Supplemental information

Inhibition of *Pseudomonas aeruginosa* ExsA DNA-binding activity by *N*-hydroxybenzimidazoles

Marsden et. al

| Bacterial strains                     | Relevant characteristics                                                 |                          |                          | Reference  |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------|--------------------------|--------------------------|------------|--|--|--|
| Pseudomonas aeruginosa                |                                                                          |                          |                          |            |  |  |  |
| PA103                                 | Wild-type parental strain                                                |                          |                          |            |  |  |  |
| PA103 <i>exsA</i> ::Ω                 | Chromosomal interposon insertion in exsA                                 |                          | (2)                      |            |  |  |  |
| PA103 Δ <i>exsA</i>                   | In frame deletion of exsA                                                |                          |                          | (3)        |  |  |  |
| PA103 Δ <i>exoU exoT</i> ::Tc         | In frame deletion of <i>exoU</i> , Tc cassette inser                     | tion in <i>exoT</i>      |                          | (4)        |  |  |  |
| Escherichia coli                      |                                                                          |                          |                          |            |  |  |  |
| DH5α                                  | <i>recA</i> cloning strain                                               |                          |                          | (5)        |  |  |  |
| BL21 (DE3) Tuner                      | Protein expression and purification                                      |                          |                          | Novagen    |  |  |  |
| GS162                                 | Wild-type strain carrying $\Delta /ac$ U169                              |                          |                          |            |  |  |  |
| Reporter fusions                      | Integration plasmid                                                      | Experiment               | Primer or primer pair    | Reference  |  |  |  |
| P <sub>exsC-lacZ</sub>                | mini-CTX-P <sub>exsC-lacz</sub> (-186 to +17)                            | Fig. S4A                 | NA                       | (7)        |  |  |  |
| P <sub>exoT-lacZ</sub>                | mini-CTX-P <sub>exoT-lacZ</sub> (-179 to +17)                            | Fig. S4B, C              | NA                       | (8)        |  |  |  |
| P <sub>exoS-gfp</sub>                 | pJNE05                                                                   | Fig. 3, S2               | NA                       | (9)        |  |  |  |
| Expression plasmids                   | Relevant characteristics                                                 | Experiment               | Primer or primer pair(s) | Reference  |  |  |  |
| pJN105                                | Arabinose-inducible expression vector                                    | Fig. S4A-C               | NA                       | (10)       |  |  |  |
| pEB124                                | Wild-type exsA expression vector                                         | Fig. S4A-C               | NA                       | (8)        |  |  |  |
| pET16b                                | IPTG-inducible protein expression vector<br>with an N-terminal His10 tag |                          | NA                       | Novagen    |  |  |  |
| pET16b exsA                           | Source of purified ExsA <sub>His</sub>                                   | Fig. 2A-C;<br>5B: 7A: S5 | NA                       | (8)        |  |  |  |
| pET16b <i>lcrF</i>                    | Source of purified LcrF <sub>His</sub>                                   | Fig. 5C, 7C              | NA                       | (11)       |  |  |  |
| pET16b ascA                           | Source of purified AscA <sub>His</sub>                                   | Fig. 5D                  | 124682246,124682249      | This study |  |  |  |
| pET16b <i>exsA</i> <sub>Vp</sub>      | Source of purified ExsA <sub>Vp-His</sub>                                | Fig. 5E                  | 124682248,124682251      | This study |  |  |  |
| pET16b exsA-CTD                       | Source of purified ExsA-CTD <sub>His</sub>                               | Fig. 2D                  | 124727245,117236112      | This study |  |  |  |
| pET16b <i>exsA</i> <sub>Vp</sub> -CTD | Source of purified ExsA <sub>Vp</sub> -CTD <sub>His</sub>                | Fig. 6A                  | 124727247,124682251      | This study |  |  |  |
| pET16b <i>vfr</i>                     | Source of purified Vfr <sub>His</sub>                                    | Fig. 6B                  | NA                       | (12)       |  |  |  |

