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SUPPLEMENTARY INFORMATION 

SUPPLEMENTARY FIGURES 

 

 
 

Supplementary Figure 1 |Definition of the angles of the microswimmer symmetry axis relative to 
the substrate and the side step. 
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Supplementary Figure 2 | Phase portrait for orientation parallel to the substrate of a microswimmer 
with R = 1.0 ݉ߤ, including the effect of gravity. Except for the size of the particle, all parameters are the 
same as in Fig. 2d in the main text. 

 

 

 

 

 

 

 

 

 

 



3 
 
 

 

Supplementary Figure 3 | 2.5 ݉ߤ Janus microswimmer trajectories following well features for 227s; 
scale bar corresponds to 20 ݉ߤ. Inset: 2.5 ݉ߤ Janus microswimmer circling around a step for more than 
89s; both tracks were recorded in 5 vol% H2O2, scale bar corresponds to 10 ݉ߤ.  
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Supplementary Figure 4 | Wall-induced change of the particle velocity (a), for a particle with its cap 
oriented towards the wall (ߠ = 0∘). Chemi-osmotic and gravitational effects are not included. (b), Same 
plot as in (a), but with a log-log scale. The red line shows a (ℎ/ܴ)ିଶ scaling. 
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Supplementary Figure 5 | Lithography based creation of patterns a, Schematic representing the 
lithography based method to create submicron step and well structures for particle guidance. b, Optical 
images of the resulting patterns; the scale bar in the inset correspond to 10 ݉ߤ, while the scale bars in 
the main images correspond to 500 ݉ߤ.  
 

 



6 
 
 

SUPPLEMENTARY TABLES 

 

Supplementary Table 1 | Attractor states for a squirmer with ܴ = ௟ܤ and ݉ߤ	2.5 = 0 for ݈ > 2. 
“Unstable'' indicates that there is an unstable fixed point. “None” indicates that there is no fixed point. 
“Backwards” indicates that the squirmer (which in the bulk swims “away” from the cap) swims towards 
its cap when in the steady state near the wall, which is not observed experimentally. In some cases 
(indicated in the table as “Below 1.02”), there are clear signs of an attractor with ℎ௘௤/ܴ	below the 
numerical cut-off of ℎ/ܴ	 = 	1.02; however, the corresponding orientations are significantly different 
from the values ≈ 90∘	observed in experiments. 
 
 
 

 
 
૚࡮/૛࡮ ૜࡮ ૛࡮ ૚࡮ ࢼ  ,R/ࢗࢋࢎ

no gravity 
,ࢗࢋࣂ

no gravity 
 ,R/ࢗࢋࢎ

with gravity 
,ࢗࢋࣂ

with gravity 
-0.9 0.019 0.413 0.033 22.04 1.05, 1.03 

(bwds) 
68.9◦, 109◦ 

(bwds) 

1.056, 1.03 
(bwds) 

66.8◦, 111◦ 
(bwds) 

-0.8 0.038 0.392 0.066 10.44 1.063 69.7◦ 1.09 65.3◦ 
-0.7 0.056 0.370 0.098 6.57 1.075 70.2◦ 1.16 59.9◦ 
-0.6 0.075 0.348 0.131 4.64 1.094 71◦ 1.3 48.5◦ 
-0.5 0.094 0.326 0.164 3.48 ~1.15 

(limit cycle) 
~72◦  

(limit cycle) 

1.56 0◦ 

  ,R/ࢗࢋࢎ ૚࡮/૛࡮
no gravity 

no gravity ,ࢗࢋࣂ  ,R/ࢗࢋࢎ
with gravity 

with gravity ,ࢗࢋࣂ

-7 unstable unstable 1.16 and 1.04 
(backwards) 

51.5◦ and 138◦ 
(backwards) 

-5 unstable unstable 1.19 and 1.03 
(backwards) 

49.4◦ and 142◦ 
(backwards) 

-3 unstable unstable 1.26 42.2◦ 
-1   none none 1.39 0◦ 
0 none none 1.24 0◦ 
1 none none Below 1.02 0◦ 
3 1.64 102◦ Below 1.02 Around 45◦ 
5 1.22 114◦ Below 1.02 Around 52◦ 
7 1.17 117◦ 1.032 

