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Figure S1: ESC differentiation into ME and NE cell fates and quantification of TF levels. 

Related to Figure 1.  

The pluripotency of ESCs is maintained by an ensemble of interlinked TFs (Chen et al., 2008; 

Cole et al., 2008; Dunn et al., 2014; Kim et al., 2008; MacArthur et al., 2012) (A). The network 

is redrawn from Kim et al (Kim et al., 2008) to show the regulatory relationships among the key 

nine members of the extended pluripotency network, and to incorporate Tcf3-mediated inhibition 

of Nanog, Oct4 and Rex1 (Cole et al., 2008; Pereira et al., 2006; Wray et al., 2011). Green and 

red arrows indicate activation and inhibition, respectively, through gene regulation. 

Changes in mean fluorescence intensity of Nanog, T and Sox1-GFP at increasing concentrations 

of CHIR and Activin (B) and Retinoic acid (RA) (C).  Changes in the proportion of ES, ME and 

NE cells at increasing concentrations of CHIR and Activin (D) and Retinoic acid (RA) (E). The 

error bars show the standard deviation from triplicate measurements. (F) Overview of the method 

and sample collection for ESC differentiation into either the ME and NE cell fates. ESCs were 

kept in serum plus leukemia inhibitory factor (LIF) (SL) for 24 hrs, which was replaced with 

basal N2B27 supplemented with LIF and Bmp4 (LB) for 24 hrs; cells were then washed and the 

medium was replaced with fresh N2B27 without LIF and BMP but containing either ME- or NE-

specific differentiation signals. Cell populations were collected for quantitative immuno-

fluorescence at time periods 0, 24, 32, 40, …, 120 hrs for fate marker analysis shown in Figure 

1B and C, and every 8 hrs up to 96 hrs for TF analysis shown in Figure 1D and E.  

(G) In each immuno-fluorescence experiment, up to three proteins were stained using the 

primary antibody against each protein and the host-specific secondary antibody conjugated with 

one of the Alexa-fluor 488, 568 and 647 fluorophores. As a fourth channel, nuclear DNA was 

stained using DAPI. Multiple combinations of three proteins were chosen to accommodate all 13 



 
 

 

proteins (P) measured; Oct4 was kept common (as P1 in the 488 channel) across all 

combinations; as P2 and P3, the 568 and 647 channels were used, respectively, to immuno-stain 

the remaining 12 proteins in various combinations. 

(H) Box plots showing single-cell distributions of Oct4 in pluripotent cells (differentiation time = 

0h) from multiple immuno-fluorescence combinations, as described in (G), confirming the 

reproducibility of data across multiple stainings. 

(I) & (J) Box plots showing single-cell distributions of Oct4, as one representative of the 13 

proteins being analyzed, during the ME and NE differentiation process, respectively, at the 

indicated time points from 0 to 96 hrs. 

 

 



 
 

 

 



 
 

 

Figure S2: Principal component analysis and dynamic Bayesian network to identify key 

regulators of differentiation. Related to Figure 2. 

PCA analysis of temporal data of ten TFs by inclusion of either Klf5 (A), p53 (B) or Tbx3 (C) to 

the data from nine TFs - Oct4, Nanog, Sox2, Klf4, Rex1, Nac1, Zfp281, Dax1 and cMyc. 

PCA analysis by exclusion of indicated TF from the ten TFs (above nine plus Tcf3): Nac1 (D), 

Oct4 (E), Sox2 (F), Klf4 (G), Nanog (H), cMyc (I), Rex1 (J), Zfp281 (K) and Dax1 (L). 

(M) Contribution of each of the 13 TFs to the first three PCs are shown as PC coefficients. 

(N) Dynamic Bayesian Network (DBN) schematic: i, j and k represent nodes (TFs in our case) at 

successive time points; t0, t1 and t2. Arrows in a Bayesian network indicate potential causal 

relationships between nodes. A DBN adds the element of time and allows protein levels at time 

point ‘t’ to causally depend on protein levels at time point ‘t-1’ (arrows). The causalities 

implemented by the arrows are described by joint probability distributions which are chosen to 

best account for the observed correlations in the data.  (O and P) Changes to posterior probability 

from time t to t-1 for ME and NE from DBN analysis of differentiation data for ten TFs - Oct4, 

Nanog, Sox2, Klf4, Rex1, Nac1, Zfp281, Dax1, cMyc and Tcf3. The first three and the last time 

points (0h, 8h, 16h and 96h), which are not shown in the plots, were used to assist the DBN 

algorithm to recognize the initial and final states of the network. The peaks at 32hrs indicate the 

maximum changes observed (from 0 to 0.8 for ME and 0 to 0.4 for NE). Although additional 

major peaks are observed, at 72hrs for ME and 64hrs for NE, the posterior probability change 

between these times and their previous time (64hrs for ME and 56hrs for NE) are much smaller. 

The shades within ME and NE indicate results from repeated and independent runs of the DBN 

analysis. Further details of DBN analysis are described in the Supplemental Procedures. 

 



 
 

 

 



 
 

 

Figure S3: Single cell quantitative pattern of key TFs in ES, ME and NE conditions. 

Related to Figure 3. 

Scatter plots for Oct4 and Sox2 (A); Oct4 and Nanog (B); Oct4 and Klf4 (C); Nac1 and Oct4 

(D); Nac1 and Sox2 (E); and, Oct4 and Tcf3 (F) under the ES condition. Pearson correlation 

coefficients (R) from a linear fit are shown. Indicated TF levels (except Tcf3) were normalized to 

their single cell maximum under the ES condition as explained in the main text and 

Supplemental Procedures. Since Tcf3 levels were maximal in NE condition, its levels was 

normalized to its maximum in the NE condition. (G) Heatmap of pair-wise correlations among 

the indicated six TFs identified in the computational data analysis. Normalized Pearson 

correlation coefficients observed with protein levels in ES condition are shown.  

Scatter plots for T and Sox1-GFP, under ME (H) and NE (I) differentiation conditions. Chiron 

(Wnt3a agonist) with Activin-A exclusively induced ME fate choice and retinoic acid 

exclusively induced the NE choice. Qualitative images (left) and quantitative single cell 

measurements (right) for Nanog (J & K) and Klf4 (L & M) in ME and NE differentiation 

conditions. The TFs and T were immuno-stained in the Sox1-GFP ES cell line. Max-normalized 

fluorescence intensities of Nanog and Klf4 against the T (ME marker) and Sox1-GFP (NE 

marker) levels are shown. For comparative purposes, fate marker signals were normalized across 

all conditions (i.e. ME and NE) by their maximum in the respective differentiation condition – 

ME for T and NE for Sox1-GFP. Similarly Nanog and Klf4 signals were normalized across all 

conditions by their maximum under ES condition. Cells were fixed, stained and measurements 

were done at 72 hrs of differentiation. Scale bars represent 35 µm.  

