SUPPLEMENTAL MATERIAL

Klein et al., http://www.jem.org/cgi/content/full/jem.20150556/DC1

JEM

Figure S1. Gating strategies for PB, spleen/BM cells analysis, and niche cell purification. (a) Living BM cells (live) were separated from debris and all differentiated BM cells were depleted in order to get undifferentiated (Lin⁻) BM cells (first row). The threshold could be defined using the fluorescence minus one (FMO) cKit⁻ staining. Lin⁻ BM cells were further subdivided in Lin⁻cKit⁺ (LK) cells and Lin⁻cKit⁺Sca⁺ (LKS) cells using the FMOs of cKit⁻ and Sca1⁻ (second row). LKS cells were subdivided in Flt3⁺ multipotent progenitors (MPPs) and Flt3⁻ short- and long-term HSCs (ST-HSCs, LT-HSCs, and non-MPP). To determine Flt3⁺ MPPs. FMO Flt3⁻ was used. Non-MPPs were further subdivided into CD150⁻CD48⁺ ST-HSCs and CD150⁺CD48⁻ LT-HSCs (fourth row). (b) LKS cells can also be partitioned into CD34⁻Flt3⁻ LT-HSCs, CD34⁺Flt3⁻ ST-HSCs, and CD34⁺Flt3⁺ MPPs. Gates adjusted by FMO performance. (c) LKS cells can also be partitioned into CD90⁺Flt3⁻ LT-HSCs, CD90⁺Flt3^{med} ST-HSCs and CD90⁻Flt3⁺ MPPs. Gates adjusted by FMO performance. (d) LK cells (center) were split into CD34⁺CD16/32^{high} granulocyte-macrophage progenitor (GMP), CD34⁺CD16/32^{med} common myeloid progenitor (CMP), and CD34⁻CD16/32⁻ megakaryocyte-erythroid progenitor (MEP) cells (left). LK cells (center) could also be subdivided into CD41⁺CD16/32⁻ megakaryocyte progenitor (MegP), CD41^{med}CD16/32⁺ granulocyte-macrophage progenitor (GMP) and CD41⁻CD16/32⁻ erythroid progenitor (EP) cells (right). (e) Within the Lin^{- (-II7R)} cKit^{med}Sca1^{med} cells (center), Flt3⁺II7R⁺ CLPs can be detected (right). If all Lin^{- (-II7R)} cells were used for analysis (left), the fraction of CLPs is degraded. (f) Gating strategy for niche cell isolation. Lin-CD45-Ter119- cells were gated and separated into endothelial Cells (Endo, Lin⁻CD45⁻Ter119⁻CD31⁺Sca1⁺), expressing CD31/Sca1 and nonendothelial cells (non-Endo, Lin⁻CD45⁻Ter119⁻CD31⁻). Non-Endo bone-derived cells could be further subdivided into osteoblastic cells (OBCs; Lin⁻CD45⁻Ter119⁻CD31⁻Sca1⁻CD166⁺) and MSPCs (MSPC Lin⁻CD45⁻Ter119⁻CD31⁻Sca1⁺CD166⁻). Within Non-Endo BM-derived CD51⁺ cells, Cxcl12-abundant reticular cells (CaR, Lin⁻CD45⁻Ter119⁻CD31⁻CD51⁺Sca1⁻CD140⁺) were purified. (g) Gating strategy for PB cell analysis. In transplantation settings using CD45.1 and CD45.2 chimeric mice, CD45 discrimination was used to distinguish between host (CD45.1⁺ or CD45.2⁺), donor (CD45.1⁺ or CD45.2⁺), or recipient (CD45.1⁺CD45.2⁺). PB cells were split up into CD11b⁺ myeloid cells, B220⁺ B cells, and CD11b⁻B220⁻ cells which were CD3⁺CD90⁺ T cells. These cells were subdivided into CD4⁺ T helper and CD8⁺ T cytotoxic cells. (h) Gating strategy for BM and spleen cells. Cells were split up into Ly6G⁺CD11b⁺ granulocytes (Gran) and Ly6G⁻CD11b⁺ monocytes (Mono). Ly6G⁻CD11b⁻ cells could be subdivided into Ter119⁺ erythroid cells or B220⁺ B cells. Ly6G⁻CD11b⁻Ter119⁻B220⁻ were CD3⁺ T cells or cKit⁺ progenitor/stem cells. CD3⁺ T cells could be further discriminated as already shown in g.

