

Supplementary Figure 1: SEM image of S-MoS₂. Scale bar, 100 nm. The morphology of S-MoS₂ is similar to that of M-MoS₂ at the nanoscale as shown by SEM images at high magnification.

Supplementary Figure 2: EDX of M-MoS₂. The as-prepared M-MoS₂ was

characterized by energy dispersive x-ray spectroscopy (EDX). The atomic ratio of S to

Mo was calculated to be around 2.05.

Supplementary Figure 3: XPS of M-MoS₂. After Shirley background subtraction, the Mo 3d peaks were de-convoluted to show the M-MoS₂ (pink) and S-MoS₂ (blue) contributions.

Supplementary Figure 4: TEM images M-MoS₂ nanosheets. (a) High magnification. Scale bar, 2 nm. (b) Low magnification. Scale bar, 10 nm.

Supplementary Figure 5: Raman spectroscopy of different samples. (a) Fresh M-MoS₂ (Red). (b) 90-day-old M-MoS₂ stored in water (Pink), The M-MoS₂ sample stored for 90 days in water did not show obvious difference from freshly made M-MoS₂, indicating that the M-MoS₂ nanosheets are very stable in water. (c) M-MoS₂ film (Black). The M-MoS₂ films after drying for 5 hours in vacuum show an obvious peak at 378 cm⁻¹, which suggests that a fraction of M-MoS₂ has changed into S-MoS₂. (d) S-MoS₂ (Blue). Though the defects developed in air may affect the Raman features in terms of peak position and width, they would not affect the conclusion drawn from the Raman whether or not the material is metallic.

Supplementary Figure 6: Film morphologies of $M-MoS_2$ and $S-MoS_2$. (a) Optical images of the $M-MoS_2$ and $S-MoS_2$ on silicon substrates. (b and c) SEM images of M- MoS_2 and S- MoS_2 films. Scale bar, 1 µm.

Supplementary Figure 7: Static contact angle images. (a) Fresh M-MoS₂ film. We measured the contact angle by drop casting a droplet of water (5 μ L) on the M-MoS₂ film and obtained an angle of 25 °. (b) S-MoS₂ film. The same experiments were done on the S-MoS₂ films and an angle of 118 ° was found. These results confirm the hydrophilic surface of M-MoS₂ and hydrophobic surface of S-MoS₂

Supplementary Figure 8: Characterization of MoS₃. (a) SEM image of amorphous

 MoS_3 . Scale bar, 1 µm. (b) EDX of MoS_3 .

Supplementary Figure 9: Raman shift of MoS_2 before and after annealing in Ar and Ar/H_2 mixture. MoS_2 before annealing (Red), MoS_2 after annealing at 300 °C in Ar (Black), MoS_2 after annealing at 300 °C in H_2 and Ar (Green),

Supplementary Figure 10: Characterization of as-prepared intermediate phase MoS₃. (a) SEM image of amorphous intermediate. Scale bar, 1 µm. (b) EDX result of intermediate and element ratio above. (c) Raman spectrum for samples prepared for one-and-a-half hours. The brown-black solution of MoS₃ showed peaks at 120 cm⁻¹, 215, 317, 460 cm⁻¹ in Raman spectra. Meanwhile, a weak metal-metal peak located at 146 cm⁻¹ was detected. Only a metal-metal Raman peak at 146 cm⁻¹ was observed if the reaction was stopped after six hours (see Figure 1b).

Supplementary Note 1

XPS of M-MoS₂

De-convolution of these peaks in XPS of M-MoS₂ reveals that the ratio of M-MoS₂ to S-MoS₂ is close to 6:1 (see Supplementary Figure 3). As a result, the M-MoS₂ content is estimated to be ~ 86% in the sample. However, this value does not reflect the content of the freshly prepared M-MoS₂. The XPS was conducted at high vacuum for a few hours, during which some of the M-MoS₂ converts to S-MoS₂. This phase transformation in vacuum was confirmed in our Raman measurements. Therefore, the Mo components associated with S-MoS₂ in XPS reflect the phase transformation of M-MoS₂ to S-MoS₂ in the vacuum chamber.

Supplementary Discussion

Exchange current density

Exchange current density is the rate of reaction at the reversible potential. At the reversible potential, the reaction is in equilibrium, meaning that the forward and reverse reactions progress at the same rates. We have used the linear part of the polarization curve at small over-potentials in H₂-saturated 0.5 M H₂SO₄ solution to obtain j_0 values. The exchange current density can be calculated by equation below.

$$\frac{\Delta j}{\Delta \eta} = j_0 (\mathrm{nF/RT})$$

Here n represents the number of electrons exchanged, F (96485 C mol⁻¹) is the Faraday constant, and R ($8.314 \text{ J} \text{ mol}^{-1}\text{K}^{-1}$) is the gas constant. The exchange current densities of 0.55, 0.1 and 0.04 mA cm⁻² were obtained for Pt, M-MoS₂ and S-MoS₂ from the polarization curves.

Supplementary Methods

Preparation of MoS₃

12 mg MoO₃ and 14 mg thioacetamide were dissolved in 10 ml deionized water and stirred for two hours. The solution was added to the autoclave and then loaded into the furnace at 200 $^{\circ}$ C for twelve hours. After that, the reaction was stopped by rapidly cooling the solution down to room temperature. The yielded MoS₃ was collected and washed in deionized water several times. The as-prepared MoS₃ is amorphous structure as shown by SEM and the ratio of Mo to S is 1:3 as measured by EDX (Supplementary Figure 8).

Prepare S-MoS₂ by different procedure

12 mg MoO₃, 14 mg thioacetamide and 0.12 g urea were dissolved in 10 ml ethanol or dimethylformamide (DMF) and stirred for two hours. The solution was added to the autoclave and then loaded into the furnace at 200 °C for twelve hours. After that, the reaction was stopped by rapidly cooling the solution down to room temperature. The yielded small amount of precursor of S-MoS₂ was collected and washed in deionized water for several times. Then S-MoS₂ was obtained after the precursor was annealed at 300 °C under hydrogen flow of 50 sccm for one hour. Raman shifts show the highly crystalline structure of pure S-MoS₂ in Supplementary Figure 9. It was noticed that hydrogen plays an important role in reducing the precursor to S-MoS₂ since we found that MoS₂ is not produced if only Argon was used during annealing. If the solvent is a mixture of ethanol and water in a 1:1 ratio, no solid product was found in the autoclave, indicating that the type of solvent is important in the formation of MoS₂.

Control experiment of M-MoS₂

12 mg MoO₃, 14 mg thioacetamide and 0.12 g urea were dissolved in 10 ml deionized water and stirred for two hours. The solution was added to the autoclave and then loaded into furnace at 200 °C for one-and-a-half and six hours, respectively. After that, the reaction was stopped by rapidly cooling the solution down to room temperature. The yielded solid materials were collected and the ratio of Mo to S was found to be close to 1:3 when the reaction was stopped after one-and-a-half hours. The amorphous structure was characterized and shown in Supplementary Figure 10.