 

 



 
 

 

 

  Figure S4 

Figure S4: Differential expression of additional TFs in ME & NE cells. Related to Figure 3. 

Qualitative images (left) and quantitative single cell measurements (right) for Esrrb (A & B), 

Sall4 (C & D), Smad1 (E & F), and E2f1 (G & H) in ME and NE differentiation conditions. 

Measurements and normalizations were performed as in figure S3. Scale bars represent 50µm. 



 
 

 

 

 

 



 
 

 

Figure S5: Tests of siRNAs for down-regulating the TF levels and on ES survival. Related 

to Figure 4. 

Immuno-fluorescence images of ESCs transfected with either scrambled siRNA (neg) or 

indicated target specific siRNA pool for Klf4 (A), Sox2 (B), Tcf3 (C), Oct4 (D), Nanog (E) and 

Nac1 (F). Cells were transfected with 25 nM of the indicated gene-specific siRNA pool, 

maintained under ES condition for 72 hrs, and then fixed and immuno-stained. Scale bars 

represent 35µm. (G) Box plots showing the distributions of single cell quantifications for 

changes in the indicated TF levels when ESCs were transfected with either scrambled siRNA 

(neg) or target specific siRNA pool. (H) Proportion of proliferating ESCs (colonies) upon 

transfection with either scrambled siRNA (neg) or the indicated target specific siRNA pool. ES 

colonies were stained for alkaline phosphatase after six days of siRNA transfection. WT: wild 

type, non-transfected ESCs. The error bars show the standard deviation from triplicate 

measurements. Sox1-GFP and T scatter plot for single cells upon transfection of ESCs with 

scrambled siRNA (neg-si) during no differentiation (ES condition) (I), during ME differentiation 

(J) and during NE differentiation (K). Single cell quantifications were performed at 72 hrs post 

transfection. In G and I – K, single cell signals are normalized to the maximal signal observed 

from non-transfected ESCs under the ES (for TFs), ME (for T) or NE (for Tcf3 and Sox1) 

conditions. 

 



 
 

 

 



 
 

 

Figure S6: Changes in the TF levels in cells with Nac1 or Oct4 down-regulation during ME, 

and Sox2 or Tcf3 down-regulation during NE differentiation. Related to Figures 5 and 6. 

Nac1 (A), Tcf3 (B) and Nanog (C) levels in cells with siRNA mediated Oct4 down-regulation 

during ME differentiation. (D) Nanog levels in cells with siRNA mediated Nac1 down-

regulation during ME differentiation. Oct4 (E), Nac1 (F), Tcf3 (G) and Nanog (H) levels in cells 

with siRNA mediated Sox2 down-regulation during NE differentiation. Oct4 (I), Nac1 (J), Sox2 

(K) and Nanog (L) levels in cells with siRNA mediated Tcf3 down-regulation during NE 

differentiation. Changes to single cell level of T upon Nac1 (M) and Oct4 (N) down-regulation 

during ME differentiation, Sox1-GFP upon Sox2 (O) and Tcf3 (P) down-regulation during NE 

differentiation. (Q) Box plots showing single cell distributions for changes in T and Sox2 levels 

when ESCs were transfected with either scrambled siRNA (neg) or target specific siRNA pool 

during ME differentiation. (R) The mathematical model captured the mutually exclusive ME and 

NE fate choice, also observed with experimental data (Figure S3H and I). (S) Model predictions 

for changes in Nac1, Tcf3, Sox2 and Oct4 levels on partial knock-down (KD) of indicated 

proteins in ME (red) and NE (blue) conditions. 

Cells were transfected 12 hrs prior to the addition of signals and measurements were done at 72 

hrs of differentiation. TF levels were normalized as in Figures 4, with maximal signals in cells 

mock-transfected with scrambled siRNA (negative control) under the same experimental 

conditions. Dashed lines indicate the expected maximum of the indicated protein from mock-

transfected cells in ME or NE condition. Increased loss of Nanog with TFs down-regulation 

during differentiation indicated the augmented loss of non-differentiating portion (ES) of cells 

(C, D and H). In consistent, Nac1 and Oct4 levels observed with Sox2 down-regulation during 

NE (E and F) reflected their levels as observed in only the NE positive cells (Figure 3B and D). 



 
 

 

 



 
 

 

Figure S7: Analysis of differential Nac1 binding to its targets in ES, ME and NE cells. 

Related to Figures 6 and 7. 

(A - D) Scatter plots showing the single cell quantifications for changes in T and Sox1-GFP 

levels upon down-regulation of the indicated key TF during ME differentiation.  

(E - H) Scatter plots showing the single cell quantifications for changes in T and Sox1-GFP 

levels upon down-regulation of the indicated key TF during NE differentiation.  

Signals were normalized as in Figures 4, with maximal signals in cells mock-transfected with 

scrambled siRNA (negative control) under the same experimental conditions.  

(I) Nac1 targets verification by quantitative PCR (qPCR). Selected Nac1 target loci were verified 

by site-specific qPCR analysis in ChIP samples from ES, ME and NE cells. qPCR was validated 

by previously known Nac1 binding on Oct4, Sox2 and Nanog regions (shaded) and non-targets. 

Y-axis represents the relative fold enrichment of Nac1 binding at the target loci tested from three 

independent reactions. Fold enrichment is normalized to the negative control Igx1a. Error bars 

represent standard deviation. (J) Gene ontology and pathway terms enriched among the genes 

associated with Nac1 binding regions in ES, ME and NE cells. (K) Mouse phenotype terms 

enriched among the genes associated with Nac1 binding regions in ESCs. Data in (J) and (K) are 

shown graphically according to their p values (x axis) and the associated functional category (y 

axis). 

 

 

 

 

 

 

 



 
 

 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

 

Embryonic stem cell (ESC) culture 

The mouse ESC lines used in this study; R1 (E14-Tg2A), Bry-GFP (Fehling et al., 2003) and 

Sox1-GFP (Ying et al., 2003), were maintained by culturing on gelatin (0.1%) in Serum-LIF 

(SL) medium: Knock out DMEM (Gibco, US) supplemented with non-essential amino acids, 

sodium pyruvate, L-Glutamine, β-mercaptoethanol, 15% fetal calf serum (Hyclone) and 

Leukemia Inhibitory Factor (LIF – 1000u/ml) (Millipore # ESG1106). Cell medium was changed 

daily and cells passaged every two to three days at a dilution of 1 in 10.  