## Table S1. Bacterial strains and plasmids used in this study.

| Expression plasmids | Relevant characteristics                      | Experiment     | Primer or primer pair(s) | Reference       |
|---------------------|-----------------------------------------------|----------------|--------------------------|-----------------|
| pAM196              | Source of purified ExsA(S207T) <sub>His</sub> | Fig. 7B, S5    | 117236111,126035215;     | This study      |
|                     |                                               |                | 117236112,126035214      |                 |
| pAM202              | Source of purified ExsA(M177E) <sub>His</sub> |                | 117236111,127030665;     | This study      |
|                     |                                               |                | 117236112,127030664      |                 |
| pAM203              | Source of purified ExsA(H180E) <sub>His</sub> | Fig. S6A       | 117236111,127030667;     | This study      |
|                     |                                               |                | 117236112,127030666      |                 |
| pAM204              | Source of purified ExsA(Y181E) <sub>His</sub> |                | 117236111,127030669;     | This study      |
|                     |                                               |                | 117236112,127030668      |                 |
| pAM205              | Source of purified ExsA(N183E) <sub>His</sub> | Fig. S6B       | 117236111,127030671;     | This study      |
|                     |                                               |                | 11/236112, 12/0306/0     | <del>.</del>    |
| pAM206              | Source of purified ExsA(W185E) <sub>His</sub> |                | 11/236111,12/0306/5;     | This study      |
|                     |                                               | <b>F</b> : 000 | 11/236112,12/0306/4      | <del>.</del>    |
| pAM207              | Source of purified ExsA(I21/E) <sub>His</sub> | Fig. S6C       | 117236111,126904065;     | This study      |
|                     |                                               |                | 117236112,126904064      | <b>T</b> I: ( ) |
| pAM208              | Source of purified ExsA(R221E) <sub>His</sub> |                | 117236111,126904067;     | This study      |
| - 11000             |                                               |                | 117236112,126904066      |                 |
| pam209              | Source of purified EXSA(F245E) <sub>His</sub> |                | 117236111,126904069;     | i nis study     |
| - 11210             | Course of purified Eve (CO47E)                |                | 117236112,126904068      | This study      |
| pAWZ TU             | Source of purified EXSA(5247E)His             |                | 117230111,126904071;     | This study      |
| DAM211              | Source of purified Exet ( $V250E$ )           |                | 117230112,120904070      | This study      |
| PAWZTI              | Source of purmed EXSA(1250E)His               |                | 117236112 126004073,     | This study      |
| nAM212              | Source of purified $ExcA(E181A)$              | Fig. S6D       | 117236111 126825400      | This study      |
| PAWZTZ              | Source of purified EXSA(E 104A)His            | Tig. 30D       | 117236112 126825499,     | This study      |
| nAM213              | Source of purified $ExcA(K186A)$              | Fig S6F        | 117236111 130073102      | This study      |
|                     |                                               | TIG. OUL       | 117236112 130973191      | This study      |
| nAM214              | Source of purified $ExsA(P213A)$              | Fig. S6F       | 117236111 130973194      | This study      |
|                     |                                               | 1 lg. 001      | 117236112 130973193      | This study      |
| pAM215              | Source of purified ExsA(R214A)                | Fig. S6G       | 117236111 130973196      | This study      |
| p; <u>=</u> : e     |                                               | 1 ig. 000      | 117236112 130973195      | The etady       |
| pAM216              | Source of purified ExsA(M241A)                | Fia S6H        | 117236111 130973198      | This study      |
|                     |                                               |                | 117236112.130973197      |                 |
| pAM217              | Source of purified ExsA(S246A)                | Fia. S6l       | 117236111.130973200:     | This studv      |
| •                   |                                               | 0              | 117236112,130973199      | ···· <b>,</b>   |

 Table S1. (continued) Bacterial strains and plasmids used in this study.

| Expression plas | smids | Relevant characte  | ristics                    | Experiment | Primer or primer pair(s) | Reference  |
|-----------------|-------|--------------------|----------------------------|------------|--------------------------|------------|
| pAM231          |       | Source of purified | LcrF(T203S) <sub>His</sub> | Fig. 7D    | 132425570,132342334      | This study |
|                 |       |                    |                            |            | 124818301,132342333      |            |

