does not exist in CPs. The high level of sequence similarity observed between tick CPs and Vgs complicates the characterization of these molecules.

Ixodes scapularis Blood Digestion Genes

Unlike most other blood feeding arthropods, ticks digest the protein contents of a blood meal intracellularly in the epithelial cells of the midgut. Hemoglobin liberated from hemolyzed erythrocytes binds to clathrin-coated pits on the luminal sides of the midgut epithelial cells and is internalized by pinocytosis into large (3-12 µm) endosomes (Fig 1D). Once inside the epithelial cells, the endosomes fuse with lysosomes to form specialized digestive vesicles. All hemoglobin digestion occurs intracellularly in these digestive vesicles and is carried out by a cascade of proteolytic enzymes, most functioning at acidic pH (3.5-4.5 pH, the pH optimum of the digestive vesicles). These enzymes selectively target different sites on the globin moieties, ending in dipeptides and free amino acids. The enzymatic steps previously described for *Ixodes ricinus*¹²⁰ are believed to be the same or similar in *I. scapularis*, since the same enzymes occur in the *I. scapularis* genome (Supplementary Table 21). Similar hemoglobinolytic enzymes have been found in other tick species^{121,122}, indicating that this novel mode of hemoglobin digestion is widespread throughout the Ixodida.

Digestion of the globin moieties is initiated by the aspartic protease cathepsin D (the major hemoglobinase), assisted by the cysteine class endopeptidases cathepsin L and legumain. The action of these enzymes liberates heme and large (approximately 8 – 11 kDa) peptides peptide fragments. In the next stage of the process, the large peptides are digested further by the cysteine amino cathepsin B and the cysteine carboxypeptidase cathepsin L, cleaving them further into smaller fragments, ~5-7 kDa. The third stage in the digestive process is carried by cathepsin C, assisted by Cathepsin B, resulting in small (approximately 3-5 kDa) peptides. The final stage in the process is completed by serine carboxpeptidases (SCP) and leucine aminopeptidases (LAP) resulting in dipeptides and free amino acids. The latter are transcytosed from the digestive cells into hemolymph. Heme liberated from the digestion of the parent molecule is transported from the digestive vesicles by heme-binding proteins to hemosomes, unique storage vesicles where the heme is detoxified by forming unique hematin-like aggregates¹²³.

Hemoglobinolysis in ticks shows greater similarity to the enzymatic pathway in endoparasitic flatworms and nematodes than to blood feeding insects, although ticks are unique in carrying it out intracellularly within digestive vesicles of the midgut epithelium^{120,124,125}.

Ixodes scapularis Metabolic Detoxification Genes

Ixodes scapularis cytochrome P450 (CYP450) annotations (Supplementary Table 23) were produced from the JCVI version 0.5 (133 sequence pieces) and VectorBase version 0.5 (195 sequence pieces) gene model predictions. BLAST comparison of these two gene model sets was used to produce a set of 223 unique CYP450 sequences. DNA sequence for each P450 was recovered from the WGS section of NCBI and each gene was assembled manually based on comparison to the closest matches from other tick, mite and insect CYP450 sequences. EST searches were also used to confirm intron-exon boundaries and to extend partial gene models. Phylogenetic trees were constructed with the most closely related sequences to assign CYP names based on established CYP nomenclature. Comparison of Ixodes P450s to Tetranychus urticae showed only Halloween gene families CYP302, CYP307, CYP314, CYP315 and the 26-hydroxylase that degrades ecdysteroids CYP18 are conserved (Supplementary Fig. 17). CYP306 is missing in both species. Putative carboxylesterase (EC 3.1) and acetylcholinesterase (AChE)-like (EC. 3.1.1.7/3.1.1.8) genes were identified in the I. scapularis genome sequence by TBLASTN search of scaffolds at NCBI (Supplementary Table 24). Gene models were manually annotated using Artemis v.8¹⁰⁸ and the putative function of conceptual protein sequences was predicted based on protein sequence homology to invertebrate and vertebrate protein sequences. To identify divergent members of the carboxylesterase gene family, reciprocal TBLASTN searches were conducted against the ISCW1.1 assembly using the predicted *I*. scapularis carboylesterase and AChE-like protein sequences.

Two hundred and six CYP genes and six pseudogenes were identified in the *I.scapularis* genome (Supplementary Table 23). Ninety-one additional fragments were also identified that were too short to name; some of these fragments may represent pseudogenes. This finding represents the largest number of CYP genes identified in any animal to date. The *I. scapularis* CYP18, CYP302, CYP307, CYP314 and CYP315 gene products may be involved in ecdysteroid metabolism, based on the function of orthologous genes in other invertebrates. The function of the remaining *I. scapularis* P450s is unclear. By comparison, the body louse, *P. humanus*, which like *I. scapularis* is also exclusively hematophagous, has only 36 CYP genes. It is unlikely that the large number of *I. scapularis* P450 genes reflects a need to detoxify blood components such as heme. One possible explanation for the expanded number of CYP450s in *I. scapularis* is exposure to plant toxins secreted as oils by plant trichomes. *Ixodes scapularis* spends much of its life cycle off host and may be exposed to a wide variety of plant chemicals, especially as it exploits vegetation in order to locate and transfer to its animal hosts.

A total of 75 putative carboxylesterase/AChE-like genes, 11 putative pyrethroid metabolizing carboxylesterases with sequence similarity to the *R. microplus* CzEST9 gene which is associated with pyrethroid resistance in the cattle tick¹²⁶, and two putative juvenile hormone esterases were identified in the *I. scapularis* assembly (Supplementary Table 24). Analyses suggest that the majority of these gene models

represent complete or near complete CDS. However, some sequences listed in Supplementary Table 24 likely represent one or more exons of incomplete gene models. Further annotation, coupled with wet lab analyses will ultimately resolve the final number of carboxylesterase-like genes in the tick. Of note, many members of the carboxylesterase-like gene family are located on the same scaffold, with two extreme cases being scaffolds DS818569 and DS921995, both of which contain ten putative carboxylesterase gene models. This finding suggests significant tandem duplications, a phenomenon commonly associated with this gene family.

Ixodes scapularis Neuropeptide Genes

Identification of the neuropeptide genes was based on Blast searches utilizing gene sequences available in VectorBase. Where possible, additional evidence for some of these neuropeptides derived from transcriptomes; immunohistochemistry data for other ixodid tick species was also included, further supporting their functional assignment.

A search of the *l. scapularis* genome for neuropeptides and neuropeptide receptors of the classical invertebrate neuroendocrine system revealed the presence of at least 39 canonical neuropeptide genes (Supplementary Tables 25-28). Twelve additional novel putative neuropeptide genes were identified from their tandem repeats with conserved C-terminal sequences including the canonical sequences for amidation and dibasic (or monobasic) cleavage signals (Supplementary Table 25). Canonical predicted neuropeptides include multiple allatostatins, myoinhibitory peptides, allatotropin, bursicon α , bursicon β , crustacean cardioactive peptide, CCH, corazonin, diuretic hormone, FMRFamides, eclosion hormone, glycoprotein hormone α/β , insulinlike peptide, neuroparsin (insulin-like growth factor binding protein or IGFBP), iontransport peptide, orcokinin, sulfakinin, prothoracicotropic hormone (PTTH)-like hormone, proctolin, pyrokinins, periviscerokinin, SIFamide and tachykinin.

Ticks are chelicerates, a subphylum that evolved more than 500 million years ago¹²⁷, and are evolutionarily distinct from the insects and crustacea. Ixodid ticks are unique among blood feeding arthropods in their ability to feed for long periods, create additional cuticle to accommodate enormous blood meals, and remove excess blood meal water via their salivary glands. Blood feeding also stimulates development and reproductive functions. Here we review genes for neuropeptides believed essential to these processes. Among the most abundant of these neurohormones is allatostatin (Type A). The gene ISCW022937, a likely ortholog of the cockroach allatostatin precursor (AAC72892), was found in the tick genome database, but its function has not been determined. Three copies of the gene for an allatostatin receptor were also identified. Allatotropin and allatostatins regulate production of juvenile hormone (JH) in insects and may have additional functions as well; however, there is no conclusive evidence of JH in ticks¹⁰⁴. Consequently, the function of these peptide hormones and/or their receptors in ticks is enigmatic. Evidence of allatostatin mRNA was found in the synganglion of the dog tick, *D. variabilis*¹²⁸ and *I. scapularis*¹²⁹, suggesting that this hormone and its receptor may be conserved throughout the Ixodida. The gene for allatotropin was found in the *I. scapularis* genome and evidence of a transcript predicting its occurrence in the synganglion of adult *I. scapularis* was reported¹²⁹ and also demonstrated by immunohistochemistry in *Rhipicephalus appendiculatus*¹³⁰. These peptides may also have other regulatory functions. In insects, allatotropin was shown to

stimulate the foregut muscles, whereas allatostatin was found to inhibit contractions of the foregut, and, as a result, suppressed feeding activity¹³¹. Consequently, the role of these genes in *I. scapularis* awaits further biochemical and molecular studies.