 

ESC differentiation 

To differentiate ESCs into either mesendoderm (ME) or neuroectoderm (NE), ESCs were first 

plated in Serum-LIF medium, on coated 24 well plates, at a density of 12,000/ml. After 24 hrs of 

incubation, cells were washed twice with 1xPBS (- Cacl2, –MgCl2) and fed with fresh N2B27 

(Gibco, US) containing LIF and BMP-4 (Stemgent # 03-0007) as described previously (Ying and 

Smith, 2003; Ying et al., 2008). After 24 hrs of further incubation, cells were washed twice with 

1xPBS and induced with specific differentiation signals using N2B27 (without LIF and BMP-4) 

as base medium: CHIR99021 (Stemgent # 04-0004-02) with Activin-A (R&D Systems # 338-

AC-010) for ME differentiation and Retinoic acid (Sigma) for NE differentiation (Sterneckert et 

al., 2010; ten Berge et al., 2008; Thomson et al., 2011; Ying et al., 2003). Cells were 

differentiated for up to 120 hrs (data in Figure 1B and C), 96 hrs (for data in Figure 1D and E) or 

72 hrs as indicated. Differentiation medium was replaced daily to reduce the influence of 

increased concentration of secreted factors. Samples for quantitative immuno-fluorescence were 

taken at indicated time points. 

 

In order to estimate the optimal differentiation conditions, we first tested different concentrations 

of ME and NE inducing signals (Fig. S1B - C) by using an ES cell line stably expressing Sox1-

GFP which has been shown to identify cells adopting the NE fate (Ying et al., 2003). We 

simultaneously measured Sox1-GFP, Nanog and Brachyury (T) protein levels at 84 hrs of 

differentiation (Thomson et al., 2011). While the GFP signal was used to measure Sox1 levels, 

immunostaining of the same cell populations was used to measure Nanog and T levels. Nanog is 



 
 

 

generally regarded as a marker of pluripotency (Chambers et al., 2007; Kalmar et al., 2009; Silva 

and Smith, 2008), and T has been shown to identify cells adopting the ME fate (Gadue et al., 

2006). We used changes in T and Sox1 levels as outputs to estimate the changes in ME and NE 

fates respectively. Quantitatively, while Nanog levels steadily decreased in both fates, T and 

Sox1 marker levels increased with increasing ME and NE signal concentrations respectively 

(Fig. S1B - C). At the maximum concentrations, however, both T and Sox1 signals decreased, 

which might be due to increased cell death observed, especially with RA, or other unintended 

effects at these concentrations. Changes in the proportion of ES, ME and NE cells at increasing 

concentrations reflected the changes in their respective marker levels (Fig. S1D - E). Although a 

minor proportion of ME and NE cells was observed at zero or low signal concentrations, the cell 

fates remained mutually exclusive. These results indicated that ME cell fate was maximal at 3uM 

of CHIR and 100ng/ml of Activin, and NE cell fate was maximal at 500nM of RA, without 

significant cell death. Hence, we used these signal concentrations to respectively induce the ME 

and NE cell fates. 

 

Perturbations 

TF down-regulation using siRNA 

We used siRNA perturbation to test the functional significance of key TFs identified through 

PCA and DBN data analysis. We used the ON-TARGET plus SMART pool siRNA from 

Dharmacon (Thermo scientific). Each SMART pool included up to four siRNA constructs 

specific to different regions of a given target. The pooling strategy allowed us to efficiently 

knock-down the expression levels of Nac1, Oct4, Tcf3, Sox2, Klf4 and Nanog. We validated the 

siRNAs for their effects of ESC survival and their efficiency in down-regulating the target gene. 

Three days after transfection, the target protein levels were significantly reduced, as measured by 

the immuno-fluorescence of the target protein specific antibody (Figure S5A – F). Prolonged 

incubation, up to six days, severely compromised the ES survival (with Nanog, Sox2, Oct4 and 

Nac1 knock-out), as measured by the alkaline phosphatase colony assay (Figure S5H). 

Transfection of siRNAs was performed using DharmaFECT reagent (Thermo Scientific) by 

following the manufacturer instructions. Cells were transfected in 24 well plates with a final 

concentration of 25nM of SMART pool siRNA for each target. Mock-transfection with similar 

concentrations of scrambled siRNA pool was used as negative controls. 



 
 

 

In order to down-regulate TFs during the ME and NE differentiation process, siRNA transfection 

was performed after 24 hrs of incubation in N2B27 containing LIF and BMP-4. Cells were 

incubated with transfection reagent with either the scrambled SiRNA pool or the indicated target 

siRNA pool for 12 hrs, washed twice with 1xPBS followed by the addition of N2B27 medium 

containing either ME or NE specific differentiation signals. Cells were allowed to differentiate 

for 72 hrs before fixing and processing for immuno-fluorescence assays. 

 

Sequence for siRNA constructs: 

Nac1: CAGAUGAGCAGUACCGUCA, GAAUAAACAAGACGCCUUU, 

CCACAAUGAAGAGGACGAA and CCACCUUAGUCACGAGCUA. 

Oct4: CAAGGGAGGUAGACAAGAG, UCACUCACAUCGCCAAUCA, 

GCUCAGAGGUAUUGGGGAU and GAGAAAGCGAACUAGCAUU. 

Kl4: AGAUUAAGCAAGAGGCGGU, CCAUUAUUGUGUCGGAGGA, 

CCGAGGAGUUCAACGACCU and CGACUAACCGUUGGCGUGA. 

Tcf3: GAUCUGAGGUUAAUGGCUC, GGGCCAGUCUUUUGCAUAA, 

AGAGGCGUAUGGCCAAUAA and CCGGAUCACUCCAGCAAUA. 

Nanog: GCUAUAAGCAGGUUAAGAC, GAACUACUCUGUGACUCCA, 

CAAGAACUCUCCUCCAUUC and CCAGUGAUUUGGAGGUGAA. 

Sox2: GGACAGCUACGCGCACAUG, GCUCGCAGACCUACAUGAA, 

GCACCCGGAUUAUAAAUAC and GAAGAAGGAUAAGUACACG. 

 

Over-expression of TFs 

Rescue of TF levels during differentiation (Figure 4E – H) was achieved through their ectopic 

over-expression from pmCherry-N1 vector containing CMV promoter. Individual TF plasmid 

constructs were co-transfected with siRNA, using DharmaFECT reagent (Thermo Scientific), 12 

hrs prior to the addition of differentiation signal. To over-express Nac1 during NE differentiation 

(Figure 6H), pN1-Nac1-mCherry construct was transfected using Lipofectamine 2000 for 12 hrs 

before inducing the differentiation. Expression of the Nac1-mCherry fusion was driven by CMV 

promoter. Transfected positive cells were detected by imaging the Nac1-mCherry fusion protein. 