### Table S1. (continued) Bacterial strains and plasmids used in this study.

### Table S2. Primers used in this study.

| Primer ID | Name                 | Primer Sequence                                            |
|-----------|----------------------|------------------------------------------------------------|
| 22963127  | Pc5'Hind             | 5'-ACGCAAGCTTATGAAGGACGTCCTGCAGCTCATCC                     |
| 49188917  | Pc3'EcoRI            | 5'-TGATGAATTCGCCTCCTAAAGCTCAGCGCATGC                       |
| 85333731  | algD5_nonsp          | 5'-CAGGGGTGTCGGAGGGACGAACGGTA                              |
| 85333730  | algD3_nonsp          | 5'-ACGGCTATTACTTCAGCGCCGAGCAATC                            |
| 124727245 | exsA CTD Gibson      | 5'-TATCGAAGGTCGTCATATGGAGAATCTTTATTTTCAGGGCAACCGGCATGTCGAG |
|           |                      | CGTCTGCAGC                                                 |
| 117236111 | exsA Gibson pET16b 1 | 5'-CATATCGAAGGTCGTCATATGCAAGGAGCCAAATCTC                   |
| 117236112 | exsA Gibson pET16b 2 | 5'-GCTTTGTTAGCAGCCGGATCCTCAGTTATTTTAGCCCGG                 |
| 124727249 | ascA Gibson          | 5'-TATCGAAGGTCGTCATATGGAGAATCTTTATTTTCAGGGCAACCGCCAGGTTGAA |
|           |                      | CGATTACAGC                                                 |
| 124682249 | AxsA3'BampET16b      | 5'-GCTTTGTTAGCAGCCGGATCCTTAATCTTTGCCATGTCTGGC              |
| 124727247 | vxsA CTD Gibson      | 5'-TATCGAAGGTCGTCATATGGAGAATCTTTATTTTCAGGGCAACCGAACCTCAGAC |
|           |                      | CGCTTACGCC                                                 |
| 124682251 | VxsA3'BampET16b      | 5'-GCTTTGTTAGCAGCCGGATCCTCAATTAGCGATGGCGACTTG              |
| 124727246 | IcrF CTD Gibson      | 5'-TATCGAAGGTCGTCATATGGAGAATCTTTATTTTCAGGGCAACCGCCCAGAAGA  |
|           |                      | ACGGTTGCAAA                                                |
| 124818301 | LcrF3'pET16b Gibson  | 5'-GCTTTGTTAGCAGCCGTTAGCCTGTGGTTGCTATTTTAG                 |
| 124682246 | AxsA5'NdepET16b      | 5'-CATATCGAAGGTCGTCATATGAAAGGCATTACAACCA                   |
| 124682248 | VxsA5'NdepET16b      | 5'-CATATCGAAGGTCGTCATATGGATGTGTCAGGCCAAC                   |
| 126035214 | ExsAS207TGibsonfor   | 5'-AAGGAGCTGTTCGGCACCGTCTACGGGGTTTCG                       |
| 126035215 | ExsAS207TGibsonrev   | 5'-CGAAACCCCGTAGACGGTGCCGAACAGCTCCTT                       |
| 127030664 | ExsAM177EGibsonfor   | 5'-CTGCAGCTATTCGAGGAGAAGCACTAC                             |
| 127030665 | ExsAM177EGibsonrev   | 5'-GTAGTGCTTCTCCTCGAATAGCTGCAG                             |
| 127030666 | ExsAH180EGibsonfor   | 5'-TTCATGGAGAAGGAGTACCTCAACGAG                             |
| 127030667 | ExsAH180EGibsonrev   | 5'-CTCGTTGAGGTACTCCTTCTCCATGAA                             |
| 127030668 | ExsAY181EGibsonfor   | 5'-ATGGAGAAGCACGAGCTCAACGAGTGG                             |
| 127030669 | ExsAY181EGibsonrev   | 5'-CCACTCGTTGAGCTCGTGCTTCTCCAT                             |
| 127030670 | ExsAN183EGibsonfor   | 5'-AAGCACTACCTCGAGGAGTGGAAGCTG                             |
| 127030671 | ExsAN183EGibsonrev   | 5'-CAGCTTCCACTCCTCGAGGTAGTGCTT                             |
| 127030674 | ExsAW185EGibsonfor   | 5'-TACCTCAACGAGGAGAAGCTGTCCGAC                             |
| 127030675 | ExsAW185EGibsonrev   | 5'-GTCGGACAGCTTCTCCTCGGTGAGGTA                             |
| 126904064 | ExsAI217EGibsonfor   | 5'-CCGCGCGCCTGGGAGAGCGAGCGGAGA                             |
| 126904065 | ExsAI217EGibsonrev   | 5'-TCTCCGCTCGCTCTCCCAGGCGCGCGG                             |
| 126904066 | ExsAR221EGibsonfor   | 5'-ATCAGCGAGCGGGAGATCCTCTATGCC                             |