Figure S2. **Flow cytometry analyses.** (a) Flow cytometry analysis for B cell lymphopoiesis within the BM of WT and Ptch2^{-/-} mice after 12 mo. B220⁺BM cells were subdivided into mature (B220⁺IgM^{+/-}IgD⁺), immature (B220⁺IgM⁺IgD⁻), prepro–B cells (B220⁺IgM⁻IgD⁻CD43⁺CD24⁺), pro–B cells (B220⁺IgM⁻IgD⁻CD43⁺CD24⁺), and pre–B cells (B220⁺IgM⁻IgD⁻CD43⁻CD24⁺). One representative example is shown for each genotype. (b) Flow cy-tometry analysis for B cell maturation within the spleen of WT and Ptch2^{-/-} mice after 12 mo. Spleen cells were subdivided into mature (CD19⁺CD93⁺) populations. Mature B cells were subdivided into marginal zone (MZ) B cells (CD19⁺CD93⁻CD23⁻IgM⁺) and follicular (FO) B cells (CD19⁺CD93⁻CD23⁺IgM^{-/+}). Immature B cells were subdivided into transitional (T) B cells T1 (CD19⁺CD93⁺CD23⁻IgM⁺), r2 (CD19⁺CD93⁺CD23⁺IgM^{-/+}), and T3 (CD19⁺CD93⁺CD23⁺IgM^{-/-}) cells. One representative example is shown for each genotype. (c) Flow cytometry analysis of BM and spleen cells for erythroid progenitors of WT and Ptch2^{-/-} mice after 12 months. Ter119⁺ cells could be subdivided into all stages of erythropoiesis: FS^{high}CD44^{high} proerythroblasts (Pro), FS^{high}CD44^{med} basophilic erythroblasts (Baso), FS^{med}CD44^{med} polychromatic erythroblasts (Poly), FS^{low}CD44^{med} nor-moblasts, and FS^{low}CD44^{low} reticulocytes (Retic). One representative example is shown for each genotype. (d) Gating strategy for LKS cell cycle analysis (BM cells). HSCs are subdivided into Ki67⁻FxCycleViolet^{low} cells (G₀), Ki67⁺ FxCycleViolet^{low} cells (G₁), and Ki67⁺ FxCycleViolet^{high} cells (G₂/S/M).

JEM

Figure S3. Enrichment plots and heat maps for core enrichment genes. (a and b) Enrichment plots and heat maps for core enrichment genes were generated by GSEA using the KEGG gene sets. NES, nominal p-value, and FDR are shown for each gene set. Comparison of WT versus $Ptch2^{-/-}$ MSPCs identifies up-regulation of the Basal cell carcinoma. (a) Gene set and up-regulation of the Hedgehog signaling pathway. (b) Gene set. (c–f) Enrichment plots and heat maps for core enrichment genes were generated by GSEA using the oncogenic signature gene sets. NES, nominal p-value, and FDR are shown for each gene set. Comparison of WT versus $Ptch2^{-/-}$ CaR (c), OBCs (d), endothelial cells (e) and MSPCs (f) reveals an increase of Map–Erk kinase signaling within all four $Ptch2^{-/-}$ subpopulations.