Genes associated with the ecdysial process were found, including corazonin, eclosion hormone, CCAP, and bursicon (α and β). In addition to the complete gene model of corazonin in the *I. scapularis* genome, ESTs matching corazonin and the corazonin receptor were identified in an unpublished synganglion cDNA library from adult female *D. variabilis*¹²⁸; and this neuropeptide was also detected in unfed adult female *R. appendiculatus* by immunohistochemistry¹³⁰. Similarly, a match for eclosion hormone (ISCW001941) to a conserved hypothetical *I. scapularis* protein (NCBI XM_002399230) was found. Expression of these hormones and/or hormone receptors was reported in adult female *D. variabilis* by 454 pyrosequencing¹²⁸. Genes for both bursicon α and bursicon β were identified. Transcripts for both bursicon subunits were also found in the synganglion of feeding adult female *D. variabilis*¹²⁸. Bursicon is an approximately 30 kDa, highly conserved molecule in insects where it functions in wing expansion (in *Drosophila*) and as a cuticle-hardening (tanning hormone) regulator¹³². Although adult female ixodid ticks do not molt again after nymphal eclosion, they do secrete new cuticle during feeding and it is likely that these genes contribute to hormonal regulation of cuticle hardening and tanning.

Insulin-like peptide (ILP), a member of the insulin superfamily, is a highly conserved gene that is widespread among multiple taxa. Following transcription, it is translated as a preprohormone. In insects, following cleavage of the signal peptide, the mature proteins containing the characteristic A, B, and C-chain peptides are stored in secretory granules. Subsequently, the C peptide is removed by convertase. Genes for preproconvertase (ISCW020499) and IGFBP (ISCW003285) were found in the *I. scapularis* genome, suggesting the existence of an insulin signaling pathway. Insulin-like signaling activity is believed to regulate development, longevity, metabolism, and female reproduction¹³³ as well as ecdysteroidogenesis¹³⁴. Silencing IGFBP (by RNA interference) prevented blood-feeding females from feeding to repletion, indicating the role of this protein in regulating feeding in ticks¹³⁵. ILP mRNA was found in the transcriptome of the female *D. variabilis* synganglion and ILP immunoreactivity has been identified in other tick species^{130,136}. ILP is believed to be secreted from neurosecretory sites in the periganglionic sheath into the periganglionic sinus and thereupon into general circulation.

Orcokinins and sulfakinins are believed to be important in regulating contractions of the digestive tract in insects and are likely to play a similar role in *I. scapularis*. Orcokinins increase gut contractions, presumably enhancing feeding activity, whereas sulfakinins inhibit feeding activity. At least one orcokinin gene and two sulfakinin isoforms were identified in the genome. Transcripts of four orcokinins, a preprosulfakinin and a sulfakinin receptor were found in the transcriptome of the female *D. variabilis* synganglion¹²⁸. Sulfakinins show homology to cholecystokinins, which are believed to function as satiety inducing peptides¹³⁷. We hypothesize that the sequential up or down regulation of these genes following mating induces rapid blood feeding to repletion.

Several genes were found that are important in regulating salivary gland function. In addition to dopamine, long known as a secretory agonist¹³⁸, myoinhibitory peptide (allatostatin B) and SIFamide peptide were identified in the *I. scapularis* genome. These peptides were also identified in neurosecretory cells and their axonal projections leading to the salivary glands by immunohistochemistry indicating their importance in regulating the function of these glands¹³⁹.

Several other neuropeptides have been identified in *I. scapularis*, *e.g.*, allatostatin-C, proctolin, pyrokinin-2, pyrokinin-3, pyrokinin-4, and periviscerokinin^{140,141}. In addition, periviscerokinin was identified in *I. ricinus* and *R. microplus* by MALDI-TOF/TOF mass spectrometry¹⁴².

Ixodes scapularis G-protein Coupled Receptor (GPCR) Genes

Putative *I. scapularis* GPCRs were identified by TBLASTN searches of the tick genome assembly at VectorBase (https://www.vectorbase.org/). The primary source of query sequences included GPCRs from the mosquitoes An. gambiae¹⁴³ and Ae. aegypti¹⁴⁴ and the fruitfly *D. melanogaster* (FlyBase; http://flybase.org/), while additional invertebrate and vertebrate GPCR sequences were used when appropriate. Identified GPCRs were used to iteratively search the *I. scapularis* genome for additional GPCR sequences. Alignments of conceptual GPCR amino acid sequences were conducted with ClustalW or MultAlin software (http://bioinfo.genotoul.fr/multalin/multalin.html). GPCRs were categorized according to class and family based on sequence similarity to invertebrate and mammalian GPCRs and named according to nomenclature guidelines developed for invertebrate vectors as detailed at VectorBase (Supplementary Table 26). GPCR annotations described in this publication will be made available as third party annotations through VectorBase. Full length cDNAs of the following putative receptors were cloned and NCBI accession numbers were obtained as follows: Family A: 1. Kinin receptor (HM807526), 2. Periviscerokinin/CAPA receptor (JQ771528), 3. Orphan neuropeptide receptor (HM771426); Family B: Corticotropin-releasing hormone-like (CRF-like) receptor 2a (JF837597).

Ixodes scapularis Chemosensory Ligand-Binding Protein Gene Families

The search for putative homologs of the odorant-binding protein (OBP), chemosensory protein (CSP) and chemosensory protein family B (CheBs) genes was conducting as previously described¹⁴⁵, and included several rounds of exhaustive searches using information from known protein sequences as queries^{146,147,148,149,150,151,152}. First, we searched the preliminary predicted gene set using BLASTP (BLOSUM45 matrix with an *e* value threshold of 10⁻⁵), HMMER (http://hmmer.wustl.edu/) (e value domain threshold of 10^{-5}), and HHsearch¹⁵³ (e-value threshold of 10⁻⁵). The HMMER and HHsearch searches used Pfam¹⁵⁴, PBP/GOBP (for OBP; PF01395), and OS-D (for CSP; PF03392), lipocalin (for vertebrate OBP; PF00061) HMM profiles. Furthermore, because some chemosensory family members are highly divergent, we also built extra custom HMM profiles (used in all HMMER and HHsearch searches). In the case of CheBs we used the members of the family recently identified and characterized by the J. Rozas group in the 12 Drosophila genomes. We built these profiles after clustering known protein sequences representative of all relevant phylogentic groups with BlastClust (ftp://ftp.ncbi.nih.gov/genomes) (e value threshold of 10^{-5} , length coverage "-L" of 0.5 and score density "-S" of 0.6). We selected the four clusters with the highest numbers of sequences, aligned the clusters separately with MAFFT¹⁵⁵ (E-INS-i with BLOSUM30 matrix, 10,000 maxiterate, and offset "0") and, for each cluster, built an HMM profile using HMMER. Second, we searched the raw DNA sequence data using TBlastN (BLOSUM45 with e value threshold of 10^{-3}).

EXONERATE²² (50% of the maximum store threshold), and HMMER (*e* value domain threshold of 10⁻¹⁰). For the latter analysis, we searched against all 6-frames using Pfam's and our custom HMM profiles as queries. All searches were performed exhaustively until no new hit was found, adding always all newly identified members to the queries. Finally, all results were manually curated, and the putative gene structure was checked for known OBP/CSP/CheB characteristics (signal peptide, typical secondary structures, presence of start and stop codons, etc).

Ixodes scapularis Gustatory Receptor (GR) Genes

The GR family was manual annotated using methods employed for insect and *Daphnia* genomes¹⁵⁶. Briefly, TBLASTN searches were performed using major lineages of insect and *Daphnia* GRs as queries, and gene models were manually assembled in TEXTWRANGLER. Iterative searches were also conducted with each new tick protein as query until no new genes were identified in each major subfamily or lineage. Many of the genes identified are missing one or more short C-terminal exons, and while some of these were identified from raw reads, leading to fixed gene models, many were not. A final check for possible divergent genes/proteins was performed by HMMER at VectorBase using the automated annotations, and revealed nine existing models and just two additional highly divergent genes/proteins, Gr47 and 62. All of the IsGr genes and encoded proteins are detailed in Supplementary Table 29. All IsGr proteins are provided below in FASTA format.

The IsGr gene set consists of 62 models, comparable in size with that of many insects and *Daphnia*. There were only five obvious pseudogenes, although some of the currently incomplete gene models might in fact be pseudogenes, and there are many gene fragments remaining in the genome. Gene models were present in the automated annotations for just 11 of these genes, and only one was precisely correct. For the genes that are intact within existing supercontigs, 23 new models have been added to the annotation, indicated with numbers starting with 800 in Supplementary Table 29. Although there are no ESTs for these Grs in the limited available transcriptome data, the basic gene structure for the entire IsGr set is a long first exon, followed by three short C-terminal exons separated by three phase 0 introns. The locations of these introns and their phases are the same as predicted by¹⁵⁷ to be ancestral to the entire isect chemoreceptor superfamily, and are also shared with Gr genes in other animals (Robertson, *unpublished*). The only major exception is the Gr47-60 lineage, which are intronless in the coding region, presumably resulting from an ancient gene conversion with a reverse-transcribed mRNA.

