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Table S1. DNAm profiles of the training dataset (27K BeadChip)   

GEO-number Cell-Type Source Location Gender Age Passage Serum References 

GSE17448 MSC BM IC - >40 P<5 FBS (Bork et al., 2010) 

GSE17448 MSC BM CF - >40 P<5 FBS (Bork et al., 2010) 

GSE17448 MSC BM CF - >40 P<5 FBS (Bork et al., 2010) 

GSE17448 MSC BM CF - >40 P<5 FBS (Bork et al., 2010) 

GSE17448 MSC BM CF - >40 P<5 FBS (Bork et al., 2010) 

GSE17448 MSC BM CF - >40 P>5 FBS (Bork et al., 2010) 

GSE17448 MSC BM IC - >40 P>5 FBS (Bork et al., 2010) 

GSE17448 MSC BM CF - >40 P>5 FBS (Bork et al., 2010) 

GSE17448 MSC BM CF - >40 P>5 FBS (Bork et al., 2010) 

GSE17448 MSC BM CF - >40 P>5 FBS (Bork et al., 2010) 

GSE17448 MSC BM IC - <40 P<5 FBS (Bork et al., 2010) 

GSE17448 MSC BM IC - <40 P<5 FBS (Bork et al., 2010) 

GSE17448 MSC BM IC - <40 P<5 FBS (Bork et al., 2010) 

GSE17448 MSC BM IC - <40 P>5 FBS (Bork et al., 2010) 

GSE17448 MSC BM IC - <40 P>5 FBS (Bork et al., 2010) 

GSE17448 MSC BM IC - <40 P>5 FBS (Bork et al., 2010) 

GSE26519 MSC AT - F <40 P<5 hPL (Schellenberg et al., 2011) 

GSE26519 MSC AT - F >40 P>5 hPL (Schellenberg et al., 2011) 

GSE26519 MSC AT - M >40 P>5 hPL (Schellenberg et al., 2011) 

GSE26519 MSC AT - F >40 P>5 hPL (Schellenberg et al., 2011) 

GSE26519 MSC AT - F <40 P>5 hPL (Schellenberg et al., 2011) 

GSE26519 MSC AT - F >40 P>5 hPL (Schellenberg et al., 2011) 

GSE26519 MSC AT - F >40 P>5 hPL (Schellenberg et al., 2011) 

GSE26519 MSC AT - F >40 P>5 hPL (Schellenberg et al., 2011) 

GSE29661 MSC AT Breast F >40 P<5 hPL (Koch et al., 2012) 

GSE29661 MSC AT Leg F >40 P<5 hPL (Koch et al., 2012) 

GSE29661 MSC AT Leg F >40 P>5 hPL (Koch et al., 2012) 

GSE29661 MSC AT Breast F >40 P>5 hPL (Koch et al., 2012) 

GSE29873 MSC BM - - - - - (Ohm et al., 2010) 

GSE29873 MSC BM - - - - - (Ohm et al., 2010) 

GSE33896 MSC AT - - >40 P>5 FBS (Berdasco et al., 2012) 

GSE33896 MSC AT - - >40 P>5 FBS (Berdasco et al., 2012) 

GSE33896 MSC AT - - >40 P>5 FBS (Berdasco et al., 2012) 

GSE33896 MSC AT - - >40 P>5 FBS (Berdasco et al., 2012) 

GSE44222 MSC AT - - - - - (Sempere et al., 2014) 

GSE44222 MSC AT - - - - - (Sempere et al., 2014) 

GSE44222 MSC AT - - - - - (Sempere et al., 2014) 

GSE44222 MSC AT - - - - - (Sempere et al., 2014) 

GSE44222 MSC AT - - - - - (Sempere et al., 2014) 

GSE22595 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P<5 FBS (Koch et al., 2011) 

GSE22595 Fibroblast Derm Skin F <40 P>5 FBS (Koch et al., 2011) 

GSE22874 Fibroblast Lung - F >40 - - (Navab et al., 2011) 
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GSE22874 Fibroblast Lung - M >40 - - (Navab et al., 2011) 

GSE22874 Fibroblast Lung - M >40 - - (Navab et al., 2011) 

GSE22874 Fibroblast Lung - F >40 - - (Navab et al., 2011) 