# Table S2. (continued) Primers used in this study.

| Primer ID | Name               | Primer Sequence                            |
|-----------|--------------------|--------------------------------------------|
| 126904067 | ExsAR221EGibsonrev | 5'-GGCATAGAGGATCTCCCGCTCGCTGAT             |
| 126904068 | ExsAF245EGibsonfor | 5'-ATGGAGGCGGGCGAGTCCAGCCAGTCC             |
| 126904069 | ExsAF245EGibsonrev | 5'-GGACTGGCTGGACTCGCCCGCCTCCAT             |
| 126904070 | ExsAS247EGibsonfor | 5'-GCGGGCTTTTCCGAGCAGTCCTATTTC             |
| 126904071 | ExsAS247EGibsonrev | 5'-GAAATAGGACTGCTCGGAAAAGCCCGC             |
| 126904072 | ExsAY250EGibsonfor | 5'-TCCAGCCAGTCCGAGTTCACCCAGAG              |
| 126904073 | ExsAY250EGibsonrev | 5'-CTCTGGGTGAACTCGGACTGGCTGGA              |
| 33075941  | 2UY27A             | 5'-TATGAATCCCATGCCGAACCGGTAGCC             |
| 33075940  | 2UY27B             | 5'-GGGGGCAGGTAGGGGATCCGCTCGGCAATCGG        |
| 126825498 | ExsAE184AGibsonfor | 5'-CACTACCTCAACGCCTGGAAGCTGTCC             |
| 126825499 | ExsAE184AGibsonrev | 5'-GGACAGCTTCCAGGCGTTGAGGTAGTG             |
| 130973191 | ExsAK186AGibsonfor | 5'-CTCAACGAGTGGGCCCTGTCCGACTTC             |
| 130973192 | ExsAK186AGibsonrev | 5'-GAAGTCGAACAGGGCCCACTCGTTGAG             |
| 130973193 | ExsAP213AGibsonfor | 5'-TACGGGGTTTCGGCCCGCGCCTGGATC             |
| 130973194 | ExsAP213AGibsonrev | 5'-GATCCAGCCGCGGGCCGAAACCCCCGTA            |
| 130973195 | ExsAR214AGibsonfor | 5'-GGGGTTTCGCCGGCCGGCCTGGATCAGC            |
| 130973196 | ExsAR214AGibsonrev | 5'-GCTGATCCAGGCGGCCGGCGAAACCCCC            |
| 130973197 | ExsAM241AGibsonfor | 5'-GTCGACATCGCCGCCGAGGCGGGCTTT             |
| 130973198 | ExsAM241AGibsonrev | 5'-AAAGCCCGCCTCGGCGGCGATGTCGAC             |
| 130973199 | ExsAS246AGibsonfor | 5'-GAGGCGGGCTTTGCCAGCCAGTCCTAT             |
| 130973200 | ExsAS246AGibsonrev | 5'-ATAGGACTGGCTGGCAAAGCCCGCCTC             |
| 132342333 | LcrF T203S for     | 5'-GAACTGTTTGGTAGCGTTTATGGCATT             |
| 132342334 | LcrF T203S rev     | 5'-AATGCCATAAACGCTACCAAACAGTTC             |
| 132425570 | LcrF5'pET16bGibson | 5'-CATATCGAAGGTCGTCATATGGCATCACTAGAGATTATT |

#### REFERENCES

- 1. **Liu PV.** 1966. The roles of various fractions of Pseudomonas aeruginosa in its pathogenesis. 3. Identity of the lethal toxins produced in vitro and in vivo. J. Infect. Dis. **116**:481-489.
- 2. **Frank DW, Nair G, Schweizer HP.** 1994. Construction and characterization of chromosomal insertional mutations of the Pseudomonas aeruginosa exoenzyme S trans-regulatory locus. Infect. Immun. **62:**554-563.
- 3. **Brutinel ED, Vakulskas CA, Yahr TL.** 2010. ExsD inhibits expression of the Pseudomonas aeruginosa type III secretion system by disrupting ExsA self-association and DNA binding activity. J. Bacteriol. **192:**1479-1486.
- 4. **Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW.** 1998. ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc. Natl. Acad. Sci. U. S. A. **95:**13899-13904.
- 5. Hanahan D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166:557-580.
- 6. **Stauffer GV, Plamann MD, Stauffer LT.** 1981. Construction and expression of hybrid plasmids containing the Escherichia coli glyA genes. Gene **14:**63-72.
- 7. **McCaw ML, Lykken GL, Singh PK, Yahr TL.** 2002. ExsD is a negative regulator of the Pseudomonas aeruginosa type III secretion regulon. Mol. Microbiol. **46:**1123-1133.
- 8. **Brutinel ED, Vakulskas CA, Brady KM, Yahr TL.** 2008. Characterization of ExsA and of ExsA-dependent promoters required for expression of the Pseudomonas aeruginosa type III secretion system. Mol. Microbiol. **68:**657-671.
- 9. **Urbanowski ML, Brutinel ED, Yahr TL.** 2007. Translocation of ExsE into Chinese hamster ovary cells is required for transcriptional induction of the Pseudomonas aeruginosa type III secretion system. Infect. Immun. **75:**4432-4439.
- 10. **Newman JR, Fuqua C.** 1999. Broad-host-range expression vectors that carry the L-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene **227:**197-203.
- 11. **King JM, Schesser Bartra S, Plano G, Yahr TL.** 2013. ExsA and LcrF recognize similar consensus binding sites, but differences in their oligomeric state influence interactions with promoter DNA. J. Bacteriol. **195:**5639-5650.
- 12. **Fuchs EL, Brutinel ED, Klem ER, Fehr AR, Yahr TL, Wolfgang MC.** 2010. In vitro and in vivo characterization of the Pseudomonas aeruginosa cyclic AMP (cAMP) phosphodiesterase CpdA, required for cAMP homeostasis and virulence factor regulation. J. Bacteriol. **192:**2779-2790.