 

 



 
 

 

Alkaline phosphatase assay 

We used the alkaline phosphatase (AP) based ES colony assay to assess the effects of ON-

TARGET plus SMART pool siRNAs (Figure S5G) on ESCs survival. We used the AP detection 

kit (Millipore # SCR004) and followed the manufacturer instructions. Briefly, triplicates for each 

sample in 24 well plate were fixed for 2 minutes with 4% formaldehyde, rinsed with 1x TBST 

(20mM Tris-Hcl, pH 7.4, 0.15M NaCl, 0.05% Tween-20), incubated with Naphthol/fast red 

violet solution in dark at room temperature for 15 minutes. Colonies were rinsed with 1x TBST 

and covered with 1x PBS, imaged and number of red violet colonies were counted.  

 

Quantitative immuno-fluorescence 

Immuno-fluorescence 

Immuno-fluorescence method was adapted from previously described methods (Kalmar et al., 

2009; Munoz Descalzo et al., 2012). ESCs were grown on tissue culture treated plastic or 

coverslips in 24 well plates and fixed with 4% paraformaldehyde in BBS (50mM BES Sodium 

salt, 280mM NaCl, 1.5mM Na2KPO4 and pH 6.96) with 1mM CaCl2 for 15 minutes. Cells were 

then washed thrice and blocked with BBT-BSA buffer (BBS with 0.5% BSA, 0.1% Triton and 

1mM CaCl2) for 45 minutes at room temperature. Cells were incubated in a humid chamber, at 

4⁰C for overnight with primary antibodies, washed thrice with BBT-BSA and incubated with 

fluorophore-conjugated secondary antibodies for 1 – 2 hrs in dark and at room temperature. Cells 

were then washed with BBS – CaCl2, stained for DAPI, mounted using vectashield and imaged.  

 

Primary antibodies used have been either validated in the literature or in this study (MacArthur et 

al., 2012; Munoz Descalzo et al., 2012; Thomson et al., 2011): Nanog (eBioscience 14-5761, 

1:300), Sox2 (Santa Cruz sc-17320, 1:300; Cell Signaling 4900, 1:500), Oct4 (Santa Cruz sc-

5279, sc-8628, 1:300), Nac1 (Abcam ab29047, 1:600), Tcf3 (Santa Cruz sc-8635, 1:300), Klf4 

(Santa Cruz sc-20691, 1:300), Rex-1(Santa Cruz sc-50670, 1:300; Abcam ab28141, 1:600), 

Dax1 (Santa Cruz sc-841, 1:300), cMyc (Santa Cruz sc-764, 1:300), Zfp281 (Abcam ab101318, 

1:600), Brachyury (Santa Cruz sc-17743, 1:300), Tbx3 (Santa Cruz sc-17871, 1:300), Klf5 

(Santa Cruz sc-12998, 1:300) and p53 (Santa Cruz sc-6243, 1:300). Secondary antibodies 

conjugated to either Alexa 488, 568 or 647 flourophores (Molecular probes, Life technologies) 

were used at 1:500 dilution. 



 
 

 

For the initial data collection with all proteins under ME and NE differentiation conditions 

(Figure 1D and E), proteins were stained in combinations of three with Oct4 being common in 

all combinations (Figure S1). Up to eight combinations were created to accommodate all 13 

proteins. All the combinations were stained and imaged with cells taken at every 8th hour, up to 

96 hrs from the onset of differentiation. 

 

Imaging 

Images were acquired with a Nikon Ti motorized inverted microscope fitted with perfect focus 

and Yokagawa CSU-X1 spinning disk confocal systems, 20x Plan-Apochromatic objective (NA 

.75) and with Hamamatsu ORCA-AG cooled CCD camera. While Lumencor 

SOLA fluorescence light source was used to excite DAPI, Spectral Applied Research LMM-5 

laser merge module with AOTF controlled solid state lasers: 488nm (100mW), 561nm (100mW) 

& 642nm (101mW) was used to excite 488, 568 and 647 flourophores respectively. QUAD 

405/491/561/642 dichroic mirror along with 525/50, 620/60 and 700/75 filters were used 

respectively for 488, 568 and 647 fluorophore emission collection (Chroma technologies). 

395/25 Excitation and 460/25 emission filters were used for DAPI (Chroma technologies). 

Images were acquired using MetaMorph software.  

 

Image analysis and fluorescence quantification 

Qualitative analysis of images to capture the co-localization of a protein with respect to the ME 

(Brachyury) and NE (Sox1) fate marker or other proteins was carried out using either Fiji (Image 

J) or MetaMorph software. Gamma, brightness, and contrast were adjusted on displayed 

images (identically for compared image sets).  

 

Fluorescence intensities were quantified by semi-automated image analysis through Cell Profiler 

software (Broad Institute) (Carpenter et al., 2006). A custom Cell Profiler pipeline was created 

for image analyses. Images were segmented and individual cells were identified using DAPI 

signals. Similar results were observed, with ME or NE positive cells, in tests with segmentations 

using either Brachyury (for ME) or Sox1 (for NE) signals. In order to avoid large variations of a 

given protein in multiple stainings and across different conditions, we chose to quantify the 



 
 

 

“mean fluorescence intensity” instead of total fluorescence from individual cells. Mean 

fluorescence was extracted for each of the multiple fluorophore probes used in a given staining.  

 

Normalization 

In order to capture the quantitative differences in protein levels across different cell populations 

we performed max normalization of data collected under identical conditions (immuno-

fluorescence, imaging and batch of experiments).  

 

To understand the dynamic changes to protein levels during differentiation process (Figure 1D 

and E), medians of protein level across all time points were normalized to their maxima under a 

specific differentiation condition (i.e. ME or NE). 

 

To better visualize varying protein levels across undifferentiated (ESCs), ME and NE cells, 

single cell data of a give protein was normalized across all three conditions by the signal from a 

condition where it was maximum. Specifically, we did the following. 

1. Nac1, Oct4, Sox2, Nanog, Klf4, Esrrb, Sall4, Smad1 and E2f1 were maximal in 

undifferentiated ESCs under pluripotency condition and hence their data across all 

conditions were normalized to their respective maxima in ESCs (Figures 3, S3 and S4). 