Phylogenetic Analysis of the Ixodes scapularis GRs. GR protein sequences of *D. melanogaster, An. gambiae, D. pulex* and *I. scapularis* were aligned with MAFFT using standard parameters (gap opening penalty = 1.530 and offset = 0.123) and 1000 iterations. Phylogenetic analysis was performed with the RAXML 7.0.4¹⁵⁸ software using the PROTGAMMAWAG model. Tree figure (Supplementary Fig. 20) was edited with FigTree 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree).

Ixodes scapularis Cys-loop and iGluR Ligand-gated Ion Channel Genes

iGluR and IR genes were identified and annotated using previously described methods¹⁵⁹ (Supplementary Fig. 21; Supplementary Tables 30-31).

MicroRNAs (miRNAs) in Ixodes scapularis

Three different sets of microRNA (miRNA) gene predictions were consolidated from miRBase¹⁶⁰, miROrtho¹⁶¹, and VectorBase¹⁶² resulting in the identification of a conservative set of 45 predicted miRNA genes (Supplementary Table 6). These include likely orthologs of recognized miRNAs such as *bantam* and *iab-4*. Although this set of miRNAs is unlikely to be complete, it is comparable in number to predictions from other arthropod genomes: *e.g.*, 52 in the genome of the spider mite, *T. urticae*¹⁶³, 50 in the water flea, *D. pulex*³⁴, and 57 in the body louse, *P. humanus*¹⁶⁴.

Ixodes scapularis Proteomics

Ixodes scapularis ISE6 cells (provided by Timothy J. Kurtti, University of Minnesota) were grown at 34°C in the absence of CO₂ with L15B-300 complete media¹⁶⁵. Cells were harvested followed by lipid removal (CHCl₃: MeOH), acetone protein precipitation and denaturation. The protein samples were digested with trypsin and the resulting peptides were analyzed by high-pressure liquid chromatography (HPLC) and ESI-MS/MS with a hybrid ion trap mass spectrometer LTQ-Orbitrap LX (Thermo Scientific) at the Purdue Proteomics Facility, Bindley Bioscience Center, Mass spectrometry (MS) data were processed using with the Omics Discovery Pipeline^{166,167} and MS/MS peptide identification was performed using the Agilent Technologies Spectrum Mill MS Proteomics Workbench. The *I. scapularis* Wikel strain IscaW1.2 predicted protein set (https://www.vectorbase.org/) was used to perform the MS/MS protein database search and reverse scores were calculated to account for decoy database searching. Significant LC-MS peaks ($p \le 0.05$) discovered by the Omics Discovery Pipeline were matched to corresponding m/z values and retention times of a MS/MS peptide library (identified from Spectrum Mill). These identified peptides were subject to filtering by removing non-confident peptides and false positives^{168,169}. This stringent analysis produced a final data set comprising approximately 486 proteins. This data set was gueried to provide support for *I. scapularis* heme biosynthesis gene model predictions (Section S8).

Ixodes Proteins Associated With Anaplasma Infection

Cell Culture and Protein Extraction. The tick cell line ISE6, derived from *I. scapularis* embryos (provided by U.G. Munderloh, University of Minnesota, USA), was cultured in L15B medium as described previously¹⁷⁰, but the osmotic pressure was lowered by the addition of one fourth sterile water by volume. The ISE6 cells were inoculated with *A. phagocytophilum* (NY18 isolate)-infected HL-60 cells as described previously^{170,171}. Uninfected and infected cultures (N=5 independent cultures each) were sampled at 3 days post-infection (dpi) (early infection; percent infected cells 11-17% (Avg±SD, 13±2)) and 10 dpi (late infection; percent infected cells 56-61% (Avg±SD, 58±2)), the cells were centrifuged at 10,000 g for 3 min, and cell pellets were frozen in liquid nitrogen until used for protein extraction. Approximately 10⁷ cells were pooled from each condition and lysed in 350 µl lysis buffer (PBS, 1% Triton X-100, 1 mM sodium vanadate, 1 mM sodium fluoride, 1 mM PMSF, 1µg/ml leupeptin, 1µg/ml pepstatin) for 30 min at 4°C. Total cell extracts were centrifuged at 200 g for 5 min to remove cell debris. The supernatants were collected and protein concentration was

determined using the Bradford Protein Assay (Bio-Rad, Hercules, CA, USA) with BSA as standard.

Proteomics analysis of infected and uninfected lxodes scapularis ISE6 tick cells. Proteomics analysis of I. scapularis ISE6 tick cells in response to A. phagocytophilum infection was performed using protein one-step in-gel digestion, peptide iTRAQ labeling, IEF fractionation, LC-MS/MS analysis and peptide identification. Protein extracts from the four experimental conditions, control uninfected early (CE), infected early (IE), control uninfected late (CL) and infected late (IL) (100 µg each) were resuspended in up to 300 µl of sample buffer and applied using a 5-well comb on a conventional SDS-PAGE gel (1.5 mm-thick, 4% stacking, 10% resolving). The run was stopped as soon as the front entered 3 mm into the resolving gel so that the whole proteome became concentrated in the stacking/resolving gel interface. The unseparated protein bands were visualized by Coomassie Brilliant Blue R-250 staining, excised, cut into cubes (2 mm²) and digested overnight at 37°C with 60 ng/µl trypsin (Promega, Madison, WI, USA) at 5:1 protein:trypsin (w/w) ratio in 50 mM ammonium bicarbonate, pH 8.8 containing 10% (v/v) acetonitrile (ACN) and 0.01% (w/v) 5cyclohexyl-1-pentyl-ß-D-maltoside (CYMAL-5)¹⁷². The resulting tryptic peptides from each proteome were extracted by 1 hr incubation in 12 mM ammonium bicarbonate, pH 8.8. trifluoroacetic acid (TFA) was added to a final concentration of 1% and the peptides were finally desalted onto C18 OASIS HLB Extraction cartridges (Waters, Milford, Massachusetts, USA) to remove the amine-containing buffers and dried-down.

Dried peptides were taken up in 30 µl of iTRAQ dissolution buffer provided with the kit (Applied Biosystems, Madrid, Spain) and labeled by adding 70 µl of the corresponding iTRAQ reagent in ethanol and incubating for 1 hr at room temperature in 70% ethanol, 180 mM triethylammoniumbicarbonate (TEAB), pH 8.53. CE was labeled with 114, IE was labeled with 115, CL was labeled with 116 and IL labeled with 117 iTRAQ tags. After quenching the reaction with 100 µl 0.1% formic acid for 30 min, samples were brought to dryness to completely stop the labeling reaction. This quenching process was repeated once more to promote TEAB volatilization. The four labeled samples were resuspended in 100 µl 0.1% formic acid and combined into one tube. The mixture was dried down, redissolved in 3.3 ml 5 mM ammonium formiate, pH 3, cleaned up with SCX Oasis cartridges (Waters) using as elution solution 1 M ammonium formiate pH 3, containing 25% ACN, and dried down. The peptide pools were resuspended in 0.5 ml 0.1% TFA, desalted onto C18 Oasis cartridges using as elution solution 50% ACN in 5 mM ammonium formiate, pH 3 and dried down. The sample was taken up in focusing buffer (5% glycerol and 2% IPG buffer pH 3-10 (GE Healthcare, Madrid, Spain) loaded onto 24-wells over a 24 cm-long Immobiline DryStrip, pH3-10 (GE Healthcare) and separated by IEF on a 3100 OFFgel fractionator (Agilent, Santa Clara, CA, USA), using the standard method for peptides recommended by the manufacturer. The recovered fractions were acidified with 20 µl of 1 M ammonium formiate, pH 3, and the peptides were desalted using OMIX C18 tips (Varian, Palo Alto, CA, USA). After elution with 50% ACN in 5 mM ammonium formiate, pH 3, the peptides were dried-down prior to RP-HPLC-LIT analysis. All samples were analyzed by LC-MS/MS using a Surveyor LC system coupled to a linear ion trap mass spectrometer model LTQ (Thermo-Finnigan, San Jose, CA, USA) as described previously¹⁷³. The LTQ was programmed to perform a data-dependent MS/MS scan on the 15 most intense precursors detected in a full scan from 400 to 1600 amu (3 µscans, 200 ms

injection time, 10,000 ions target). Singly charged ions were excluded from the MS/MS analysis. Dynamic exclusion was enabled using the following parameters: 2 repeat counts, 90 s repeat duration, 500 exclusion size list, 120 s exclusion duration and 2.1 amu exclusion mass width. PQD parameters were set at 100 ms injection time, 8 microscans per scan, 2 amu isolation width, 28% normalized collision energy, 0.6 activation Q, 0.3 ms activation time. For PQD spectra generation 10,000 ions were accumulated as target and automatic gain control was used to prevent over-filling of the ion trap. Protein identification was carried out as described previously¹⁷³ using SEQUEST algorithm (Bioworks 3.2 package, Thermo Finnigan), allowing optional (Methionine oxidation) and fixed modifications (Cysteine carboxamidomethylation, Lysine and N-terminal modification of +144.1020 Da). The MS/MS raw files were searched against the alphaproteobacteria combined with the arachnida Swissprot database (Uniprot release 15.5, 7 July, 2009) supplemented with porcine trypsin and human keratins. This joint database contains 638,408 protein sequences. To calculate false discovery rate, the same collections of MS/MS spectra were also searched against inverted databases constructed from the same target databases. The alphaproteobacteria Swissprot database was used to identify and discard Anaplasma and possible symbiotic bacterial sequences from further analyses.

