
 
Figure S1 
LowMACA results on RAS superfamily (PF00071) compared with 8 functional impact predictive tools 
summarized in the dbNSFP (Data Base of human Non-Synonymous SNVs and their Functional Predictions)[1]. 
We retrieved every amino acid substitution occurring in the RAS superfamily from the cBioportal database 
(more than 10’000 different samples)[2, 3] and we annotated our predictions (if a mutation falls under a 
significant hotspot of LowMACA, as presented in the Ras superfamily analysis in section Results). The 2294 
unique substitutions found in PF00071 cover 2264 positions and 130 proteins of the 133 RAS superfamily 
genes (Table S5). LowMACA predicts as significant 150 mutated residues under 11 hotspots (Figure 1B), which 
correspond to 215 different substitutions. We also annotated this dataset including the predictions of functional 
impact from 8 different tools using ANNOVAR [4]. These tools include PolyPhen2 [5], Mutation Assessor [6], 
Mutation Taster [7], SIFT [8], MetaLR [9], LRT [10], FATHMM [11] and RadialSVM 
(http://genomics.usc.edu/software/11-icages) and are aggregated in the dbNSFP database. The functional 
impact of an amino acid variation can be assessed in many different ways (across species conservation, 
stoichiometric similarity between original and substitute amino acid, change of protein conformation etc.), but all 
the algorithms share a similar output, assessing if a mutation could be considered “tolerated” or “damaging”. We 
summarize this information as a damaging comprehensive score: the proportion of tools that predict the 
variation as damaging, ranging from 0 (all prediction as “tolerated”) to 1 (8 out 8 prediction of damaging 
mutation). In panel A, we show how the 2264 positions are classified in terms of this damaging score. This 
score is calculated on the actual amino acid substitution and not on the position, so in case there are more 
possible variations, the median damaging score is considered (like in the case of KRAS G12 that can be 
substitute by V, A, K and other amino acids and a unique damaging score exists for every change). There is a 
significant difference (p-value of the two tails t-test = 5.49e-08) between the score calculated on the positions 
not considered by LowMACA and those that fall under LowMACA hotspots. This can be interpreted as a positive 
concordance between the LowMACA predictions (based on actual data) on the RAS family and their impact on 
the protein they belong to as calculated by the dbNSFP tools. This simply means that in cancer, the most 
frequent mutations are also the most damaging. In Panel B, we show how the predictions of LowMACA are 
distributed. The majority of our predictions fall beyond the majority voting of the tools (5/8 and higher). The 
same plot in absolute values is presented in Table S6. To better understand the difference between dbNSFP 
tools and LowMACA, we further annotated our dataset with four databases of manually curated variations in the 
human genome predicted as disease-associated. These four databases include two databases for disease-
associated variations, Humsavar (UNIPROT database of human polymorphism at protein level, 
www.uniprot.org/docs/humsavar), clinvar version 20140929 [12] and two cancer-specific databases created by 
the Washington University, CiViC (Clinical Interpretation of Variants in Cancer, 
https://civic.genome.wustl.edu/#/home) and DoCM (Database of Curated Mutations 
http://docm.genome.wustl.edu/). CiViC and DoCM are not published yet. We then test the predictions of 
LowMACA against the union of Humsavar and clinvar and against the union of CiViC and DoCM. In both cases, 
there is a significant positive association (p-value << 0.01 and OR >>1) as reported in Table S6, meaning that 
predictions made by LowMACA are strongly in accordance with known results. Furthermore, we can appreciate 
a good overall recall and accuracy against these databases: 74% (32/43) and 95% (21/22) of recall for disease-
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associated and cancer-associated variants respectively with an accuracy of 15% and 10%. We performed the 
same analysis against those variants evaluated as damaging by more than 50% of the dbNSFP tools. Although 
still positively associated to pathogenic variations, the results are less striking (p-value 3.6e-05 and 1.89e-03 for 
disease-associated and cancer-associated respectively). While still maintaining a good recall, the accuracy is 
extremely poor. This is not surprising since functional prediction tools are not intended to find mutations that 
actually occur in cancer or other diseases, but simply to assess if a possible variation could be harmful to the 
affected protein. LowMACA has the ability to discern those mutations that actually occur in patients, enhancing 
the accuracy of a true functional prediction. 

  



 
 
 

 
Figure S2 
In this panel we show a plot representing the mutual exclusivity between mutations that fall in the same residue 
of individual proteins (left panel) and genes (right panel). Significant patterns are highlighted with the color 
corresponding to the tumor type where the exclusivity was found. We consider mutual exclusive the pairs with a 
corrected p-value below 0.05 using the R package cooccur. In the left panel we narrow down the patterns 
described in figure 1B, highlighting the major role of KRAS G12 and NRAS Q61. Notably, RAC1 P29 and RHOA 
Y42 (described in the main text as potential new driver mutations) retain a pattern of mutual exclusivity with 
NRAS Q61 and KRAS G12, respectively. In the right panel it is possible to appreciate that mutual exclusivity 
between minor genes always occurs with the RAS trio. These genes cover many of the RAS subfamilies, in 
particular RAB3C (Rab subfamily), DIRAS2 and RRAS2 (Ras subfamily) and RAC1 and RHOA (Rho subfamily). 
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Figure S3 
Complete Network of Pfam domains harbored by driver genes. 577 different domains are included in the list of 
453 driver genes from Tamborero et al. that are represented by each circle in the plot. In red, we highlight those 
Pfams that harbor at least one significant hotspot, in green those that resulted not significant. An edge connects 
two domains if at least two genes harbor both the Pfam domains at the vertices. Blue edges are drawn if the 
domains are mutually exclusive (Fisher test < 0.05 is light blue, < 0.01 is deep blue and OR < 1), yellow if co-
occurrening (Fisher test < 0.05 is light brown, < 0.01 is orange and OR > 1), grey if not significant. Excluding 
domains connected by only one gene, 110 out of the 577 are represented in this figure. 
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Figure S4 
Barplots showing the stacking of silent and non-silent mutations within the 4 main Pfams discussed within the 
text (PF00071 - Ras superfamily, PF07714 - Pkinase_tyr, PF00271 - Helicase_C and PF00613 - PI3Ka). On the 
x-axis it is depicted the position in the global alignment, while on the y-axis the mutation frequency of ach 
position. The blue dashed line represent the threshold of significant mutation frequency, which is different for 
each position of the global alignment. Bars above the dashed blue line are significant in terms of their p-vlaue. 
Red asterisks highlight the residues that are significant after Benjamini-Hochberg procedure for multiple testing 
correction of p-value, which is performed only on conserved positions (see Methods). For silent-mutations 
analysis, a database was collected from TCGA original repositories and supplied as external repository for 
LowMACA analysis (see software Vignette for further information). The analysis shows that no hotspots are 
identified in any of the Pfams checked with the use of the silent mutations database, while at least two hotspots 
per Pfam are identified when the repository of non-silent mutations is used (canonical analysis). In particular, 5 
hotspots are identified in Ras domain, 10 in Pkinase_tyr, 2 in Helicase_C and 3 in PI3Ka. 
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