2. The Tcf3 level was maximal in the NE differentiation condition. Hence, its maximum 

under the NE condition was used to normalize its expression across all conditions. 

3. The maximum signal of Brachyury (ME marker) observed under the ME differentiation 

condition was used to normalize its expression across all conditions. 

4. Similarly, the maximum signal of Sox1 (NE marker) observed under the NE 

differentiation condition was used to normalize its expression across all conditions. 

5. In siRNA mediated perturbation experiments (Figures 4, 5 and 6), similar max-

normalization was employed but by using the maximal signals from cells mock-

transfected with scrambled siRNA pool (negative control), maintained in ES condition  

(for TFs) or subjected to ME  (for T) or NE (for Tcf3 and Sox1) differentiation.  

6. In the TFs rescue experiments (Figures 4 and 6), data was similarly normalized to the 

maximal signals from ESCs mock-transfected with scrambled siRNA pool and or an 

empty plasmid, maintained in ES condition or subjected to ME or NE differentiation. 



 
 

 

Flow cytometry 

For flow cytometry data shown in Figure 6H, Sox1-GFP ESCs were harvested by trypsinization, 

washed twice with PBS and resuspended in PBS at 2x106 cells per sample. Cells were then 

filtered to remove aggregates and fluorescence data was collected immediately on a BD LSRII 

flow cytometer equipped with 405 nm, 488 nm, 561 nm, and 633 nm lasers. Flow cytometry data 

was analyzed using FlowJo. 

 

Chromatin Immunoprecipitation 

Chromatin immunoprecipitation (ChIP) for Nac1 followed by next-generation sequencing (ChIP-

Seq) was used to analyze Nac1 binding to the regulatory regions of its targets including other key 

TFs (Oct4, Sox2, Tcf3, Nanog and Nac1 itself). ChIP followed by quantitative PCR (ChIP-

qPCR) was used to validate the targets identified in ChIP-Seq analysis. ChIP was performed 

using the Magna ChIP reagents (Upstate # 17-409) and by following the manufacturer 

guidelines. Approximately 106 of ESCs grown with LIF and BMP4 and FACS sorted T-GFP and 

Sox1-GFP positive cells (at 72 hrs of differentiation) were used to perform ChIP. Cells were 

fixed with 1% formaldehyde, lysed, and the chromatin was sheared using Vibra Cell Sonicator 

(Sonics) at 60% power for 7 cycles of 15 seconds sonication followed by 50 seconds incubation 

on ice. Nac1 ChIP was performed using 3µg of antibody (Abcam ab29047).  Separate CHIP for a 

positive control - anti-polymerase II (Upstate 05-623B) and a negative control - normal mouse 

IgG (Upstate 12-317B) were performed.  

 

ChIP-Seq analysis: Next-generation sequencing was performed using Illumina HiSeq2500 with 

50 cycles. Sequences from the Nac1 ChIP-seq were aligned against National Center for 

Biotechnology Information Build 37 (mm9) of mouse genome using Bowtie (Langmead et al., 

2009), allowing up to two mismatches. Only reads that were uniquely mapped to the genome 

were preserved. ChIP data were compared to input chromatin and peaks were called by MACS 

(version 1.4.1) with p value cutoff of 1e-05 (Zhang et al., 2008). Nearest genes and TSS were 

assigned to peaks by GREAT (McLean et al., 2010) and ChIP-Enrich (Welch et al., 2014). Motif 

discovery and the significance of discovered motifs were performed using DREME (Bailey, 

2011) and TOMTOM (Gupta et al., 2007) respectively. The gene ontology and pathway enrich 

analyses were performed using GREAT (McLean et al., 2010) and ChIP-Enrich (Welch et al., 



 
 

 

2014). The ChIP-seq sequences for Oct4, Nanog, Sox2, Klf4, cMyc, E2f1 and Zfx were obtained 

from (Chen et al., 2008) and were subjected to similar analysis to identify their target genes, and 

profile them against Nac1 targets. 

 

ChIP-qPCR 

Selected Nac1 binding targets were validated and its differential binding to these sites was 

verified by qPCR analysis with ChIPed DNA from ES, ME and NE cells (Figure S7). Known 

Nac1 binding sites for Oct4, Sox2 and Nanog were used to validate the ChIP-qPCR (Kim et al., 

2008). qPCR was performed in triplicates on CFX96 RT-System (Bio-Rad) using the RT2 SYBR 

Green Fluor (Qiagen #330510). Ct values were first normalized to the input and then to the 

normal mouse IgG (negative control) to calculate fold enrichment (2ΔΔCt). Relative fold 

enrichment was calculated over negative control Igx1a (ORF free intergenic region). The primers 

used for qPCR analysis are listed in the below table. 

 

ChIP-qPCR primer sequences 

Primer name Gene 

Approximate 

distance from 

TSS 

Forward sequence Reverse sequence Qiagen ID 

Amt_dn1 Amt downstream 1kb CTAATCTGCGGAGTGGCTCTT CCTCACCTGGGTTAGCTGTAGT 
 

Apc_up0.5 Apc upstream 0.5kb TGCTGCGGCTGCGCAGTCCAAT 
AGCTCCCCCAAGGTAGCGGCCG

GGT  

Axin2_dn1 Axin2 downstream 1kb TGCGAGGTCTCCGCAAGGAGT CCGAGCCCGCCGCTTCCCCT 
 

Axin2_up8 Axin2 upstream 8kb 
AGGTAGGAACGTGTTTGATTTGAT

GGA 

ATTTCATGTTTCAAGTTCTCCAGC

CTCT  

Ctnnb1_up0.5 Ctnnb1 upstream 0.5kb TCGCTCCTTGTGCGGCGCCATCT ACCTCAGGCCCGCGCGCTGCTCA 
 

Drd2_up0.5 Drd2 upstream 0.5kb CTCCCGCCCCGCCTCGCCCTG 
CGCATCCACGCACGGCCGCCCC

T  

Eltd1-dn1 Eltd1 downstream 1kb CGTCACAGGGGACAGAGCGA CTAGAAGCGGGAGGAGTCTCA 
 

Gapdh_dn1 Gapdh downstream 1kb 
TGGTGAAGACACCAGTAGACTCC

A 
TGGTCTACATGTTCCAGTATGA 

 

Gfi1b_dn1 Gfi1b downstream 1kb CGCCAGATTTTGACACAAATAA CTGCACAGACAGACACTTCTCC 
 

Grm7_dn1 Grm7 downstream 1kb TCCCCTGCTGCGTGCTGGAGGT TCTCCCTCTTGATGTCGCCGCA 
 

Gsk3b_up0.5 Gsk3b upstream 0.5kb TCGCACAGAGCAGCCCCCGACC TGCTCGGGAAGTGTCCGCGCTGT 
 

Hdac3_up0.5 Hdac3 upstream 0.5kb 
TCCTCCCGCACAACCCTGAGCCC

T 

AGGCTGCGTGCTTGCGCAGCAC

GCA  



 
 