A total of 1447 MS/MS spectra were assigned to 903 unique peptides¹⁷⁴ (false discovery rate, FDR=10%). After identifying and discarding *Anaplasma* and other bacterial symbiotic peptide sequences, the 735 remaining peptides belonged to 424 different proteins (Supplementary Tables 32-35). Of these, 88% had similarity to *Ixodes* sequences while 95% had similarity to sequences from other tick species (Supplementary Table 35). Proteomics data showed a strong correlation with conceptual coding sequences predicted from the *I. scapularis* genome. For some of the identified proteins, the discrepancy between peptide data and predicted protein sequence may reflect polymorphisms between ISE6 cells and the Wikel tick strain and the need to improve *I. scapularis* gene models.

Population Structure of Ixodes scapularis Across North America

Sample collection

Ixodes scapularis adult females were collected from eight geographical locations in the USA: Florida, Indiana, Maine, Massachusetts, New Hampshire, North Carolina, Virginia, and Wisconsin by our research group or kindly provided by collaborators. In addition, samples were obtained for the reference Wikel strain from the University of Texas Medical Branch, Galveston, TX. The colony has been maintained in continuous culture since establishment. The GPS location was recorded for each field collected sample. Samples were stored in 80% ethanol at 4°C, in ALT buffer (SIGMA) or at -70°C until processing. Genomic DNA was separately extracted from individual females using a phenol:chloroform:isopropyl alcohol (SIGMA) method and treated with RNAse A (Ambion).

RAD library preparation

RAD-seq libraries were produced from 77 individual female *I. scapularis*. One μ g genomic DNA from each individual was digested in a 50 μ L reaction with 100 units of *Sbf*I-HF restriction enzyme (New England Biolabs, Beverly MA, USA) for 1.5 hrs at

37°C, followed by incubation at 65°C for 20 minutes to inactivate the enzyme. An aliquot (1 µl) was analyzed on 1% agarose gel to check the digestion efficiency and the remaining product was ligated to the unique P1 RAD adapter primers (50 nM per reaction) with 1000 units of T4 ligase in 1x NEB buffer 2 (New England Biolabs) and 100 mM rATP (Fermentas). Samples were incubated for one hr at 20°C, followed by enzyme inactivation at 65°C for 20 minutes. Adapter ligated DNA fragments from individual samples were pooled and sonicated using Qsonica sonicator for six minutes at maximum power. Samples were cleaned with MinElute PCR purification kit (Qiagen). Fragments of 400-600 bp were selected using 1% agarose gel and DNA was recovered with the MinElute gel extraction kit (Qiagen). Blunt ends were repaired using blunting enzyme mix (New England Biolabs) in 1X blunting buffer and 1mM dNTP mix. Samples were incubated for one hr at 20°C and purified with MinElute PCR purification kit (Qiagen). A-overhangs (10mM dATP; Fermentas) were then added using Klenow fragment (3'-5' exo) (New England Biolabs) in 1x NEB Buffer 2. Samples were incubated for one hr at 20°C and purified with MinElute PCR purification kit (Qiagen). The P2 RAD adapter (10 µM) was ligated using 1000 units of T4 DNA ligase (New England Biolabs) in 1x NEB buffer 2 (New England Biolabs) and 100mM rATP (Fermentas). Samples were incubated for one hr at 20°C followed by purification with MinElute PCR purification kit (Qiagen).

Finally, 10 μ L of the P1 and P2 adapter ligated DNA was used as a template in a 100 μ L PCR reaction with 50 μ L of the Phusion High Fidelity 2× Master mix (New England Biolabs) and 2 μ L each of 10 μ M P1 and P2 primers. PCR conditions were: 98°C for 30 s, 14 cycles of 98°C for 10 s, 65°C for 30 s, 72°C for 30 s, and a final elongation step at 72°C for 5 min. Samples were sequenced on the Illumina HiSeq2500 platform in the Rapid run mode to obtain 150 bp single-end reads.

Sequence processing and SNP calling

Illumina reads were processed by the Bioinformatics Core at Purdue University. Reads were corrected for barcodes and restriction site, low quality bases (Phred score less than 10) were trimmed and all reads were trimmed to 140 bp and then demultiplexed (sorted by barcode) using the "process_radtags.pl" script of STACKS^{175,176}. Quality trimmed reads were separately aligned to the I. scapularis Wikel genome assembly, IscaW1 (Ixodes-scapularis-Wikel_SCAFFOLDS_IscaW1.fa downloaded from VectorBase) using the end-to-end mode and default parameters of Bowtie2 v 2.2.3¹⁷⁷. Three individual samples with the percent of mapped reads less than 50% were removed from analysis. Polymorphic loci (catalogue loci) were identified for SNP discovery using the ref map.pl pipeline in STACKS version (v1.19). First, sequences aligned to the same genomic location were stacked together and merged to form loci. Only loci with a sequencing depth of ten or more reads per individual were retained. SNPs at each locus were called by STACKS implementing a multinomial-based likelihood model regardless of the reference sequence itself. Lastly, a catalogue of all possible loci and alleles was generated and each individual was matched against the catalogue. In total, 745,760 SNPs across 35,460 loci were identified using the 'population' program within the STACKS package based on the criteria: (1) minimum 60% individuals within a population, (2) minimum two populations to report a locus, and (3) minimum stack depth of 10 per locus.

F-statistics and Population structure

The *population* program within STACKS (v1.19) was used¹⁷⁶ in combination with the system of Wright¹⁷⁸ to assess fixation index and genetic variation within and among populations. The F statistic was used to measure fixation index (F_{IS}) and genetic variability (F_{ST}). Using 745,760 SNPs, genome-wide measures of diversity, such as observed heterozygosity (H_0), expected heterozygosity (H_F), nucleotide diversity (π) across individuals (intra-population) and genetic differentiation were calculated to assess genetic distance or differentiation as evidence of selection. We enabled kernel smooth function in *population* with a default window size of 150kb such that a kernel smooth function (weights function) was applied to all SNP locations within a sliding window covering a 3x150 Kb region at either side of a center polymorphic locus. This function uses the distance between each SNP within the sliding window and the center SNP, and the defined window size, so that F_{IS} have stable values within each sliding window and across the whole genome. The same process was conducted for π . At each SNP locus, π was calculated from the count of a specific allele in the population, and the sample size of all alleles in the population 179,180 . At each SNP location, $F_{IS} = 1$ -Ho/ π . The reported F_{IS} (Supplementary Table 36) is the population-level mean value across all the polymorphic sites within each sub-population.

 F_{ST} is an indication of variation among populations. At each SNP position, F_{ST} was calculated by the following formula 176,180,181 :

$$F_{ST} = 1 - \frac{\sum_{j} \binom{n_j}{2} \pi_j}{\pi_{all} \sum_{j} \binom{n_j}{2}}$$

where, n_j is the sample size of alleles in population *j*, and π_j is π in population *j*, while π_{all} is π calculated over the pair of populations (pairwise comparison between two sub-populations) (Supplementary Table 37).

In addition, we used fastStructure (beta release)¹⁸² to assess population structure using a genome wide set of 745,760 SNPs across 35,460 catalogue loci (~21 SNPs per loci) and a subset of 34,693 SNPs, the first SNP per catalogue locus to resolve genetic structure at a broad spatial scale. fastStructure delineates clusters of individuals on the basis of genotypes at multiple loci using a Bayesian approach. Models were fitted with a defining number of clusters (K) from 1 to 20. Next, the most suitable K (K=6) was selected for the full set of 745,760 SNPs using a python script chooseK.py from fastStructure. Briefly, marginal likelihood values for K=1 to 20 were manually vetted. Marginal likelihood increased from -0.4730 to -0.3882 when K increased from 1 to 6, and then decreased by 0.01 at K=7 (range -0.3953 to -0.3825). The same method was used to select the most suitable K (K=5) for the subset of 34,693 SNPs. Marginal likelihood increased from -0.4975 to -0.4004 when K increased from 1 to 5, then decreased to -0.4045 at K=6 reaching a plateau afterwards. Using the output from fastStructure and DISTRUCT (v1.1)¹⁸³, a bar plot was created where each individual of the sample is represented by a vertical line divided into K colored segments with the length of each segment being proportional to the estimated membership in each of the inferred K groups.