Table S1. F	Patient	characteristics	
-------------	---------	-----------------	--

ID	Sex	Age	Material	Diagnosis	Genetic aberration
1	F	-	EDTA-PB	Control	n.d.
2	Μ	-	EDTA-PB	Control	n.d.
3	F	-	EDTA-PB	Control	n.d.
4	Μ	-	EDTA-PB	Control	n.d.
5	Μ	-	EDTA-PB	Control	n.d.
6	Μ	-	EDTA-PB	Control	n.d.
7	M	-	EDTA-PB	Control	n.d.
8	F	-	EDTA-PB	Control	n.d.
9	M	-	EDTA-PB	Control	n.d.
10	F	52	EDIA-PB	polycythemia vera	
11	F	63	EDIA-PB	polycytnemia vera	
12	F E	/1	EDIA-PB	polycythemia vera	Jak2V617F
13	M	03		polycythemia vera	
15	M	48	EDTA-PB	polycythemia vera	Jak2V0171
16	F	45	EDTA-PB	polycythemia vera	lak2V617F
17	F	52	EDTA-PB	polycythemia vera	Jak2V617F
18	F	58	EDTA-PB	polycythemia vera	Jak2V617F
19	М	49	EDTA-PB	polycythemia vera	Jak2V617F
20	М	63	EDTA-PB	polycythemia vera	Jak2V617F
21	М	23	EDTA-PB	polycythemia vera	Jak2V617F
22	М	62	EDTA-PB	polycythemia vera	Jak2V617F
23	Μ	65	EDTA-PB	OMF	Jak2V617F
24	Μ	71	EDTA-PB	OMF	Jak2V617F
25	F	66	EDTA-PB	OMF	Jak2V617F
26	М	53	EDTA-PB	OMF	Jak2V617F
27	F	49	EDTA-PB	CML, BC	BcrAbl
28	M	55	EDTA-PB	CML, BC	BcrAbl
29	M	37	EDTA-PB	CML, BC	BcrAbl
30	F	78	EDTA-PB	CML, BC	BcrAbl
31	M	46	EDIA-PB	CML, CP	BcrAbl
32	F	57		CIVIL, CP	BerAbl
24	IVI M	10	EDIA-FD		BorAbl
34	IVI	63			BerAbl
36	M	43	EDTA-PB	CML CP	BerAbl
37	M	53	EDTA-PB	CML CP	BcrAbl
38	M	35	EDTA-PB	CML, CP	BcrAbl
39	F	44	EDTA-PB	CML, CP	BcrAbl
40	М	61	EDTA-PB	sec. AML	SF3B1, RUNX1
41	М	61	EDTA-PB	sec. AML	KIT D816V
42	F	78	EDTA-PB	sec. AML	complex karyotype
43	М	70	EDTA-PB	sec. AML	47XY +8 [1]+
44	М	75	EDTA-PB	sec. AML	complex karyotype
45	M	53	EDTA-PB	sec. AML	complex karyotype
46	F	50	EDTA-PB	sec. AML	IDH2
47	М	55	EDTA-PB	sec. AML	del12q
48	M	74	EDIA-PB	sec. AML	FLI3*
49	IVI	73	EDIA-PB	AML	FLI3 , NPM1
50	IVI	74		AIVIL	FLI3
51	IVI	54		AIVIL	FLI3
52	IVI	55		ANI	FLI3
55	Г М	10			FLIJ , NYTVII FLIJ , dellogog(CDFC)
0 4 EE	IVI	30 EF			
56	r F	55			FLIJ , NMVII ELTO- NDM1
50	r c	04 EE			FLIJ , INFIVII ELTO- NIDMA
57	r" M	55 72			FLI3 , INFIVII FLT3*
50	M	/ S 40			FLT3 ⁺
55 60	M	4J 67	EDTA-PR		nd
61	M	63	EDTA-PR	AMI	FLT3+
62	M	48	EDTA-PB	AML	FLT3 ⁺
			-		

ID	Sex	Age	Material	Diagnosis	Genetic aberration
63	F	78	EDTA-PB	AML	FLT3+
64	F	47	EDTA-PB	AML	45,XX,-7
65	Μ	65	EDTA-PB	AML	FLT3 ⁺
66	F	60	EDTA-PB	AML	karyotype 47 XX
67	F	74	EDTA-PB	AML	48-49,XX, + r(8)x2-3
68	F	76	EDTA-PB	AML	FLT3 ⁺

Table S1. Patient characteristics (Continued)

Characteristics from healthy controls and patients (M, male; F, female), whose PB was used for mRNA extraction and purification and RT-PCR analysis. n.d., not detected; OMF, osteomyelofibrosis; BC, blast crisis; CP, chronic phase.