GSE22874 Fibroblast Lung - M >40 - - (Navab et al., 2011) 

GSE24676 Fibroblast Lung - M - - FBS (Nishino et al., 2011) 

GSE29661 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2012) 

GSE29661 Fibroblast Derm Skin F >40 P>5 FBS (Koch et al., 2012) 

GSE29661 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2012) 

GSE29661 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2012) 

GSE29661 Fibroblast Derm Skin F >40 P<5 FBS (Koch et al., 2012) 

GSE29661 Fibroblast Derm Skin F >40 P>5 FBS (Koch et al., 2012) 

GSE29661 Fibroblast Derm Skin F >40 P>5 FBS (Koch et al., 2012) 

GSE29661 Fibroblast Derm Skin F >40 P>5 FBS (Koch et al., 2012) 

GSE29873 Fibroblast Lung - - - - - (Ohm et al., 2010) 

GSE30640 Fibroblast Lung - - - P>5 - - 

GSE30640 Fibroblast Lung - - - P>5 - - 

GSE30640 Fibroblast Lung - - - P>5 - - 

GSE30640 Fibroblast Lung - - - P>5 - - 

GSE30640 Fibroblast Lung - - - P>5 - - 

GSE42043 Fibroblast Skin - M - P<5 - (Huang et al., 2014) 

GSE42043 Fibroblast Skin - M - P<5 - (Huang et al., 2014) 

GSE42043 Fibroblast Lung - F - P>5 - (Huang et al., 2014) 

GSE42043 Fibroblast Lung - F - P>5 - (Huang et al., 2014) 

GSE42043 Fibroblast - - F - P<5 - (Huang et al., 2014) 

GSE42043 Fibroblast Skin - M - P<5 - (Huang et al., 2014) 

GSE42043 Fibroblast - - M - P<5 - (Huang et al., 2014) 

GSE42043 Fibroblast Skin - M - P<5 - (Huang et al., 2014) 

GSE49053 Fibroblast Derm Skin - - - FBS (Koyanagi-Aoi et al., 2013) 

F = female; M = male; P = passage; FBS = fetal bovine serum and hPL = human platelet lysate; IC = iliac crest; CF = 

caput femoris. 
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Table S2. DNAm profiles of the validation dataset (450K BeadChip)  

GEO-number Cell-Type Source Location Gender Age Passage Serum References 

GSE55571 MSC BM - - - - FBS (Miyata et al., 2015) 

GSE34688 MSC BM - - - P<5 hPL (Shao et al., 2013) 

GSE34688 MSC BM - - - P<5 hPL (Shao et al., 2013) 

GSE34688 MSC BM - - - P<5 hPL (Shao et al., 2013) 

GSE34688 MSC BM - - - P<5 hPL (Shao et al., 2013) 

GSE34688 MSC BM - - - P<5 hPL (Shao et al., 2013) 

GSE37067 MSC BM - - - P<5 hPL (Koch et al., 2013) 

GSE37067 MSC BM - - - P<5 hPL (Koch et al., 2013) 

GSE37067 MSC BM - - - P<5 hPL (Koch et al., 2013) 

GSE37067 MSC BM - - - P<5 hPL (Koch et al., 2013) 

GSE37067 MSC BM - - - P<5 hPL (Koch et al., 2013) 

GSE37067 MSC BM - - - P>5 hPL (Koch et al., 2013) 

GSE37067 MSC BM - - - P>5 hPL (Koch et al., 2013) 

GSE37067 MSC BM - - - P>5 hPL (Koch et al., 2013) 

GSE37067 MSC BM - - - P>5 hPL (Koch et al., 2013) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - <40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE52114 MSC BM - - >40 P>5 FBS (Fernandez et al., 2015) 

GSE55889 MSC AT - - - P<5 hPL (Schellenberg et al., 2014) 

GSE55889 MSC AT - - - P<5 hPL (Schellenberg et al., 2014) 

GSE55889 MSC AT - - - P<5 hPL (Schellenberg et al., 2014) 

GSE55889 MSC AT - - - P<5 hPL (Schellenberg et al., 2014) 

GSE55889 MSC AT - - - P<5 hPL (Schellenberg et al., 2014) 

