Bokros et al. Fig. S1 (Fig. 1)

Bokros et al. Fig. S2 (Fig. 2)

Bokros et al. Fig. S4 (Fig. 3)

Bokros et al. Fig. S5 (Fig. 3)

Supplemental Figure legends

Figure S1. A comparison of the anaphase entry process in WT, $bmh1\Delta$ and $sgo1\Delta$ cells when *CIK1-CC* is overexpressed. *PDS1-18myc* cells with the indicated genotypes were synchronized in G₁ phase in raffinose medium and then released into synthetic galactose medium. Cells were collected every 15 min for budding index and the preparation of protein extracts. The budding index is shown on the top. Western blotting was performed to show the protein levels of Pds1. Pgk1 levels are shown as a loading control.

Figure S2. The response of *bmh1* Δ mutants to nocodazole treatment. (**A**) *bmh1* Δ cells show metaphase arrest after nocodazole treatment. Cells with the indicated phenotypes and Pds1-18myc were synchronized in G₁ phase and then released into YPD containing 20µg/ml nocodazole. Samples were collected every 20 min for the budding index and the examination of Pds1-18myc protein levels. The percentage of large-budded cells over time is shown on the top and the Western blotting results for Pds1 are shown at the bottom. Pgk1 protein levels are used as a loading control. (**B**) *bmh1* Δ cells show viability loss after release into nocodazole. Log-phase cells with the indicated genotypes were released into YPD medium containing 20µg/ml nocodazole. Samples were collected every hour and plated onto YPD plates. The percentage of viable cells was examined after overnight incubation at 25°C (n > 300).

Figure S3. The sensitivity of $cdc55\Delta$ swe1 Δ to CIK1-CC overexpression and spindle poisons is suppressed by *net1-6Cdk*. (**A**) $cdc55\Delta$ swe1 Δ cells show sensitivity to CIK1-CC overexpression, which is rescued by *net1-6Cdk*. Saturated cells with the indicated genotypes were 10-fold serial diluted, spotted onto glucose and galactose plates, and then incubated at 30°C for 2 days before scanning. V (vector), CC ($P_{GAL}CIK1$ -CC). (**B**) CIK1-CC overexpression induces viability loss in $cdc55\Delta$ swe1 Δ , which is suppressed by *net1-6Cdk*. Log-phase cells with the indicated genotypes were first grown in raffinose medium and then released into 2% galactose medium. Samples were taken every 2 hr and spread onto YPD plates. After incubation at 25°C overnight, the percentage of viable cells was counted (n > 300). (**C**) The sensitivity of cdc55 mutants to benomyl. Saturated cells with the indicated genotypes were 10-fold serial diluted, spotted onto YPD plates containing 15µg/ml benomyl, and then incubated at 30°C for two days before scanning. (**D**) Nocodazoleinduced viability loss in $cdc55\Delta$ swe1 Δ is rescued by *net1-6Cdk*. Log-phase cells with the indicated genotypes were released into YPD medium containing 20μ g/ml nocodazole. Samples were taken every 2 hr and spread onto YPD plates. After incubation at 25°C overnight, the percentage of viable cells was counted (n > 300).

Figure S4. Overexpression of *CIK1-CC* delays FEAR activation. *cdc15-2 CDC14-GFP* cells with a control vector and a P_{GAL} -*CIK1-CC* plasmid were arrested in G₁ phase and then released into galactose medium at 36°C. Cells were collected every 15 min to examine the nucleolar localization of Cdc14. Here shows the percentage of large-budded cells as well as cells with released Cdc14.

Figure S5. The sensitivity of $cdc55\Delta$ swe1 Δ to CIK1-CC overexpression is partially suppressed by *fin1* Δ . Saturated cells with indicated genotypes were 10-fold serial diluted, spotted onto glucose and galactose plates, and then incubated at 30°C for 2 days before scanning. V (vector), CC ($P_{GAL}CIK1-CC$).

Figure S6. *fin1* Δ mutant cells show delayed cell cycle after SAC challenge. (**A**) The cell cycle progression of WT and *fin1* Δ mutant cells in the absence and presence of low concentration of nocodazole. Cells were synchronized in G₁ phase and then released into 30°C YPD with or without 3µg/ml nocodazole. Cells were collected every 20 min to count the percentage of large budded cells. (**B**) *fin1* Δ cells show delayed recovery from nocodazole arrest. Cells in exponential phase were treated with 20µg/ml of nocodazole for 2 hrs and then released into 30°C YPD medium. Cells were collected over time to determine the budding index. (**C**) *fin1* Δ suppresses the benomyl sensitivity of *ipl1-321* mutant. Saturated cells with the indicated genotypes were 10-fold diluted and spotted onto plates with and without 15µg/ml of benomyl. The plates were scanned after incubation at 25°C for 2 or 3 days.

Figure S7. The working model for the function of Fin1 pathway in SAC regulation.

Table S1. Strains used in this study.