(backwards) 
53.5◦  

(backwards) 
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-0.4 0.113 0.305 0.197 2.71 unstable unstable 1.48 0◦ 
-0.3 0.131 0.283 0.230 2.15 unstable unstable 1.42 0◦ 
-0.1 0.169 0.239 0.295 1.42 none none 1.32 0◦ 

0 0.188 0.218 0.328 1.16 none none 1.29 0◦ 
0.1 0.206 0.196 0.361 0.949 none none 1.26 0◦ 
0.3 0.244 0.152 0.427 0.625 none none 1.21 0◦ 
0.7 0.319 0.065 0.558 0.205 none none 1.14 0◦ 
1.3 0.431 -0.065 0.755 -0.151 none none 1.09 0◦ 
2.0 0.563 -0.218 0.984 -0.387 none none Below 1.02 0◦ 

 

Supplementary Table 2 | Hydrodynamic properties and attractor locations for the effective squirmer 
with ܴ =  Bwds” indicates steady motion towards the cap, which is not observed“ .݉ߤ	2.5
experimentally. “Limit cycle” indicates one case with a sustained oscillation of small amplitude in ℎ/ܴ	 
and ߠ. “Unstable” indicates the presence of an unstable fixed point. In one case, there are clear signs of 
a “hovering” attractor with ℎ௘௤/ܴ	below the numerical cut-off. Although we listed the amplitudes of the 
first three squirming modes, we note that the effective squirmer can also have ܤ௟ 	≠ 0 for ݈ > 3. 
 

 

 

 

Supplementary Note 1: Calculation of Gravitational Contribution to Particle Motion 

 

The particle experiences a gravitational force from the weight of the spherical silica core and platinum 
cap, as well as a gravitational torque from the bottom-heaviness imparted by the platinum cap. For a 
given height and orientation of the particle, we use the BEM to calculate the hydrodynamic resistance 
tensor of the particle. We then obtain the gravitational contributions ܃௚  and ષ௚ to the particle velocity 
as the product of the inverse of this tensor (i.e. the hydrodynamic mobility tensor) and the vector 
containing the six components of gravitational force and torque. (Our calculation of the gravitational 
contribution to velocity therefore includes the effect of hydrodynamic interaction with the planar wall.)  

The linearity of the Stokes equation allows one to sum the separate contributions of activity and gravity 
to determine the complete translational and angular velocities as ܃ = ௔܃ + ௚ and ષ܃ =	ષ௔ + ષ௚. 
However, the two sets of velocities must be expressed in the same units. The contributions from particle 
activity are obtained in terms of U଴ ≝ |bୡୟ୮|κ/D and Ω଴ ≝ U଴/R, i.e., as ܃௔/U଴ and ષ௔/Ω଴. We 
estimate U଴ and Ω଴ by taking U୮ = 6	μm	s-1 as a typical particle velocity. Within the neutral self-
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diffusiophoretic framework, U୮/U଴ can be calculated analytically or numerically as a function of the 
material parameters of the particle, i.e. the extent of catalyst coverage and the spatial variation of 
surface mobility bୱ(ܚ).1,2 For instance, U୮/U଴ 	= 0.25 for half coverage and uniform surface mobility.3 
For a given set of material parameters, we can therefore calculate the characteristic velocity U଴ in 
dimensional units from U୮/U଴ and U୮ = 6	μm	s -1. 

 

Supplementary Note 2: Isolation of contributions to particle motion 

We seek to isolate and quantify the various physical contributions to the motion of a particle. We focus 
on the ݔ −component of the angular velocity Ω௫. We recall that the linearity of the Stokes equations 
permits us to solve for active, gravitational, and wall slip (chemi-osmotic) contributions separately and 
superpose them to obtain the full angular velocity: Ω௫ = Ω௫௔ + Ω௫௚ + Ω௫௪௦. To obtain the active 
contribution, we use the Lorentz reciprocal theorem. This theorem allows the problem of determination 
of (܃௔, ષ௔)் to be related to six “primed” problems with the same geometry but different boundary 
conditions. We obtain six coupled equations: 

௔܃ ∙ ۴௝ᇱ + ષ௔ ∙ ૌ௝ᇱ = − න ௦ܞ ∙ ો௝ᇱ ∙ ݆			,ܵ݀	ܖ = 1, . . . ,6.							(1)	
௣௔௥௧௜௖௟௘  