 

Hdac4_up0.5 Hdac4 upstream 0.5kb TACGCCCGTCAGGCGCCCCAG 
TCTCGGACCAATGGAAGGGCGG

CT  

Hnf1a_dn0.5 Hnf1a 
downstream 

0.5kb 
TCAAGCTCTGTGGGCACCCCCAG TGCACTTGCAAGGCTGAAGTCCA 

 

Hoxa1_up0.5 Hoxa1 upstream 0.5kb TCAGTGTAGGTGACGCGCGCT AGGGGGCCTCCCATCCCCCCACA 
 

Hoxa2_up2 Hoxa2 upstream 2kb TCCCCGAGACCTGGGGCCAAGT AGCCCCGCGGGCAGTCGCGGCA 
 

Hoxa3_dn2 Hoxa3 downstream 2kb 
TGCGGGGCGCTCTGGGGCCGCG

GGT 

ACCGCGAGAAAAATTAGTATTTTT

GCA  

Hoxa5_dn0.5 Hoxa5 
downstream 

0.5kb 

TCGGCGGGCGCCGCACTGGCCC

CA 

TGGAGATCATAGTTCCGTGAGCG

A  

Igx1a Igx1a 
 

n/a n/a GPM10000C(-) 

Itgb8_dn1 Itgb8 downstream 1kb TCGACAGGCCGGGTTGGCCGAC TTGCTTCGCCCCCGCGGGCCAT 
 

Klf4_up0.5 Klf4 upstream 0.5kb TCGCTCTCTTGGCCGGGGAACT 
ATTTAGCTACCATGGCAACGCGC

AGT  

Klf4_dn17 Klf4 
downstream 

17kb 

TCGGCTCTTCCGCCAGCCACACC

CT 

AGTGAGCATCGGGCTCCGCCTG

GAGT  

Nac1_up2 Nacc1 upstream 2kb n/a n/a GPM1054292(-) 

Nac1_dn0.5 Nacc1 
downstream 

0.5kb 

AGATTCGGCCATCTCACTCTTGC

CCT 

AGCGCAGGTGAGATGGCCCGCC

CCA  

Nanog_up4.7 Nanog upstream 4.7kb AATGAGGTAAAGCCTCTTTTT ACCATGGACATTGTAATGCAAA 

Neto1_dn1 Neto1 downstream 1kb AGAGAGGAGGGCTGCGGCTGGA TGTGAGAGGCAGAAGGCGCA 

Nodal_dn0.5 Nodal 
downstream 

0.5kb 
TGCCTCTGTGGACACGGGGGCA 

TCCCGGCCGTGAGCCCTTAAGTG

CT  

Nuf2_dn1 Nuf2 downstream 1kb 
TAGGGACATAAAAGCTGTACACG

T 
TTAGATCCTTTCTACCCAGGCCCA 

 

Pax6_up0.5 Pax6 upstream 0.5kb AGGCAGGCGGCTGGCTCTGCA AAGCATCGCCGGCGGCTGCTCT 

Pitx2_up0.5 Pitx2 upstream 0.5kb TGGAGTTTGGTGGAATCTCTGCT 
AGGGTCCACGCGGGGGGCTGCT

AAA  

Pitx2_dn0.5 Pitx2 
downstream 

0.5kb 

AGGGAGGGAGGCAAGAAAAGGG

TCT 
TGTCTCCTCTAGCTTCAGACTCCA 

 

Pitx2_dn1 Pitx2 downstream 1kb TCGAGTTCACGGACTCTCCCAA TGGCAGCTTCGCCCGCCCGTGCT 
 

Oct4_up2 Pou5f1 upstream 2kb n/a n/a GPM1033119(-) 

Oct4_dn0.5 Pou5f1 
downstream 

0.5kb 

TTCTGCGGAGGGATGGCATACTG

T 

TTCCACCTTCTCCAACTTCACGGC

A  

Smad1_dn0.5 Smad1 
downstream 

0.5kb 
ACACAATGGGGCTGCGGCCCGAT 

ACCCGCGCTGAAGGAAATCTGGG

A  

Smad2_up0.5 Smad2 upstream 0.5kb TTGGCTGCGCGCGCCGCCGGT 
TAGGCGTGAGGCACGCCGGCCG

A  

Smad3_dn0.5 Smad3 
downstream 

0.5kb 

ACTGGGGACGCCGGGGGCGCTC

A 

TCCGGGGCCTGCCCGTCAGTCC

GT  

Smad4_dn0.5 Smad4 
downstream 

0.5kb 
TCCGGCCCAGGCGGCCCCCTCT 

AGGCCCTTCCCGCGCCGCGCTC

CGCT  

Smad7_up24 Smad7 upstream 24kb 
ACCTTCGCCACCCTGTGGCTCGC

A 

AGGGGGAGCTTTGAGCGCGGCC

GGGT  

Smad7_up0.5 Smad7 upstream 0.5kb ACGGCCACGTGACGAGGCCGGA AGGGCTCGCCGCCTCCCGCA 
 

Sox2_dn1 Sox2 downstream 1kb 
AGCGGCGTAAGATGGCCCAGGA

GA 

TGCTCCTTCATGTGCAGAGCGCG

CA  



 
 

 

Sox2_dn14 Sox2 
downstream 

14kb 

TAAAACGTGCACCCCGCCGAGTG

TT 

AGATAATTCTCTGCACTCAGCGC

CGA  

Sox2_up3.7 Sox2 upstream 3.7kb GCAATGCTGAGAAATTCCAGTT GTTCCCCTCCTCTCCTAATCTC 
 

Surf1_dn1 Surf1 downstream 1kb CAAGAAGTACCAACGGCTGTC GCCAAACTACGTACCGATTCTTT 
 

Tcf3_up0.5 Tcf3 upstream 0.5kb 
CCCCTCCGCGTGCGCTCACCTGC

T 

AGTGGGGAGGAGGAAGGACGCG

CGA  

Tcf3_dn2 Tcf3 downstream 2kb n/a n/a GPM1052107(+) 