Strains	Relevant Genotypes	Reference
JBY649	MATa PDS1-18myc-LEU2	Lab stock
2024-9-3	MATa sgo1A::KanMX PDS1-18myc-LEU2	Lab stock
2814-6-1	MATa bmh1A::Sphis5+ PDS1-18myc-LEU2	This study
CG001	MATa bmh2A::Sphis5+ PDS1-18myc-LEU2	This study
771-4-1	MATa mad1∆::HIS3 PDS1-18myc-LEU2	Lab stock
2897-4-2	MATa fin1\Delta::Sphis5 ⁺ PDS1-18myc-LEU2	This study
2898-1-4	MATa $bmh1\Delta$::KanMX fin1 Δ ::Sphis5 ⁺ PDS1-18myc-LEU2	This study
2818-1-4	MATa promURA3::tetR::GFP-LEU2 CENIV::tetOX448::URA3 TUB1-mCherry-URA3	Lab stock
2372-1-4	MATa sgo1A::KanMX promURA3::tetR::GFP-LEU2 CENIV::tetOX448::URA3 TUB1- mCherry-URA3	Lab stock
2854-4-3	MATa bmh1A::Sphis5 ⁺ promURA3::tetR::GFP-LEU2 CENIV::tetOX448::URA3 TUB1- mCherry-URA3	This study
2849-4-1	MATa MAD1-3HA-URA3	Lab stock
2823-7-1	MAT a bmh1∆::Sphis5 ⁺ MAD1-3HA-URA3	This study
2781-9-1	MATa mcd1-1-trp1:Sphis5+ MAD1-3HA-URA3	Lab stock
2954-2-2	MATa mcd1-1-trp1:Sphis5 ⁺ bmh1\Delta::Sphis5 ⁺ MAD1-3HA-URA3	This study
2859-3-3	MATa BUB1-13myc- Sphis5 ⁺	Lab stock
2994-2-3	MATa bmh1:: KanMX BUB1-13myc- Sphis5+	This study
2862-9-4	MATa mcd1-1-trp1:Sphis5 ⁺ BUB1-13myc- Sphis5 ⁺	Lab stock
2882-2-2	MATa mcd1-1-trp1:Sphis5 ⁺ bmh1:: KanMX BUB1-13myc- Sphis5 ⁺	This study
CG002	MATa mcd1-1-trp1:Sphis5 ⁺	This study
3003-2-2	$MATa mcd1-1-trp1:Sphis5^+ bmh1\Delta::KanMX fin1\Delta::TRP1 BUB1-13myc-Sphis5^+$	This study
844-2-2	$MATa swel\Delta::LEU2 cdc55\Delta::Sphis5+$	Lab Stock
3086-1-1	$MATa$ swe1 Δ :: $LEU2$ cdc55 Δ ::Sphis5 ⁺ net1 Δ ::HIS3 net1-6Cdk1-TRP1	This study
3076-2-2	MATa swe1A::LEU2 cdc55A::Sphis5 ⁺ promURA::tetR::GFP-LEU2 CENIV::tetOX448::UR43 TUB1-mCharry-UR43	This study
3081-3-3	MATa mcd1_1_trn1Snhis5+swe1AIFU2 cdc55ASnhis5+BUB1_13myc_Snhis5+	This study
411_1_1	$MATa swall \cdots IFII?$	I ah stock
3080-1-2	MATa swell: $LEU2$ cdc55 Λ ··Sphis5 ⁺ fin 1Λ ··KanMX	This study
3195-4-3	MATa fin1ATRP1 NIJF2-mCherry MATa bmh1KanMX fin1ATRP1 NIJF2-	This study
5175 1 5	mCherry	This study
3195-1-3	MATa bmh1:: KanMX fin1∆::TRP1 NUF2-mCherry	This study
3200-1-3	MATa swe1 Δ ::TRP1 cdc55 Δ ::Sphis5 ⁺ fin1 Δ ::TRP1 NUF2-mCherry	This study
3140-4-3	$MATa \ cdc13-1 \ fin1\Delta::TRP1$	This study
3140-1-1	$MATa \ cdc13-1 \ bmh1\Delta::KanMX \ fin1\Delta::TRP1$	This study
3156-1-2	MATa $cdc13-1 cdc55\Delta$::Sphis5+fin1 Δ ::TRP1	This study
3012-8-2	$MATa fin I\Delta$:: Kan MX	This study
3203-1-3	MATa fin1A::KanMX BUBI-I3myc-Sphis5 ⁺ CFIII(URA3, sup11)	This study
3145-7-1	MATa NUF2-mCherry	This study
2857-8-1	MATa BUBI-GFP- Sphis5 ⁺ NUF2-mCherry	Lab stock
3196-1-3	MATa fin1A::KanMX BUBI-GFP- Sphis5' NUF2-mCherry	This study
3196-10-4	MATE L 15-2 G LA K AVY DUPL OF D G L' 5+ NUF2 - GL	This study
3196-3-1	MAIa caci5-2 $fin1\Delta$::KanMX BUBI-GFP- Sphis5 ⁺ NUF2-mCherry	This study
191-19-4	MATa init 221 fm 1A V m MV	Lab stock
5160-1-2 975 0 1	MATe edel5 2 CDC14 CED TDD1	I ms study
0/J-2-1	MATE coold Schieft DUD1 CED Salieft MUED Charme	LaD SLOCK
3210-1-4	MATu useraspriisj bubi-GFF- spriisj NUF2-mUnerry	i ilis study