Where ۴௝ᇱ	and ૌ௝ᇱ are the force and torque, respectively, exerted by quiescent fluid on a particle in steady 
translation (or rotation) with a no-slip boundary condition on its surface. The index 	݆ denotes steady 
translation in the ݔො, ݆	direction for ݖ̂	or	ොݕ = 1, 2, 3, respectively, or steady rotation in ݔො, ݆ for ݖ̂	or	ොݕ = 4, 5,6. Likewise, ો௝ᇱ	is the fluid stress tensor for the steadily translating or rotating particle. Further 
details concerning the derivation of Eq. 1 are provided in our previous work	ସ. We recall that ܞ௦  From Eq. 1, we find the component .(ܚ)ܿ||∇(ܚ)ܾ−=

Ω௫௔ =෍(ି܀ଵ)	ସ௝ 		 න (ܚ)ܿ||∇(ܚ)ܾ ∙ ો௝ᇱ ∙ 	(2)																					.ܵ݀	ܖ
௣௔௥௧௜௖௟௘

଺
௝ୀଵ  

Here, the forces and torques ۴௝ᇱ = ൫F௝௫ᇱ , F௝௬ᇱ , F௝௭ᇱ ൯்	and ૌ௝ᇱ = ൫τ௝௫ᇱ , τ௝௬ᇱ , τ௝௭ᇱ ൯்	have been compactly 
organized into a matrix  

ࡾ ≡
ۈۉ
ۇۈۈۈ
Fଵ௫ᇱ Fଵ௬ᇱ Fଵ௭ᇱFଶ௫ᇱ Fଶ௬ᇱ Fଶ௭ᇱFଷ௫ᇱ Fଷ௬ᇱ Fଷ௭ᇱ

τଵ௫ᇱ τଵ௬ᇱ τଵ௭ᇱτଶ௫ᇱ τଶ௬ᇱ τଶ௭ᇱτଷ௫ᇱ τଷ௬ᇱ τଷ௭ᇱFସ௫ᇱ Fସ௬ᇱ Fସ௭ᇱFହ௫ᇱ Fହ௬ᇱ Fହ௭ᇱF଺௫ᇱ F଺௬ᇱ F଺௭ᇱ
τସ௫ᇱ τସ௬ᇱ τସ௭ᇱτହ௫ᇱ τହ௬ᇱ τହ௭ᇱτ଺௫ᇱ τ଺௬ᇱ τ଺௭ᇱ ۋی

 (3)                                  .ۊۋۋۋ
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The contribution in Eq. (2) to the angular velocity of the particle is shown in Fig. 3a of the main text. 

We now write the activity-induced solute concentration ܿ(ܚ) = ܿ௙௦(ܚ) +  with a free space (ܚ)ܿߜ

component ܿ௙௦(ܚ) and the wall correction (ܚ)ܿߜ. Similarly, we write ો௝ᇱ = ો௝ᇱ௙௦ + ܀ ો௝ᇱ andߜ = ௙௦܀  Using these representations in the integral in Eq. 2, we may estimate various contributions to the .܀ߜ+
particle rotation. 

The free space angular velocity  Ω௫௔,௙௦ = ∑ 	଺௝ୀଵ ൫܀௙௦ିଵ൯ସ௝	 ׬ (ܚ)௙௦ܿ||∇(ܚ)ܾ ∙ ો௝ᇱ௙௦ ∙ ௣௔௥௧௜௖௟௘	ܵ݀	ܖ  is zero, due 

to the axial symmetry of the particle. Ω௫௔,௛௜ = ∑ 	଺௝ୀଵ ି	܀) ଵ)ସ௝ ׬ (ܚ)௙௦ܿ||∇(ܚ)ܾ ∙ ો௝ᇱߜ ∙ ௣௔௥௧௜௖௟௘	ܵ݀	ܖ  gives the contribution to Ω௫௔ strictly from 

hydrodynamic interactions with the wall. It is plotted in Fig. 3b of the main text. Ω௫௔,௦௢௟ = ∑ 	଺௝ୀଵ ൫܀௙௦ିଵ൯ସ௝ ׬ (ܚ)ܿߜ||∇(ܚ)ܾ ∙ ો௝ᇱ௙௦ ∙ ௣௔௥௧௜௖௟௘	ܵ݀	ܖ 	 gives the contribution to Ω௫௔, shown in  Fig. 