Expression of *Ixodes scapularis* ligand-gated ion channels in *Xenopus laevis* oocytes

Functional expression of an *Ixodes scapularis* ligand-gated ion channel subunit (known as IscaGluCl1) in *Xenopus laevis* oocytes (Fig. 7; Supplementary Fig. 25) was achieved by cRNA injection and two-electrode voltage clamp electrophysiology. A brief description of the methods is provided in the main paper and a more comprehensive account of the technique is available¹⁸⁴.

Supplementary References

1. Geraci, N. S., Johnston, J. S., Robinson, J. P., Wikel, S. K. & Hill, C. A. Variation in genome size of argasid and ixodid ticks. *Insect Biochem. Mol. Biol.* **37**, 399-408 (2007).

2. Hill, C. A. *et al.* The position of repetitive DNA sequence in the southern cattle tick genome permits chromosome identification. *Chromosome Res.* **17**, 77-89 (2009).

3. Myers, E. W. *et al.* A whole-genome assembly of *Drosophila*. *Science* **287**, 2196-2204 (2000).

4. Rusch, D. B. *et al.* The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. *PLoS Biol* **5**, e77 (2007). doi:10.1371/journal.pbio.0050077.

5. Levy, S. *et al.* The diploid genome sequence of an individual human. *PLoS Biol.* **5**, e254 (2007). doi:10.1371/journal.pbio.0050254.

6. Denisov, G. *et al.* Consensus Generation and Variant Detection by Celera Assembler. *Bioinformatics* **24**, 1035-1040 (2008).

7. Miller, J. R. *et al.* Aggressive Assembly of Pyrosequencing Reads with Mates. *Bioinformatics* **24**, 2818-2824 (2008).

8. Gillespie, J. J. *et al.* PATRIC: The Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species. *Infect. Immun.* **79**, 4286-4298 (2011).

9. Kurtti, T. J. *et al. Rickettsia buchneri* sp. nov., a rickettsial endosymbiont of the blacklegged tick *lxodes scapularis*. *Internat. J. System. Evol. Microbiol.* **65**, 965–970 (2015).

10. Gillespie, J. J. *et al.* A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. *J. Bacteriol.* **194**, 376-394 (2012).

11. Price, A. L., Jones, N. C. & Pevzner, P. A. *De novo* identification of repeat families in large genomes. *Bioinformatics* **21**, i351-8 (2005). doi:10.1093/bioinformatics/bti1018.

12. Bao, Z. & Eddy, S. R., Automated *de novo* identification of repeat sequence families in sequenced genomes. *Genome Res.* **12**, 1269-1276 (2002).

13. Smit, A. F. A., Hubley, R. & Green, P. *RepeatMasker Open-3.0.* 1996-2010. <<u>http://www.repeatmasker.org</u>>.

14. Huang, X., Adams, M. D., Zhou, H. & Kerlavage, A. R. A tool for analyzing and annotating genomic sequences. *Genomics* **46**, 37-45 (1997).

15. Birney, E., Clamp, M. & Durbin, R., GeneWise and Genomewise. *Genome Res.* **14**, 988-995 (2004).

16. Haas, B. J. *et al.* Improving the *Arabidopsis* genome annotation using maximal transcript alignment assemblies. *Nucl. Acids Res.* **31**, 5654-5666 (2003).

17. Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. *Nucl. Acids Res.* **33**: W465-W467 (2005). doi:10.1093/nar/gki458.

18. Majoros, W., Pertea, M., Delcher, A. L. & Salzberg, S. L. Efficient decoding algorithms for generalized hidden Markov model gene finders. *BMC Bioinformatics* **6**, 16 (2005). doi:10.1186/1471-2105-6-16.

19. Haas, B. J. *et al.* Automated eukaryotic gene structure annotation using EVidenceModelerand the Program to assemble spliced alignments. *Genome Biol.* 9, R7 (2008). doi:10.1186/gb-2008-9-1-r7.

20. Flicek, P. *et al.* Ensembl's 10th year. *Nucl. Acids Res.* **38**, D557-D562 (2010). doi:10.1093/nar/gkp972.

21. The UniProt Consortium. Ongoing and future developments at the Universal Protein Resource. *Nucl. Acids Res.* **39**, D214-D219 (2011). doi:10.1093/nar/gkq1020.

22. Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. *BMC Bioinformatics* **6**, 31 (2005).

23. Korf, I. Gene finding in novel Genomes. *BMC Bioinformatics* **5**, 59 (2004). doi:10.1186/1471-2105-5-59.

24. Conesa, A. *et al.* Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. *Bioinformatics* **21**, 3674-3676 (2005).

25. Waterhouse, R. M., Zdobnov, E. M., Tegenfeldt, F., Li, J. & Kriventseva, E. V. OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011. *Nucleic Acids Res.* **39**, D283-D288 (2011).

26. Edgar, R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucl. Acids Res.* **32**, 1792-1797 (2004).

27. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol. Biol. Evol.* **17**, 540-552 (2000).

28. Guindon, S. *et al.* New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. *Syst. Biol.* **59**, 307-321 (2010).

29. Rogozin, I. B., Wolf, Y. I., Sorokin, A. V., Mirkin, B. G. & Koonin, E. V., Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. *Curr. Biol.* **13**, 1512-1517 (2003).

30. Rogozin, I. B., Lyons-Weiler, J. & Koonin, E. V. Intron sliding in conserved gene families. *Trends Genet.* **16**, 430-432 (2000).

31. Felsenstein, J. Coalescents in full bloom. *Evolution* **63**, 3275–3276 (2009).doi:10.1111/j.1558-5646.2009.00811.x.

32. Junier, T. & Zdobnov, E. M. The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. *Bioinformatics* **26**, 1669-1670 (2010).

33. Csurös, M. *et al.* Malin: maximum likelihood analysis of intron evolution in eukaryotes. *Bioinformatics* **24**, 1538-1539 (2008).

34. Colbourne, J. K. *et al.* The ecoresponsive genome of *Daphnia pulex*. *Science* **331**, 555-561 (2011).

35. Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. *Genome Res.* **13**, 2178-2189 (2003).

36. Chen, F., Mackey, A. J., Vermunt, J. K. & Roos, D. S. Assessing performance of orthology detection strategies applied to eukaryotic genomes. *PLoS ONE* **2**(4): e383, (2007). doi:10.1371/journal.pone.0000383.

37. Schlueter, J. *et al.* Mining EST databases to resolve evolutionary events in major crop species. *Genome.* **47**, 868-876 (2004).

38. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. *Trends Genet.* **16**, 276–277 (2000).

39. Lynch, M. & Conery, J. The evolutionary fate and consequences of duplicate genes. *Science* **290**, 1151-1155 (2000).

40. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. *Nucl. Acids Res.* **27**, 573–580 (1999).

41. Meyer, J. M., Kurtti, T. J., Van Zee, J. P. & Hill, C. A. Genome organization of major tandem repeats in the hard tick, *Ixodes scapularis. Chrom. Res.* **18**, 357-370 (2010).

42. Tu, Z. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, *Anopheles gambiae*. *Proc. Natl. Acad. Sci U.S.A.* **98**, 1699-1704 (2001).

43. McCarthy, E. M. & McDonald, J. F. LTR_STRUC: a novel search and identification program for LTR retrotransposons. *Bioinformatics* **19**, 362-367 (2003).

44. Tubio, J. M., Naveira, H. & Costas, J. Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of *Anopheles gambiae*. *Mol. Biol. Evol.* **22**, 29-39 (2005).

45. Tubio, J. M. *et al.* Evolutionary dynamics of the Ty3/gypsy LTR retrotransposons in the genome of *Anopheles gambiae*. *PloS ONE* **6**, e16328, (2011). doi:10.1371/journal.pone.0016328.

46. Jurka, J. *et al.* Repbase update, a database of eukaryotic repetitive elements. *Cytogenet Genome Res.* **110**, 462-467 (2005).

47. Altschul, S. F. *et al.* Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucl. Acids Res.* **25**, 3389-3402 (1997).

48. Tatusova, T. A. & Madden, T. L. Blast 2 sequences-a new tool for comparing protein and nucleotide sequences. *FEMS Microbiol. Lett.* **174**, 247-250 (1999).

49. Kennedy, R. C., Unger, M. F., Christley, S., Collins, F. H. & Madey, G. R. An automated homology-based approach for identifying transposable elements. *BMC Bioinformatics* **12**, 130, (2011). doi:10.1186/1471-2105-12-130.

50. Xiong, Y. & Eickbush, T. H. Origin and evolution of retroelements based upon their reverse transcriptase sequences. *EMBO J.* **9**, 3353-3362 (1990).

51. Malik, H. S., Burke, W. D. & Eickbush, T. H. The age and evolution of non-LTR retrotransposable elements. *Mol. Biol. Evol.* **16**, 793–805 (1999).