GSE55889 MSC AT - - - P<5 hPL (Schellenberg et al., 2014) 
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GSE55889 MSC AT - - - P<5 hPL (Schellenberg et al., 2014) 

GSE55889 MSC AT - - - P<5 hPL (Schellenberg et al., 2014) 

GSE57151 MSC AT - - - - hPL (Reinisch et al., 2015) 

GSE57151 MSC AT - - - - hPL (Reinisch et al., 2015) 

GSE57151 MSC AT - - - - hPL (Reinisch et al., 2015) 

GSE57151 MSC UC - - - - hPL (Reinisch et al., 2015) 

GSE57151 MSC UC - - - - hPL (Reinisch et al., 2015) 

GSE57151 MSC UC - - - - hPL (Reinisch et al., 2015) 

GSE57151 MSC BM - - - - hPL (Reinisch et al., 2015) 

GSE57151 MSC BM - - - - hPL (Reinisch et al., 2015) 

GSE57151 MSC BM - - - - hPL (Reinisch et al., 2015) 

GSE30654 Fibroblast Skin - - - - FBS (Nazor et al., 2012) 

GSE30654 Fibroblast Lung - - - - FBS (Nazor et al., 2012) 

GSE30654 Fibroblast Derm - - - - FBS (Nazor et al., 2012) 

GSE30654 Fibroblast Derm - - - - FBS (Nazor et al., 2012) 

GSE30654 Fibroblast Derm - - - - FBS (Nazor et al., 2012) 

GSE30654 Fibroblast Derm - - - - FBS (Nazor et al., 2012) 

GSE30654 Fibroblast Heart - - - - FBS (Nazor et al., 2012) 

GSE30654 Fibroblast Heart - - - - FBS (Nazor et al., 2012) 

GSE30654 Fibroblast Lung - - - - FBS (Nazor et al., 2012) 

GSE40790 Fibroblast Lung - - - - FBS (Merling et al., 2013) 

GSE40927 Fibroblast Skin - - - P<5 FBS (Kurian et al., 2013) 

GSE40927 Fibroblast Skin - - - P<5 FBS (Kurian et al., 2013) 

GSE40927 Fibroblast Skin - - - P>5 FBS (Kurian et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE46650 Fibroblast Synovial - - - - FBS (de la Rica et al., 2013) 

GSE53096 Fibroblast Derm - - - - FBS (Ma et al., 2014) 

GSE53918 Fibroblast Cornea - - - - FBS (Sareen et al., 2014) 

GSE53918 Fibroblast Cornea - - - - FBS (Sareen et al., 2014) 

GSE53918 Fibroblast Cornea - - - - FBS (Sareen et al., 2014) 

GSE54115 Fibroblast Skin - - - P>5 FBS - 

GSE54115 Fibroblast Skin - - - P>5 FBS - 

GSE54848 Fibroblast Derm - - - - FBS (Ohnuki et al., 2014) 

GSE54848 Fibroblast Derm - - - - FBS (Ohnuki et al., 2014) 

GSE54848 Fibroblast Derm - - - - FBS (Ohnuki et al., 2014) 

GSE57151 Fibroblast - - - - - FBS (Reinisch et al., 2015) 

GSE57151 Fibroblast - - - - - FBS (Reinisch et al., 2015) 

GSE57151 Fibroblast - - - - - FBS (Reinisch et al., 2015) 

GSE57992 Fibroblast Aminiotic - - - - FBS (He et al., 2014) 

GSE57992 Fibroblast - - - - - FBS (He et al., 2014) 

GSE61461 Fibroblast Skin - - - - FBS (Johannesson et al., 2014) 

GSE61461 Fibroblast Skin - - - - FBS (Johannesson et al., 2014) 

P = passage; FBS = fetal bovine serum; hPL = human platelet lysate; IC = iliac crest; CF = caput femoris; UC = 

umbilical cord. 
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Table S3. Primary cell preparations used for pyrosequencing analysis 