Wnt10a_up0.5 Wnt10a upstream 0.5kb AGCCCGCTGCACCTCCTTACCCT ATGGGGCAGCGCCCCCGGGCA 
 

Wnt10a_dn2 Wnt10a downstream 2kb CCGAGCCCAGCCCGACGCGTGT CCCAGCTGACAAGAGGGGGTGA 
 

Wnt10a_dn11 Wnt10a 
downstream 

11kb 

AGCCGCGCCTGGACTCGGCAGG

CA 

ATTCTTCGCAGACCACGAAGCAG

CA  

Wnt3a_dn0.5 Wnt3a 
downstream 

0.5kb 
ATGGACTTTCACTGCCCTCCCT 

AGGGCAACCGCCCCCCTGGGGC

A  

Wnt3a_dn26 Wnt3a 
downstream 

26kb 
TGGCGCCTCCCCTCCAAGGCT ACGGTGGGGCACCGGCGCATT 

 

*TSS: transcription start site 

 

 

Computational analysis 

Principal Components Analysis (PCA) 

PCA is a statistical procedure that reduces the multi-dimensionality of the data without 

compromising its variation (Jolliffe, 2002). To accomplish this, PCA uses orthogonal 

transformation to convert a set of observations into a set of linear values called the directions or 

principal components, along which the data variation is maximal. The transformation is defined 

in a way to account for most of the variability in data along the first principal component. Each 

successive component is orthogonal to the preceding component and accounts for the highest 

possible variance in its direction. Hence, the number of principal components is always less than 

or equal to the number of original variables. The underlying shape of the data may thereby be 

captured with a few principal components.  

 

For the purpose of PCA analysis, we used the median of the single-cell data for all proteins 

measured, at all 13 time points and in both ME and NE conditions. We used the median values 

instead of averages to account for single cell distributions of the data and to avoid the biases that 

can be caused by segmentation errors or auto fluorescence.  

 



 
 

 

We next centered the matrix of median values by computing the mean value for each protein 

over all time points and conditions, and subsequently subtracting that value from all the data 

corresponding to that protein. This is a standard preprocessing step in PCA that removes the 

primary moment of the data, and ensures that the first principal component corresponds to 

changes in protein levels, not the absolute levels. As different antibodies are used to probe 

different proteins, only the relative changes in protein levels over time truly reflect the biology.  

 

PCA was performed using singular value decomposition of the centered matrix into; 

X = U D VT 

The coordinates of each time point projected onto the principal components were extracted from 

the columns of V, and used to make the PCA plots (Figures 2 and S2). The principal components 

are defined as linear combinations of each protein; these weights were extracted from the 

columns of U. The “percent variance explained” was computed as a cumulative sum of di
2/Σj 

(dj
2), where the di are the diagonal entries of the matrix D. 

 

Dynamic Bayesian Network (DBN) learning 

As a complementary approach to PCA we used Dynamic Bayesian Networks (DBN). Bayesian 

Networks and related probabilistic models have been widely used to infer likely causal 

relationships in biological data (Friedman et al., 2000; Pe'er, 2005). A Bayesian Network (BN) is 

a directed acyclic graph with accompanying probability distributions, in which the “nodes” 

represent the proteins of interest and the “edges” reflect probabilistic causal relationships 

(Friedman, 2004; Friedman et al., 2000; Pearl, 2009) (Figure S2N). If there is no edge from node 

i to node k, this indicates that the level of protein k does not directly depend on (is causally 

independent of) the level of protein i. If there are edges from, for example, nodes i and j to node 

k, this indicates that the level of protein k is conditionally dependent on the levels of protein i 

and protein j. That is, there is a joint probability distribution which specifies the conditional 

probability that protein k has a particular level, given that proteins i and j have particular levels. 

A DBN adds the element of time and allows protein levels at time point t to depend on protein 

levels at time point t-1, thereby permitting cycles in the directed graph (Dondelinger, 2013). BN 



 
 

 

inference involves a search for a directed graph and joint probability distributions that best fit the 

observed correlations in the data. To assure computational efficiency, it is helpful to use prior 

network knowledge to seed or inform the graph structure.  

 

For network inference, we first scaled the median values from ten TFs, Oct4, Sox2, Nanog, Klf4, 

cMyc, Rex1, Nac1, Dax1, Zfp281 and Tcf3, at all 13 time points by their maximum value under 

respective ME and NE differentiation conditions. After rescaling, each protein can take values 

from 0 to 1; this step minimizes any potential bias against low-expressed proteins. We also 

centered the values as described above. 

 

We applied a custom modified version of the EDISON package (Dondelinger, 2013) in R to 

learn separate dynamic Bayesian networks from the ME and the NE data. This algorithm uses a 

Bayesian hierarchical model to score potential network models. The network model is 

formulated using linear regression. The value of a child node at time “t” is modeled as a linear 

combination of the values of the parents at time “t-1”. In contrast to standard DBN learning, the 

network structure is allowed to change during the time-course at so-called “change points”. 

EDISON uses a Markov chain Monte Carlo (MCMC) approach to search through the large 

model space. During the MCMC process, the network structure for any time segment can be 

altered by adding or removing an edge, and change points can be added, removed or shifted in 

time.  

 

We note that, we made two small modifications to the EDISON package as downloaded from the 

CRAN repository to correct minor issues with the running of the software: 1) during any MCMC 

step involving birth of a change point, we kept the model the same if the maximum number of 

change points had already been reached, and 2) during MCMC steps involving structure changes, 

we amended the loop so that it correctly runs through all time segments. We also added the 

functionality of imposing hard constraints on the network model in the final time segment 

(described in more detail below).  

 

We first applied the EDISON algorithm using default values for the parameters. We ran the 

MCMC for 50,000 steps each time. Additionally, in order to test robustness and convergence we 



 
 

 

repeated each run 10 times, each time with a different random initial network. During each 

MCMC run, 1000 instances of the model are sampled after a burn-in 25% of the way through. 

From these instances, one estimates the posterior probability of change points and network 

edges. We used all default parameters including imposing a maximum of five parents for each 

child node and a minimum of two time points between adjacent change points. The final 

networks were drawn in Cytoscape 3.0.0. Network edges were drawn only if the posterior 

probability was greater than 0.25.  

 

We then ran EDISON while imposing hard constraints on the edges of the network in the final 

time segment. This was implemented in the code by 1) keeping the network model of the final 

segment the same, even if an adjacent change point was created or destroyed and 2) never 

altering the constrained edge during a network structure change in the final segment. This 

effectively allows the MCMC process to only traverse the subspace of models that satisfy the 

hard constraint. In the random prior network that was used for DBN, we imposed the following 

two constrains that had been well characterized; Oct4 to be a parent node of Sox2 for ME DBN 

to incorporate known regulation of Sox2 by Oct4 during ME specification (Thomson et al., 

2011); Tcf3 to be a parent node of Nanog, Oct4, and Rex1 for DBN on both ME and NE, to 

incorporate generally known inhibitory functions of Tcf3 (Cole et al., 2008; Pereira et al., 2006; 

Wray et al., 2011). 