52. Guindon, S. & Gascuel, O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. *Syst. Biol.* **5**, 696-704 (2003).

53. Lander, E. S. *et al.* Initial sequencing and analysis of the human genome. *Nature* **409**, 860-921 (2001).

54. Holt, R. A. *et al.* The genome sequence of the malaria mosquito *Anopheles gambiae*. *Science* **298**, 129-149 (2002).

55. Lovsin, N., Gubensek, F. & Kordi, D. Evolutionary dynamics in a novel L2 clade of non-LTR retrotransposons in Deuterostomia. *Mol. Biol. Evol.* **18**, 2213–2224 (2001).

56. Biedler, J. & Tu, Z. Non-LTR retrotransposons in the African malaria mosquito, *Anopheles gambiae:* unprecedented diversity and evidence of recent activity. *Mol. Biol. Evol.* **20**, 1811–1825 (2003).

57. Arensburger, P. *et al.* Sequencing of *Culex quinquefasciatus* establishes a platform for mosquito comparative genomics. *Science* **330**, 86-88 (2010).

58. Jakubczak, J. L., Burke, W. D. & Eickbush, T. H. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. *Proc. Natl. Acad. Sci. U.S.A.* **88**, 3295–3299 (1991).

59. Felger, I. & Hunt, J. A. A non-LTR retrotransposon from the Hawaiian Drosophila: the LOA element. *Genetica* **85**, 119–130 (1992).

60. Munderloh, U. G., Liu, Y., Wang, M., Chen, C. & Kurtti, T. J. Establishment, maintenance and description of cell lines from the tick *Ixodes scapularis*. *J. Parasitol*. **80**, 533–543 (1994).

61. Chen, C., Munderloh, U. G. & Kurtti, T. J. Cytogenetic characteristics of cell lines from *Ixodes scapularis* (Acari: Ixodidae). *J. Med. Entomol.* **31**, 425-434 (1994).

62. Zwick, M. S. *et al.* A rapid procedure for the isolation of C_0t -1 DNA from plants. *Genome* **40**, 138-142 (1997).

63. Vítková, M., Král, J., Traut, W., Zrzavy, J. & Marec, F. The evolutionary origin of insect telomeric repeats, (TTAGG)n. *Chromosome Res.* **13**, 145-156 (2005).

64. Francischetti, I. M. B., Sá-Nunes, A., Mans, B. J., Santos, I. M. & Ribeiro, J. M. C. The role of saliva in tick feeding. *Front. Biosci.* **14**, 2051-2088 (2009).

65. Ribeiro, J. M. & Arca, B. From sialomes to the sialoverse: An insight into the salivary potion of blood feeding insects. *Adv. Insect Physiol.* **37**, 59-118 (2009).

66. Arca, B. *et al.* An updated catalogue of salivary gland transcripts in the adult female mosquito, *Anopheles gambiae*. *J. Exp. Biol.* **208**, 3971-3986 (2005).

67. Panzera, F. *et al.* Genome size determination in chagas disease transmitting bugs (hemiptera-triatominae) by flow cytometry. *Am. J. Trop. Med. Hyg.* **76**, 516-521 (2007).

68. Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Selection in the evolution of gene duplications. *Genome Biol.* **3**, research0008, doi:10.1186/gb-2002-3-2-research0008 (2002).

69. Sankoff, D. Gene and genome duplication. *Curr. Opin. Genet. Dev.* **11**, 681-684 (2001).

70. Ascenzi, P. *et al.* The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. *Curr. Protein Pept. Sci.* **4**, 231-251 (2003).

71. Castaneda, O. & Harvey, A. L. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels. *Toxicon*. **54**, 1119-11124 (2009).

72. Harvey, A. L. Recent studies on dendrotoxins and potassium ion channels. *Gen. Pharmacol.* **28**, 7-12 (1997).

73. Paesen, G. C. *et al.* An ion-channel modulator from the saliva of the brown ear tick has a highly modified Kunitz/BPTI structure. *J. Mol. Biol.* **389**, 734-47 (2009).

74. Ribeiro, J. M. *et al.* An annotated catalog of salivary gland transcripts from *Ixodes scapularis* ticks. *Insect Biochem. Mol. Biol.* **36**, 111-129 (2006).

75. Valenzuela, J. G. *et al.* Exploring the sialome of the tick, *Ixodes scapularis*. *J. Exp. Biol.* **205**, 2843-2864 (2002).

76. Kotsyfakis, M., Karim, S., Andersen, J. F., Mather, T. N. & Ribeiro, J. M. Selective cysteine protease inhibition contributes to blood-feeding success of the tick *lxodes scapularis*. *J. Biol. Chem.* **282**, 29256-29263 (2007).

77. Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P. & Bork, P. SMART: a webbased tool for the study of genetically mobile domains. *Nucleic Acids Res.* **28**, 231-234 (2000).

78. Campbell, C. L. *et al.* Midgut and salivary gland transcriptomes of the arbovirus vector *Culicoides sonorensis* (Diptera: Ceratopogonidae). *Insect Mol. Biol.* **14**, 121-36 (2005).

79. Wilson, A. D., Heesom, K. J., Mawby, W. J., Mellor, P. S. & Russell, C. L. Identification of abundant proteins and potential allergens in *Culicoides nubeculosus* salivary glands. *Vet. Immunol. Immunopathol.* **122**, 94-103 (2008).

80. Andersen, J. F., Pham, V. M., Meng, Z., Champagne, D. E. & Ribeiro, J. M. Insight into the Sialome of the Black Fly, *Simulium vittatum*. *J. Proteome Res.* **8**, 1474-1488 (2009).

81. Francischetti, I. M., Mather, T. N. & Ribeiro, J. M. Penthalaris, a novel recombinant five-Kunitz tissue factor pathway inhibitor (TFPI) from the salivary gland of

the tick vector of Lyme disease, *Ixodes scapularis*. *Thromb. Haemost.* **91**, 886-898 (2004).

82. Francischetti, I. M., Valenzuela, J. G., Andersen, J. F., Mather, T. N. & Ribeiro, J. M. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, *Ixodes scapularis*: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. *Blood* **99**, 3602-3612 (2002).

83. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. *Nucl. Acids Res.* 40, D32-D53 (2011). doi:<u>10.1093/nar/gkr1202</u>.

84. Lawson, D. *et al.* VectorBase: a home for invertebrate vectors of human pathogens. *Nucleic Acids Res.*, **35**, D503–D505 (2007).

85. Lawson, D. *et al.* VectorBase: a data resource for invertebrate vector genomics. *Nucleic Acids Res.* **37**, D583–D587 (2009).

86. Kersey, P. J. *et al.* Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. *Nucl. Acids Res.* **40**, D91-D97, (2011).doi:10.1093/nar/gkr895.

87. Bateman, A. *et al.* The Pfam protein families database. *Nucl. Acids Res.* **32**, D138-D141 (2004). doi:10.1093/nar/gkh121.

88. Hulo, N. *et al.* The PROSITE database. *Nucl. Acids Res.* **34**, D227-D230 (2006). doi:10.1093/nar/gkj063.

89. Marchler-Bauer, A. *et al.* CDD: a Conserved Domain Database for the functional annotation of proteins. *Nuc. Acids Res.* **39**, D225-D229 (2011). doi:10.1093/nar/gkq1189.

90. Valanne, S., Wang, J. H. & Ramet, M. The *Drosophila* Toll signaling pathway. *J. Immunol.* **186**, 649-656 (2011).

91. Shin, S. W. *et al.* REL1, a homologue of *Drosophila* dorsal, regulates toll antifungal immune pathway in the female mosquito *Aedes aegypti*. *J. Biol. Chem.* **280**, 16499-16507 (2005).

92. Kim, J. H. *et al.* Comparison of the humoral and cellular immune responses between body and head lice following bacterial challenge. *Insect Biochem. Mol. Biol.* **41**, 332-339 (2011).

93. Gerardo, N. M. *et al.* Immunity and other defenses in pea aphids, *Acyrthosiphon pisum*. *Genome Biol.* **11**, R21 (2010). doi:10.1186/gb-2010-11-2-r21.

94. Goto, A. *et al.* Akirins are highly conserved nuclear proteins required for NF- κ B-dependent gene expression in *Drosophila* and mice. *Nature Immunol.* **9**, 97-104 (2008).

95. de la Fuente, J. *et al.* The tick protective antigen, 4D8, is a conserved protein involved in modulation of tick blood ingestion and reproduction. *Vaccine* **24**, 4082-4095 (2006).

96. de la Fuente, J. *et al.* Functional genomic studies of tick cells in response to infection with the cattle pathogen, *Anaplasma marginale*. *Genomics* **90**, 712–722 (2007).

97. Kurscheid, S. *et al.* Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in *Drosophila*. *BMC Mol. Biol.* **10**, 26 (2009). doi:10.1186/1471-2199-10-26.

98. Khvorova, A., Reynolds, A., Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. *Cell.* **115**, 209-216 (2003).

99. Schwarz, D. S., Hutvagner, G., Haley, B., Zamore, P. D. Evidence that siRNAs function as guides, not primers, in the *Drosophila* and human RNAi pathways. *Mol. Cell.* **10**, 537-548 (2002).