Sample ID Tissue Source Age Gender Passage 

MSC 1 Bone Marrow 69 Female 3 

MSC 2 Bone Marrow 84 Male 2 

MSC 3 Bone Marrow 50 Female 1 

MSC 4 Bone Marrow 33 Female 2 

MSC 5 Bone Marrow 59 Male 1 

MSC 6 Bone Marrow 50 Male 2 

MSC 7 Bone Marrow 30 Male 2 

MSC 8 Bone Marrow 70 Female 2 

MSC 9 Bone Marrow 87 Male 1 

MSC 10 Bone Marrow 73 Male 1 

MSC 11 Bone Marrow 66 Male 1 

MSC 12 Bone Marrow 67 Male 2 

MSC 13 Adipose Tissue 46 Male 4 

MSC 14 Adipose Tissue 43 Female 2 

MSC 15 Adipose Tissue 48 Female 2 

MSC 16 Adipose Tissue 50 Female 3 

MSC 17 Adipose Tissue 43 Female 1 

MSC 18 Adipose Tissue 19 Female 3 

MSC 19 Adipose Tissue 24 Male 1 

MSC 20 Adipose Tissue 23 Male 1 

MSC 21 Adipose Tissue 24 Female 1 

MSC 22 Adipose Tissue 29 Female 2 

Fibroblast 1 Dermis (Breast) 42 Female 2 

Fibroblast 2 Dermis (Abdomen) 62 Female 2 

Fibroblast 3 Dermis (Breast) 43 Female 2 

Fibroblast 4 Dermis (Breast) 18 Female 2 

Fibroblast 5 Dermis (Arm) 63 Female 2 

Fibroblast 6 Dermis (Abdomen) 73 Female 2 

Fibroblast 7 Dermis (Ear) 64 Female 2 

Fibroblast 8 Dermis (Breast) 60 Female 3 

Fibroblast 9 Dermis (Abdomen) 23 Female 11 

Fibroblast 10 Dermis 60 Female 10 

Fibroblast 11 Dermis 60 Female 5 

Fibroblast 12 Dermis (Breast) 60 Female 16 

 

Table S4. Primers for pyrosequencing assays 

Primer CpG  ID Sequence 

C3orf35_F  Biotin cg22286764 5`-TGTGTGTATTTTGTTGTTTATTTTTTGGGTTTAGGAGAA-3` 

C3orf35_R 
 

5`-CCTCCCTTAAAATCAATCTCCAATCATTTAATTAACTT-3` 

C3orf35_seq 
 

5`-AACTTAACTACAATCATTCACA-3` 

CIDEC_F cg05684195 5`-TGAGTAGATAATTTAATTTAGGGTTGAAGAAGTTTTGT-3` 

CIDEC _R Biotin 
 

5`-CATCCCCAAAAATATAAAATAATATAACTCACCTCC-3` 

CIDEC_seq 
 

5`-AGATTTGTTTTTGTTTATGG-3` 

SLC41A2_F cg27149093 5`-TGTGTTTGTTTTTTTGGTTTTTTTGGTAAATTA-3` 

SLC41A2_R  Biotin 
 

5`-CCAAATCCAATCCTTCTATAAAACTTCTAAACATCTT-3` 

SLC41A2_seq 
 

5`-GGGAATTATAGTAGATGAATTAG-3` 

TM4SF1_F  Biotin cg08124030 5`-ATAAAGAGAAGGGGGAGAAAATTTAGTAGATTATTATGTG-3` 

TM4SF1_R 
 

5`-TTTCCCCATTAAAAAAATAAAACAAAATATTAACC-3` 

TM4SF1_seq 
 

5`-AAAAATAAAACAAAATATTAACC-3` 

_F = forward primer; _R = reverse primer. 
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Supplemental Experimental Procedures 
 

 

Bioinformatic procedures 

The DNAm datasets (Supplemental Tables S1 and S2) were carefully evaluated with regard to the corresponding 

publications. CpGs linked to X and Y chromosomes were excluded and we focused on 25,014 CpGs represented 

by 27K and 450K BeadChips. DNAm levels (β-values) were quantile normalized using the R package lumi. 

Principal component analysis (PCA) was performed with the R package stats using singular value decomposition 

of the data matrix. Significant differentially methylated CpG-sites were identified by Limma adjusted t-test (R 

package limma; p < 0.05).  