3(c) of the main text strictly from wall-induced solute modifications. In other words, Ω௫௔,௦௢௟  represents 
phoretic rotation of the particle from wall-induced concentration gradients. Note that this term is non-
zero only when ܾ௖௔௣ ≠ ܾ௜௡௘௥௧; in the case considered here, ܾ௜௡௘௥௧/ܾ௖௔௣ = 0.3. 

Finally, the term Ω௫௔,ఋఋ = ∑ 	଺௝ୀଵ ି	܀) ଵ)ସ௝ ׬ (ܚ)ܿߜ||∇(ܚ)ܾ ∙ ો௝ᇱߜ ∙ ௣௔௥௧௜௖௟௘	ܵ݀	ܖ  is due to higher order 

coupling between the chemical and hydrodynamic effects of the wall. It is depicted in Fig. 3d of the main 
text. Interestingly, it is not necessarily small when the particle is close to the wall. 

Now we turn to the other contributions to Ω௫	 . We show the contribution from gravitational torque in 
panel e of main text Fig.3: Ω௫௚ = ଵृ௚ where we define a generalized gravitational force ृ௚ି(	܀) =൫0,0, ,௭௚ܨ ߬௫௚, 0,0൯். This term depends on the size ܴ	of the particle; here, it is calculated for ܴ =  	.݉ߤ2.5
Likewise, in Fig. 3f of the main text, we show the contribution from wall slip, i.e., activity-induced 
chemio-osmotic flow along the wall: Ω௫௪௦ = ∑ 	଺௝ୀଵ ି	܀) ଵ)ସ௝ ׬ ܾ௪(ܚ)∇||ܿ(ܚ) ∙ ો௝ᇱ ∙ ௪௔௟௟	ܵ݀	ܖ . This 
component is absent in the squirmer model, but it is significant in our case, where ܾ௪/ܾ௖௔௣ = −0.2.  

 
 

Supplementary Note 3: Hydrodynamics-only models 

We turn to the wider question of whether the “squirmer” model, in which the interaction with the wall 
is purely hydrodynamic, can reproduce the experimentally observation for some set of parameters. We 
recall that the slip velocity of an axisymmetric squirmer can be written as follows: ܞ௦൫ߠ௣൯ = 	∑ ௟ஶ௟ୀଵܤ ௟ܸ൫cos൫ߠ௣൯൯                     (4) 
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where ߠ௣ is an angle defined with respect to the axis of symmetry, ௟ܸ(ݔ) = 	 ଶ√ଵି௫మ௡(௡ାଵ) ௗௗ௫ ௟ܲ(ݔ),  ௟ܲ(ݔ) is the 

Legendre polynomial of order ݈, and ܤ௟	is the amplitude of squirming mode ݈.5  

An exhaustive search through the squirming mode amplitudes ܤ௟ is beyond the scope of this work. 
Nevertheless, we can gain some insight by restricting our consideration to the first two squirming 
modes. The amplitude of the first mode is set by the free space swimming velocity ݒ௙.௦. = .௙.௦ݒ since ,1-ݏ	݉ߤ	6 = ௟ܤ ଵ, takingܤ/ଶܤ ଵ. We vary the ratioܤ	2/3 = 0	for ݈ > 2, and determine whether a sliding state 
emerges (i) in the absence of gravity and (ii) in the presence of gravity, which respectively represent (i) 
swimming near a side wall, and (ii) swimming above a substrate. The results are shown in Table 1 for ܴ =  For situation (i), our results show good agreement with Gaffney and Ishimoto, 5 including .݉ߤ	2.5
the finding that sliding states emerge only for ܤଶ/ܤଵ ≥ 3. 
 
We find that, for the parameters considered, the squirmer model cannot reproduce the experimental 
observation that a particle swims at ߠ ≈ 90∘ in both situation (i) and situation (ii). Gravity shifts the 
sliding states that occur for ܤଶ/ܤଵ ≥ 3	to ߠ௘௤ ≈ 45∘. This steady angle would be detectable 
experimentally as a large apparent coverage of the particles by catalyst.  We conclude that, for the 
parameters considered in Supplementary Table 1, the effect of the force dipole (the strength of which is 
proportional to the amplitude	ܤଶ of the second squirming mode) is too weak to balance the effect of 
gravity at ߠ ≈ 90∘. 
 