Table S2. Molecular Signature Database oncogenic signatures

Gene sets/pathways	CaR NES	OBC NES	MSPC NES	Endo NES
KRAS.300 UP.V1 UP		-1,600	-1,670	-1,530
KRAS.50 UP.V1 UP	-1,200	-1,240	-1,500	-1,560
KRAS.600 UP.V1 DN		-1,520		
KRAS.600 UP.V1 UP		-1,650	-1,380	-1,260
KRAS.600.LUNG.BREAST UP.V1 DN		-1,510		
KRAS.600.LUNG.BREAST UP.V1 UP	-1,280	-1,540	-1,440	
KRAS.AMP.LUNG UP.V1 DN			-1,340	
KRAS.AMP.LUNG UP.V1 UP	-1,390	-1,310	-1,340	-1,580
KRAS.BREAST UP.V1 UP	-1,750	-1,590		
KRAS.BREAST UP.V1 UP		-1,650		
KRAS.KIDNEY UP.V1 DN		-1,450		
KRAS.KIDNEY UP.V1 UP		-2,120	-1,950	
KRAS.LUNG UP.V1 UP				-1,420
KRAS.LUNG.BREAST UP.V1 DN		-1,840	-1,240	
KRAS.LUNG.BREAST UP.V1 UP	-1,730	-2,020	-1,310	
KRAS.PROSTATE UP.V1 DN			-1,310	
MEK UP.V1 UP		-1,220		-1,520

Molecular Signature Database subcollection "oncogenic signatures" was used to identify dysregulated Map–Erk pathway members. WT or $Ptch2^{-/-}$ niche cell subpopulations were analyzed and compared to each other. Negative results represent up-regulation in $Ptch2^{-/-}$ cells. Settings: NES <-1.20 (meaning 20% up-regulated in $Ptch2^{-/-}$), nominal p-value < 0.001, and FDR < 0.25.

Table S3. Genes and primers

Gene locus	Species	Primer	Vendor	
TaqMan Primer, human				
BCL2	Hs	00608023_m1	Life Technologies	
CCND1	Hs	00765553_m1	Life Technologies	
DHH	Hs	00928824_m1	Life Technologies	
GAPDH	Hs	02758991_g1	Life Technologies	
GLI1	Hs	00171790_m1	Life Technologies	
PTCH1	Hs	00970980_m1	Life Technologies	
PTCH2	Hs	01085643_m1	Life Technologies	
SHH	Hs	00179843_m1	Life Technologies	
SMO	Hs	01090242_m1	Life Technologies	
TaqMan Primer, mouse				
Angpt1	Mm	00456503_m1	Life Technologies	
Bcl2	Mm	00477631_m1	Life Technologies	
Ccnd2	Mm	00438071_m1	Life Technologies	
Cxcl12	Mm	00445553_m1	Life Technologies	
Dhh	Mm	030535542_s1	Life Technologies	
Gapdh	Mm	4352339E	Life Technologies	
Gli1	Mm	00494645_m1	Life Technologies	
lhh	Mm	00439613_m1	Life Technologies	
Jag1	Mm	00496902_m1	Life Technologies	
KitL	Mm	00442972_m1 Life Technologie		
Ptch1	Mm	01306904_m1	Life Technologies	
Ptch2	Mm	00436047_m1	Life Technologies	
Shh	Mm	00436527_m1	Life Technologies	
Smo	Mm	01162710_m1	Life Technologies	
Spp1	Mm	00436767_m1	Life Technologies	
Thpo	Mm	00437040_m1	Life Technologies	
Tnfsf11	Mm	00441906_m1	Life Technologies	