 

Permutation assays 

Bootstrapping was performed on the 27k BeadChip training set to estimate likelihood that the CpGs of the Epi-

MSC-Score provide reproducible results according to (i) difference in mean DNAm in MSCs versus fibroblasts, 

and (ii) variation in DNAm levels within each of the two cell types. This method was performed 1000 times. The 

results revealed that the CpG site in CIDEC (cg05684195) was on rank four (88% of replicates) and the CpG site 

in C3orf35 (cg22286764) was on rank eight (73% of replicates) of all 25,014 CpGs. In analogy, we performed 

the same experiment for the DNAm changes between MSCs from BM versus AT: TM4SF1 (cg08124030) was 

on rank one (100% of the replicates) and SLC41A2 (cg27149093) was on rank nine (93% of the replicates). This 

reanalysis supported the notion that the CpGs of the Epi-MSC-Score and of the Epi-Tissue-Score are within the 

most stable CpGs sites for these comparisons.  

 

Analysis of Epi-MSC-Score in other cell types 

DNAm profiles (450k) of MSCs that were subsequently used for reprogramming into iPSCs (GSE34688), of 

iPSCs (GSE34688), and of iPS-MSCs (GSE54767) were retrieved from GEO. Furthermore, we applied the Epi-

MSC-Score to DNAm profiles of blood (GSE39981), monocytes (GSE59339), and macrophages (GSE31680). 

Overall, Epi-MSC-Score of these hematopoietic cells was close to zero, indicating that potentially contaminating 

macrophages would hardly impact on the Epi-MSC-Score – in this regard the Epi-MSC-Score is no substitute for 

immunophenotypic analysis. 

 

Analysis of differential gene expression in genes of Epi-MSC-Score and Epi-Tissue-Score 

To estimate if DNAm changes might be reflected in differential gene expression we downloaded microarray data 

from GEO (all Illumina HumanHT-12 v4 platform; GPL10558). For analysis of gene expression of C3orf35 and 

CIDEC (associated with Epi-MSC-Score) in MSCs versus fibroblasts we used the following profiles: for MSCs: 

GSM1050328, GSM1050329, GSM1050330, GSM1050331, GSM1050332, GSM1050333, GSM1128574, 

GSM1128575, GSM1276944, GSM1276947, GSM1276948, GSM1276949, GSM1350082, GSM1350083, 

GSM1350088, GSM1350089, GSM1350090, GSM1515746, GSM1515747, GSM1515748, GSM1515749, 

GSM1515750, GSM1515751, GSM1515752; and for fibroblasts: GSM786856, GSM786857, GSM1348171, 

GSM1348172, GSM1348173, GSM860982, GSM860983, GSM860984, GSM1359297, GSM1359298, 

GSM1359309, GSM1359310, GSM1381443, GSM1586080, GSM1586082, GSM1586085, GSM1586089, 

GSM1329667, GSM1329668, GSM1664886, GSM1664890, GSM1664894. To estimate gene expression levels 

of SLC41A2 and TM4SF1 (associated with CpGs of the Epi-Tissue-Score) we utilized the following profiles for 

MSCs from bone marrow: GSM1050328, GSM1050329, GSM1050330, GSM1050331, GSM1050332, 

GSM1050333, GSM1128574, GSM1128575, GSM1276944, GSM1276947, GSM1276948, GSM1276949, 

GSM1350082, GSM1350083, GSM1350088, GSM1350089, GSM1350090; and for MSCs from adipose tissue: 

GSM1515746, GSM1515747, GSM1515748, GSM1515749, GSM1515750, GSM1515751, GSM1515752. Data 

were quantile normalized for comparison of relative gene expression levels. 

 

Additional information on clonal analysis of MSCs 

After two weeks, individual clones with confluence of 50% or more were counted to estimate the CFU-Fs 

(colony-forming unit fibroblast-like) frequency with the L-Calc Software (Stem Cell Technologies, Canada) 

(Schellenberg et al., 2012) and then harvested. In addition, we used independent 96-well plates, that were either 

differentiated towards osteogenic or adipogenic lineages for two additional weeks and stained with Alizarin Red 

or BODIPY, respectively (Schellenberg et al., 2012). After absorbance measurement (Tecan PRO, Switzerland) 

and fluorescence analysis (EVOS, Life Technologies, USA) the DNA was harvested for pyrosequencing. 
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