In constructing Supplementary Table 1, we made two simplifying and physically plausible assumptions: 
1.) The contributions of the higher order modes (݈ > 2) to the disturbance velocity decay rapidly with 
distance from the swimmer, and hence contribute negligibly to interaction with the wall; and 2.) the 
ratio ܤଶ/ܤଵ 	∼ ࣩ(1). We can relax both assumptions by considering an “effective squirmer” obtained 
within our model for a self-diffusiophoretic swimmer. The effective squirmer is obtained for a given ߚ = 	ܾ௜௡௘௥௧/ܾ௖௔௣ by neglecting the effect of the wall on the concentration field of a self-diffusiophoretic 
particle, i.e., by using ௙ܿ.௦. as described in Supplementary Note 2. Additionally, chemi-osmotic effects are 
neglected. An effective squirmer could have, in principle, non-zero amplitude for all ܤ௟. Secondly, as 
shown in Supplementary Table 2, the ratio ܤଶ/ܤଵ 	⟶ ∞	as ߚ	 ⟶	−1 from above. This is because, for ߚ	 ≈ −1, one face of the particle is attracted by solute, and the other repelled by solute; furthermore, 
the strengths of attraction and repulsion are approximately equal. ܤଵ is therefore nearly zero, since it is 
proportional to the velocity of the particle. 
 
Our results are in Supplementary Table 2. We find that, for the parameters studied, the effective 
squirmer cannot reproduce the experimental observations in both situation (i) and situation (ii). The 
closest match is for ߚ =	−0.8, with ߠ௘௤ ≈ 70∘ in situation (i) and ߠ௘௤ ≈ 65∘ in situation (ii). Achieving 

this particular sliding state requires a very strong force dipole interaction with the wall: 
	஻మ஻భ ≈ 	10. Is this 

physically plausible? A recent estimate of the force dipole strength for a catalytic Janus particle was 
provided by Brown et al.6 For a ܴ ≈ 	ܷ colloid that moves at ݉ߤ	1 ≈  they estimate 1-ݏ	݉ߤ	15



11 
 
 

ߙ =  Non-dimensionalizing, and then using the expression from Gaffney and Ishimoto that .1-ݏଷ݉ߤ	30
connects 	ܤଶ/ܤଵ with dimensionless 5,ߙ we find	ܤଶ/ܤଵ ≈ 	2.5.  Hence, the ߚ =	−0.8	effective 
squirmer is both physically unlikely (having a very large ܤଶ/ܤଵ, i.e., a very large force dipole) and a 
poorer fit to experimental observations than the full model presented in our work.  For more realistic 
values of the force dipole, hydrodynamics is too weak to, by itself, balance gravitational effects at ߠ ≈ 90∘.  
 

Supplementary Note 4: Range of interaction with wall 

The interaction of a chemically active particle with a planar wall has a long-ranged character. However, 
we show that the amplitude (strength) of this interaction is very small except when the particle is close 
to the wall. This makes it difficult to detect its effects experimentally (at least with the equipment and 
techniques currently available to us) 

In Supplementary Figure 4, we plot the wall-induced change of the wall normal component of the self-

diffusiophoretic velocity of a particle that has its cap oriented towards the wall (θ = 0◦). The subtraction 
of the free space self-diffusiophoretic velocity ܷ௔,௙௦ = 	0.1625	ܷ଴	from ܷ௔ isolates the effect of the 
wall. (Note that chemi-osmotic and gravitational contributions are not included in the figure.) At h/R = 5, 
the contribution to ௭ܷ௔ from the wall has already decayed to approximately three percent of the free 
space self-diffusiophoretic velocity. This change in speed is too small to be apparent when viewing an 
optical microscopy video of a particle near a step or a side wall. The effect of the wall is even weaker for 

orientations θ > 0◦. 