 

Finally, for each of the 1000 network model samples from the MCMC runs, we computed a 

“dominance score” for each protein (Friedman et al., 2000). We defined the dominance score for 

protein j as DSj = Σi(1/Lij) where Lij is the length of the shortest directed path between protein i 

and protein j in the network . If there is no such path, Lij is defined to be infinite. This score 

rewards proteins that are directly upstream of many other proteins. We averaged the dominance 

score over all 1000 samples and over all 10 independent MCMC runs in order to get a final score 

for each protein, which is represented in the network Figures 2G and H. Dynamic bayesian 

network code is available for download at https://github.com/meghapadi/StemCellDBN. 

 

 



 
 

 

Mathematical modelling 

In order to gain insights into how the key pluripotent TFs and the Nac1 mediated regulations 

operate to determine ME or NE choice, we built a simple mathematical model. The model 

considered most of the observations made through experimental results of this study and consists 

of four interacting species: Nac1 (N), Tcf3 (T), Sox2 (S2) and Oct4 (O). The following 

regulations among these four TFs were considered based on experimental data in figures 5 & S6: 

(i) Activation of Oct4 by Nac1 

(ii) Inhibition of Tcf3 also by Nac1 

(iii) Inhibition of Sox2 by both Nac1 and Oct4 

 

In addition, two modulating signal events are considered based on another set of observations in 

this study (Figure 3):  

(iv) Retinoic Acid (R), which inhibits Nac1 and Oct4 

(v) Wnt signaling either via Chiron (CHIR) or Wnt3a (W), which inhibits Tcf3 activity. 

 

The resulting network displays no feedback loops and hence information flows unidirectionally 

from the signals to the genes (from left to right as in Figure 5E). Since little is known about the 

time scale and dynamics of the decision process under study, we took a dimensionless approach 

by assuming all proteins to be equally stable (same degradation rates) and reported the time 

developments relative to these degradation rates. This way, we can now describe the dynamics of 

this network with the following set of ordinary differential equations: 

ݐ݀ܰ݀  = ܾଵ 11 + ܴ − ݐ݀ܶ݀ ,ܰ = ܾଶ 11 + ቀܰܭଶቁଶ +ܹ − ܶ, 
݀ܵଶ݀ݐ = ܾଷ 11 + ቀܱ ∙ ଷܭܰ ቁଶ − ܵଶ, 
ݐܱ݀݀ = ܾସ ቀܰܭସቁଶ1 + ቀܰܭସቁଶ + ܴ − ܱ. 



 
 

 

Each of the above equation describes the temporal evolution of the protein levels for the four 

factors (Nac1, Tcf3, Sox2 and Oct4). Activation and inhibition events are described by standard 

Hill functions with cooperativity exponents 1 or 2 and all species are assumed to decay linearly. 

The model contains seven parameters; four maximum production rates (b1, b2, b3, b4), two 

inhibition thresholds (K2, K3), and one activation threshold (K4) that have been manually fitted 

to the experimental results.  

 

In addition to the four core factors, we also included the two fate marker reporters – Brachyury 

(T) for ME and Sox1 for NE. In the model, T (B) is allowed to be active when both Oct4 and 

Nac1 levels are high. Similarly Sox1 (S1) is allowed to be triggered in the presence of both Sox2 

and Tcf3. These attributes of fate markers were described with the following equations: 

 

ݐܤ݀݀ = ܾହ ቀܱ ∙ ହܭܰ ቁଶ1 + ቀܱ ∙ ହܭܰ ቁଶ −  ,ܤ
݀ ଵܵ݀ݐ = ܾ଺ ቀܵଶ ∙ ଺ܭܶ ቁଶ1 + ቀܵଶ ∙ ଺ܭܶ ቁଶ − ଵܵ. 

These two additional variables require four extra parameters (b5, b6, K5 and K6), which have 

also been fitted manually.  

The following table summarizes all the parameter values used in our model 

b1 2/3 b4 3/5 K1 0.125 K4 0.2

b2 3/2 b5 1 K2 0.1 K5 0.075 

b3 3/5 b6 5/4 K3 0.05 K6 0.175 

 

To mimic the experimental ME and NE differentiation conditions we set the values of input 

signals to W = 10 and R = 0 for ME and W = 0 and R = 5 for NE. 



 
 

 

Robustness to initial conditions 

Pluripotency is a heterogeneous state where in cells can have varying concentration of protein 

levels and yet the pluripotent network is held together by their self-re-enforcing positive 

regulations. By contrast, as cells encounter differentiation signals and move towards adopting a 

specific fate, the levels of the different factors tend to homogenize in a combinatorial manner. To 

test whether our model can capture this behavior and the degree of its robustness, we simulated 

the dynamics for many different initial conditions with disparate levels of the four factors (Nac1, 

Tcf3, Sox2 and Oct4). In both ME and NE conditions we found that the model always robustly 

relaxed to the desired optimal steady state (Figure 5F). It is also easy to check by analysis of the 

equations above that the model has a single steady state for any values of the parameters.  

 

The model contains only seven parameters: four parameters for the maximum transcription rates 

of each gene, two inhibition thresholds, and one activation threshold. Because the model exhibits 

a single steady state for all initial conditions, it was easy to manually find parameter values 

which captured the experimental results. We performed parameter sensitivity analysis, which 

showed that individual parameter values could be substantially modified (by up to ±25%) 

without significantly affecting the correspondence with the experimental data (data not shown). 

The model thus reproduces the experimental results for a wide range of parameter values. 

 

In-silico perturbations 

The proposed mathematical model for ME - NE decision making establishes a framework where 

new predictions can be made. To test how perturbation of a key TF might bias cells ability to 

choose between ME and NE choice, we systematically knocked down each TF and explored the 

prediction behavior of the model. To be consistent with experimentally observed siRNA 

perturbation efficiency (i.e. up to 80%), in the model we modified maximum production rate of a 

factor to 25% of its value in the wild type. In addition to recapitulating the experimentally 

observed changes to protein levels, these in-silico perturbation tests made novel predictions for 

changes in Tcf3 levels and the extent of NE fate choice. These unexpected model predictions 

further lead us to design new functional verification experiments. The ensuing results allowed us 

to discover the novel and uniquely dominant role of Nac1 in promoting the ME and inhibiting 

the NE choice. 
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