100. Hammond, S. M., Bernstein, E., Beach, D. & Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in *Drosophila* cells. *Nature* **404**, 293-296 (2000).

101. Ding, S. W. RNA-based antiviral immunity. *Nat. Rev. Immunol.* **10**, 632-644 (2010).

102. Waterhouse, R. M. *et al.* Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. *Science* **316**, 1738-1743 (2007).

103. Wang, Y. & Zhu, S. The defensin gene family expansion in the tick *lxodes* scapularis. Dev. Comp. Immunol. **35**, 1128-1134 (2011).

104. Neese, P. A., Sonenshine, D. E., Kallapur, V. L., Apperson, C. S. & Roe, R. M. Absence of insect juvenile hormones in the American dog tick, *Dermacentor variabilis* (Say) (Acari: Ixodidae) and *Ornithodoros parkeri* Cooley (Acari: Argasidae). *J Insect Physiol.* **46**, 477-490 (2000).

105. Thompson, D. M. *et al. In vivo* role of 20-hydroxyecdysone in the regulation of the vitellogenin mRNA and egg development in the American dog tick, *Dermacentor variabilis* (Say). *J. Insect Physiol.* **51**, 1105-1116 (2005).

106. Pound, J. M., Oliver, J. H. Jr. Juvenile hormone: evidence of its role in the reproduction of ticks. *Science*. **206**, 355-357 (1979).

107. Donohue, K. V., Khalil, M. S., Mitchell, R. D., Sonenshine, D. E. & Roe, R. M. Molecular characterization of the major hemelipoglycoprotein in ixodid ticks. *Insect Mol. Biol.* **17**, 197-208 (2008).

108. Rutherford, K. *et al.* Artemis: sequence visualization and annotation. *Bioinformatics* **16**, 944-945 (2000).

109. Law, J. H., Ribeiro, J. M. C. & Wells, M. A. Biochemical insights derived from insect diversity. *Ann. Rev. Biochem.* **64**, 87-111 (1992).

110. Mans, J. B. & Neitz, A. W. H. Adaptation of ticks to a blood-feeding environment: evolution from a functional prospective. *Insect Biochem. Mol. Biol.* **34**, 1-17 (2004).

111. Braz, G. R. C., Coelho, H. S. L., Masuda, H. & Oliveira, P. L. A missing metabolic pathway in the cattle tick *Boophilus microplus*. *Curr. Biol.* **9**, 703-706 (1999).

112. Hamza, I., Chauhan, S., Hassett, R. & O'Brian, M. R. The bacterial irr protein is required for coordination of heme biosynthesis with iron availability. *J. Biol. Chem.* **273**, 21669-21674 (1998).

113. Furuyama, K., Kaneko, K. & Vargas, P. D. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. *Tohoku J. Exp. Med.* **213**, 1-16 (2007).

114. Machado, E. A., Oliveira, P. L., Moreira, M. F., de Souza, W. & Masuda, H. Uptake of *Rhodnius* heme-binding protein (RHBP) by the ovary of *Rhodnius* prolixus. *Arch. Insect Biochem. Physiol.* **39**, 133-143 (1998).

115. Oliveira, P. L. *et al.* A heme-binding protein from hemolymph and oocytes of the blood-sucking insect, *Rhodnius prolixus*. Isolation and characterization. *J. Biol. Chem.* **270**, 10897-10901 (1995).

116. Weichsel, A., Andersen, J. F., Champagne, D. E., Walker, F. A. & Montfort, W. R. Crystal structures of a nitric oxide transport protein from a blood-sucking insect. *Nat. Struct. Biol.* **5**, 304-309 (1998).

117. Donohue, K. V., Khalil, S. M. S., Sonenshine, D. E. & Roe, R. M. Heme-binding storage proteins in the Chelicerata. *J. Insect Physiol.* **55**, 287-296 (2009).

118. Horigane, M., Shinoda, T., Honda, H. & Taylor, D. Characterization of a vitellogenin gene reveals two phase regulation of vitellogenesis by engorgement and mating in the soft tick *Ornithodoros moubata* (Acari: Argasidae). *Insect Mol. Biol.* **19**, 501-515 (2010).

119. Maya-Monteiro, C. M. *et al.* HeLp, a heme lipoprotein from the hemolymph of the cattle tick, *Boophilus microplus*. *J. Biol. Chem.* **275**, 36584-36589 (2000).

120. Horn, M., *et al.* Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. *Chem Biol.* **16**,1053-1063 (2009).

121. Yamaji, K. *et al.* Hemoglobinase activity of a cysteine protease from the ixodid tick *Haemaphysalis longicornis*. *Parasitol Int.* **58**, 232-237 (2009).

122. Estrela A. B., Seixas, A., Teixeira Vde, O., Pinto, A. F. & Termignoni, C. Vitellinand hemoglobin-digesting enzymes in *Rhipicephalus (Boophilus) microplus* larvae and females. *Comp. Biochem. Physiol. B Biochem. Mol. Biol.* **157**, 326-335 (2010).

123. Lara, F. A. *et al.* A new intracellular pathway of haem detoxification in the midgut of the cattle tick *Boophilus microplus*: aggregation inside a specialized organelle, the hemosome. *J. Exp. Biol.* **206**,1707-1715 (2003).

124. Caffrey, C.R. & Ruppel, A. Cathepsin B-like activity predominates over cathepsin L-like activity in adult *Schistosoma mansoni* and *S. japonicum. Parasitol. Res.* **83**, 632–635 (1997).

125. Delcroix, M. *et al.* A multienzyme network functions in intestinal protein digestion by a platyhelminth parasite. *J. Biol. Chem.* **281**, 39316–39329 (2006).

126. Guerrero, F. D. *et al.* BmiGI: a database of cDNAs expressed in *Boophilus microplus*, the tropical/southern cattle tick. *Insect Biochem. Mol. Biol.* **35**, 585-595 (2005).

127. Weygoldt, P. Evolution and systematics of the Chelicerata. *Exp. Appl. Acarol.* **22**, 63-79 (1998).

128. Donohue, K. V. *et al.* Neuropeptide signaling sequences identified by pyrosequencing of the American dog tick synganglion transcriptome during blood feeding and reproduction. *Insect Biochem. Mol. Biol.* **40**, 79-90 (2010).

129. Egekwu, N., Sonenshine, D.E., Bissinger, B.W. & Roe, R.M. Transcriptome of the female synganglion of the black-legged tick *lxodes scapularis* (Acari: lxodidae) with comparison between Illumina and 454 systems. *PLoS One* **9**:e102667 (2014).

130. Simo, L., Slovak, M., Park, Y. & Źitňan, D. Identification of a complex peptidergic neuroendocrine network in the hard tick *Rhipicephalus appendiculatus*. *Cell Tissue Res.* **335**, 639–655 (2009).

131. Audsley, N. & Weaver, R. J. Neuropeptides associated with the regulation of feeding in insects. *Gen. Comp. Endocrinol.* **162**, 93-104 (2009).

132. Luo, C. W. *et al.* Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cysteine knot protein that activates G protein-coupled receptor LGR2. *PNAS.* **102**, 2820-2825 (2005).

133. Wu, Q. & Brown, M. R. Signaling and function of insulin-like peptides in insects. *Annu. Rev. Entomol.* **51**, 1–24 (2006).

134. Gu, S.H., Lin, J.L., Lin, P.L. & Chen, C.H. Insulin stimulates ecdysteroidogenesis by prothoracic glands in the silkworm, *Bombyx mori. Insect Biochem. Mol. Biol.*, **39**, 171-179 (2009).

135. Mulenga, A. & Khumthong, R. Silencing of three *Amblyomma americanum* (L.) insulin-like growth factor binding protein-related proteins prevents ticks from feeding to repletion. *J. Exp. Biol.* **231**, 1153-1161 (2010).

136. Zhu, X. X. & Oliver, J. H. Jr. Cockroach allatostatin-like immunoreactivity in the synganglion of the American dog tick *Dermacentor variabilis* (Acari: Ixodidae). *Exp. Appl. Acarol.* **25**, 1005-1013 (2001).

137. Lee, M. C., Schiffman, S. S. & Pappas, T. N. Role of neuropeptides in the regulation of feeding behavior: a review of cholecystokinin, bombesin, neuropeptide Y and galanin. *Neurosci. Biobehav. Rev.***18**, 313-323 (1994).

138. Sauer, J. R., Essenberg, R. C. & Bowman, A. S. Salivary glands in ixodid ticks: control and mechanism of secretion. *J. Insect Physiol.* **46**, 1069-1078 (2000).

139. Simo, L. M., Źitňan, D. & Park, Y. Two novel neuropeptides in innervations of the salivary glands of the black-legged tick, *Ixodes scapularis*: Myoinhibitory peptide and SIFamide. *J. Comp. Neurol.* **517**, 551-563 (2009).