Our numerical calculations recover the long-ranged character of the interaction. In Supplementary 
Figure 4(b), we show the same plot as in (a), but with a log-log scale. Far away from the wall, Δ ௭ܷ௔	follows a	(ℎ/ܴ)ିଶ power law, which is shown as a red line. The effect of the wall on the solute field 
decays as 1/ݎ, i.e., the leading order term representing the wall is an image point source. Since Δ ௭ܷ௔	 is 
proportional to the wall-induced concentration gradient, it decays as 	1/ݎଶ. 

 

Supplementary Note 5: Robustness of the sliding state  

        Finally, we comment on the robustness of the sliding states against thermal fluctuations, which 
were not included in our model. To this end we perform a standard linear stability analysis of our 
dynamical system, which may be written as {ℎሶ = ଵ݂(ℎ, ,(ߠ ሶ	ߠ = ଶ݂(ℎ, ,at a fixed point ൫ℎ௘௤ ,{(ߠ }	which	at	௘௤൯ߠ ଵ݂൫ℎ௘௤, ௘௤൯ߠ = 0, ଶ݂൫ℎ௘௤, ௘௤൯ߠ = 0}. This amounts to determination of the 
eigenvalues ߣଵ,ଶ	of the Jacobian matrix ܬ evaluated at (ℎ௘௤,   .௘௤), i.eߠ

ܬ = ൬߲ ଵ݂ ߲ℎ⁄ ߲ ଵ݂ ߲⁄ߠ߲ ଶ݂ ߲ℎ⁄ ߲ ଶ݂ ⁄ߠ߲ ൰ฬ൫௛೐೜,ఏ೐೜൯	.                   (5) 
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Thus, for the fixed point at Fig. 2d, we obtain that the Jacobian has eigenvalues	ߣଵ,ଶ ≅ (−0.40 ±0.17݅)ܷ଴/ܴ.  Since the real part of the eigenvalues is negative, the fixed point is a stable attractor: a 
small perturbation away from the fixed point will exponentially decay with a characteristic timescale ߬ = ܴ 1. To convert this timescale into dimensional units, we use-[(ଵߣ)ܴ݁] = and ܷ଴ ݉ߤ	2.5 ≈6.2	 ௙ܷ.௦. = 6.2 × 	where ,1-ݏ	݉ߤ6 ௙ܷ.௦. is the self-propulsion velocity of a half-covered Janus swimmer in 
a free space with ܾ௜௡௘௥௧/ܾ௖௔௣ 	= 0.3.7 We obtain the timescale ߬ ≈  for the self-trapping of a	ݏ	0.37
particle into this sliding state. For comparison, the characteristic timescales of rotational and 
translational diffusion are ߬௥ ≅ and ߬௧	ݏ97 ≅  respectively.  This separation of timescales indicates ,ݏ70
that the sliding state in Fig. 2d is robust against thermal noise. Similarly, for the fixed points in Fig. 2e 
and Supplementary Fig. 3, we obtain characteristic self-trapping timescales ߬ ≅ ߬ and ݏ	1.7 ≅  ,ݏ	0.4
respectively (in the latter case we use ܴ =  .(for the dimensionalization ݉ߤ	1

 

 

Supplementary references 

 
 (1) Golestanian, R.: Anomalous Diffusion of Symmetric and Asymmetric Active Colloids. 
Phys. Rev. Lett., 102, 188305, (2009) 
 (2) Golestanian, R.; Liverpool, T. B.; Ajdari, A.: Designing phoretic micro- and nano-
swimmers, New Journal of Physics, 9, 126, (2007). 
 (3) Popescu, M. N.; Dietrich, S.; Oshanin, G.: Confinement effects on diffusiophoretic self-
propellers, J. Chem. Phys. 130, 194702 (2009). 
 (4) Uspal, W. E., Popescu, M. N., Dietrich, S. & Tasinkevych, M. Self-propulsion of a 
catalytically active particle near a planar wall: from reflection to sliding and hovering. Soft Matter, 11, 
434-438, ( 2015). 
 (5)  Ishimoto, K.; Gaffney, E. A.: Squirmer dynamics near a boundary. Phys.Rev. E  88, 
062702, (2013). 
 (6)  Brown, A. T. et al.: Swimming in a Crystal. Soft Matter, Advance article (2015).  
 (7)  Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a Molecular Machine by 
Asymmetric Distribution of Reaction Products. Phys. Rev. Lett. 94, 220801 (2005). 

 