140. Yang, Y., Bajracharya, P., Castillo, P., Nachman, R. J. & Pietrantonio, P. V. Molecular and functional characterization of the first tick CAP_{2b} (periviscerokinin) receptor from *Rhipicephalus* (*Boophilus*) *microplus* (Acari: Ixodidae). *Gen. Comp. Endo.* **194**, 142–151 (2013). doi:10.1016/j.ygcen.2013.09.001

141. Yang, Y., Nachman, R.J. & Pietrantonio, P.V. Molecular and pharmacological characterization of the Chelicerata pyrokinin receptor from the southern cattle tick, *Rhipicephalus* (*Boophilus*) *microplus. Insect Biochem. Mol. Biol.* **60**, 13–23 (2015). doi:10.1016/j.ibmb.2015.02.010

142. Neupert, S. *et al.* The neuropeptidomics of *Ixodes scapularis* synganglion, *J. Proteomics.* **72**, 1040-1045 (2009).

143. Hill, C. A. *et al.* G protein-coupled receptors in *Anopheles gambiae. Science* **298**, 176-178 (2002).

144. Nene, V. *et al.* Genome sequence of *Aedes* aegypti, a major arbovirus vector. *Science* **316**, 1718-1723 (2007).

145. Vieira, F. G. & Rozas, J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. *Genome Biol. Evol.* **3**, 476-490 (2011).

146. Starostina, E., Xu, A., Lin, H. & Pikielny, C. W. A *Drosophila* protein family implicated in pheromone perception is related to Tay-Sachs GM2-activator protein. *J. Biol. Chem.* **284**, 585-594 (2009).

147. Foret, S. & Maleszka, R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (*Apis mellifera*). *Genome Res.* **16**, 1404-1413 (2006).

148. Foret, S., Wanner, K. W. & Maleszka, R. Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. *Insect Biochem. Mol. Biol.* **37**, 19-28 (2007).

149. Gong, D. P. *et al.* Identification and expression pattern of the chemosensory protein gene family in the silkworm, *Bombyx mori. Insect Biochem. Mol. Biol.* **37**, 266-277 (2007).

150. Gong, D. P., Zhang, H. J., Zhao, P., Xia, Q. Y. & Xiang, Z. H. The odorant binding protein gene family from the genome of silkworm, *Bombyx mori. BMC Genomics* **10**, 332 (2009). doi:10.1186/1471-2164-10-332.

151. Vieira, F. G., Sánchez-Gracia, A. & Rozas, J. Comparative genomic analysis of the odorant-binding protein family in 12 *Drosophila* genomes: purifying selection and birth-and-death evolution. *Genome Biol.* **8**, R235 (2007). doi:10.1186/gb-2007-8-11-r235.

152. Flicek, P. *et al.* Ensembl 2008. *Nucl. Acids Res* **36**, D707 (2008). doi:10.1093/nar/gkm988.

153. Soding, J. Protein homology detection by HMM-HMM comparison. *Bioinformatics* **21**, 951-960 (2005).

154. Finn, R. D. *et al.* Pfam: clans, web tools and services. *Nucl. Acids Res.* **34**, D247-D251 (2006). doi:10.1093/nar/gkj149.

155. Katoh, K., Kuma, K., Toh, H. & Miyata, T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. *Nucl. Acids Res.* **33**, 511-518 (2005).

156. Peñalva-Arana, D. C., Lynch, M. & Robertson, H. M. The chemoreceptor genes of the waterflea, *Daphnia pulex*: many Grs but no Ors. *BMC Evol. Biol.* **9**, 79 (2009). doi:10.1186/1471-2148-9-79.

157. Robertson, J. A., Howard, L. A., Zinner, C. L. & Stemke, G. W. Comparison of 16S rRNA genes within the T960 and parvo biovars of ureaplasmas isolated from humans. *Int. J. Syst. Bacteriol.* **44**, 836-838 (1994).

158. Stamatakis, A., RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* **22**, 2688-2690 (2006).

159. Croset, V. *et al.* Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. *PLoS Genetics* **6**, e1001064, (2010). doi:10.1371/journal.pgen.1001064.

160. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. *Nucl. Acids Res.* **39**, D152-D157 (2011). doi:10.1093/nar/gkq1027.

161. Gerlach, D., Kriventseva, E. V., Rahman, N., Vejnar, C.E. & Zdobnov, E.M. miROrtho: Computational survey of microRNA genes. *Nucleic Acids Res.* **37**:D111–D117, (2009). doi:10.1093/nar/gkn707.

162. Giraldo-Calderón, G. I. *et al.* VectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseases. *Nuc. Acids Res.* **43**(Database issue), D707-13 (2015).

163. Grbić, M. *et al.* The genome of *Tetranychus urticae* reveals herbivorous pest adaptations. *Nature* **479**, 487-492 (2011).

164. Kirkness, E. F. *et al.* Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. *Proc. Natl. Acad. Sci. U.S.A.* **107**, 12168-12173 (2010).

165. Munderloh, U. & Kurtti, T. Formulation of medium for tick cell culture. *Exp. Appl. Acarol.* **7**, 219-229 (1989).

166. Riley, C. P. *et al.* The Proteome Discovery Pipeline – A data analysis pipeline for mass spectrometry-based differential proteomics discovery. *The Open Proteomics J.* **3**, 8-19 (2010).

167. Zhang, X., Asara, J. M., Adamec, J., Ouzzani, M. & Elmagarmid, A. K. Data preprocessing in liquid chromatography-mass spectrometry-based proteomics. *Bioinformatics* **21**, 4054-4059 (2005).

168. Riley, C. P. *et al.* A large, consistent plasma proteomics data set from prospectively collected breast cancer patient and healthy volunteer samples. *J. Transl. Med.* **9**, 80 (2011).

169. Kapp, E. A. *et al.* An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis. *Proteomics* **5**, 3475-3490 (2005).

170. Munderloh, U. G. *et al.* Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. *J. Clin. Microbiol.* **37**, 2518–2524 (1999).

171. Villar, M. *et al.* Identification and characterization of *Anaplasma phagocytophilum* proteins involved in infection of the tick vector, *Ixodes scapularis*. *PLOS ONE* **10**, e0137237 (2015). doi: 10.1371/journal.pone.0137237.

172. Bonzon-Kulichenko, E. *et al.* A robust method for quantitative high-throughput analysis of proteomes by ¹⁸O labeling. *Mol. Cell Proteomics* **10**:M110 003335 (2011). doi:10.1074/mcp.M110.003335.

173. López-Ferrer, D. *et al.* Statistical model for large-scale peptide identification in databases from tandem mass spectra using SEQUEST. *Anal Chem.* **76**, 6853-6860 (2004).

174. Navarro, P. & Vazquez, J. A. refined method to calculate false discovery rates for peptide identification using decoy databases. *J. Proteome Res.* **8**, 1792-1796 (2009).

175. Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. H. Stacks: building and genotyping Loci de novo from short-read sequences. *G3* (*Bethesda*) **1**,171-82 (2011). doi: 10.1534/g3.111.000240.

176. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. *Mol Ecol.* **22**, 3124-3140 (2013). doi: 10.1111/mec.12354

177. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods* **9**, 357-359 (2012).

178. Wright, S. Evolution and the Genetics of Population, Variability Within and Among Natural Populations. The University of Chicago Press, Chicago (1978).

179. Hohenlohe, P. A. *et al.* Population Genomics of Parallel Adaptation in Threespine Stickleback using Sequenced RAD Tags. *PLoS Genet.* **6**: e1000862. doi:10.1371/journal.pgen.1000862 (2010).

180. Nielsen, R. *et al.* Darwinian and demographic forces affecting human protein coding genes Darwinian and demographic forces affecting human protein coding genes. *Genome Research* **19**, 838–849 (2009). doi:10.1101/gr.088336.108

181. Weir, B. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure. *Evolution* **38**(6), 1358–1370 (1984).

182. Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. *Genetics* **197**:573-89. doi: 10.1534/genetics.114.164350 (2014).

183. Rosenberg, N. A., DISTRUCT: a program for the graphical display of population structure. *Mol. Ecol. Notes* **4**, 137–138 (2004).

184. Buckingham, S. D., Pym, L. & Sattelle, D. B. Oocytes as an expression system for studying receptor / channel targets of drugs and pesticides. *Methods in Molecular Biology* **322**, 331-345. (ed X. J. Liu) Humana Press Inc., Totowa, NJ, USA. (2006).

185. Guittard, E. *et al.* CYP18A1, a key enzyme of *Drosophila* steroid hormone inactivation, is essential for metamorphosis. *Dev. Biol.* **349**, 35-45 (2011). doi: 10.1016/j.ydbio.2010.09.023.

186. Jongejan, F. & Uilenberg, G. The global importance of ticks. *Parasitology* **129**(Suppl):S3-S14 (2004). doi: http://dx.doi.org/10.1017/S0031182004005967

187. Van Zee, P. *et al.* Tick genomics: the *lxodes* genome project and beyond. *Intl. J. Parasitol.* **37** (12) 1297-1305 (2007).