FIG S1. Growth curve for PA103 in the presence of *N*-hydroxybenzimidazoles. Wild-type *P. aeruginosa* (PA103) was grown overnight on VBM agar then suspended at an A<sub>600</sub> of 0.001 with each *N*-hydroxybenzimidazole (125  $\mu$ M) or DMSO (2.5%) and grown at 37°C with shaking.



FIG S2. *N*-hydroxybenzimidazoles inhibit ExsA-dependent gene expression. Representative data from an *exoU*, *exoT* mutant carrying a GFP transcriptional reporter (PA103  $\Delta exoU exoT$ ::Tc P<sub>*exoS-gfp*</sub>) incubated with DMSO (2.5%) or the indicated *N*-hydroxybenzimidazole (125 µM) for 15 min prior to incubation with CHO cells for 4 hr at 37°C. Reporter activity was measured by flow cytometry.



FIG S3. *N*-hydroxybenzimidazoles do not inhibit purified lactate dehydrogenase activity. Purified LDH enzyme was incubated with DMSO (2.5%) or the indicated *N*-hydroxybenzimidazole (125  $\mu$ M) for 15 min at 25°C and activity was assayed.



FIG S4. *N*-hydroxybenzimidazoles do not significantly inhibit ExsA-dependent promoter activity in broth cultures. (*A-B*) *P. aeruginosa exsA* mutants or (*C*) *E. coli* GS162 carrying  $P_{exsC-lacZ}$  (*A*) or  $P_{exoT-lacZ}$  (*B* and *C*) transcriptional reporters and either a vector control (V) or an arabinose-inducible *exsA* expression vector (ExsA) were grown with 0.1% arabinose to an A<sub>600</sub> of 1.0 in the presence of each *N*-hydroxybenzimidazole (125 µM) at 30°C. β-galactosidase activity was assayed and expressed as a percentage of the activity measured in untreated samples expressing *exsA*. Statistical differences were determined by comparison to DMSO treatment. \*, *P* < 0.01.



FIG S5. Amino acid substitution S207T in recognition helix 1 alters ExsA-DNA binding in the presence of *N*-hydroxybenzimidazole 5816. ExsA or ExsA<sub>S207T</sub> (100 nM) were incubated with the indicated concentrations of compound 5816 (0-250 nM) to determine the half maximal inhibitory concentration (IC<sub>50</sub>) for inhibition of ExsA-P<sub>exsC</sub> complex formation.



FIG S6. Glutamic acid and alanine substitutions in the putative inhibitor-binding pocket affect ExsA-DNA binding in the presence of *N*-hydroxybenzimidazoles. ExsA<sub>H180E</sub> (*A*), ExsA<sub>N183E</sub> (*B*), ExsA<sub>I217E</sub> (*C*), ExsA<sub>E184A</sub> (*D*), ExsA<sub>K186A</sub> (*E*), ExsA<sub>P213A</sub> (*F*), ExsA<sub>R214A</sub> (*G*), ExsA<sub>M241A</sub> (*H*), and ExsA<sub>S246A</sub> (*I*) (100 nM) were treated with DMSO (2.5%) or each *N*-hydroxybenzimidazole (125  $\mu$ M) for 5 min before incubation with specific (P<sub>exsC</sub>) and nonspecific (*algD*) radiolabeled probes (0.05 nM each) for 15 min at 25°C. Native polyacrylamide gel electrophoresis and phosphorimaging was performed to examine binding reactions. Protein-DNA complexes and unshifted specific and nonspecific probes are indicated.

|             |          |       |               |       |        |                |                |                  |        | RH1    |                |               |
|-------------|----------|-------|---------------|-------|--------|----------------|----------------|------------------|--------|--------|----------------|---------------|
|             | 160      | 165   | 170           | 175   | 180    | 185            | 190            | 195              | 200    | 205    | 210            | 215           |
| ExsA        | SVLR     | QLSNR | HVERI         | QLFM  | EKHYL  | IEWK           | LSDFS          | REFGM            | GLTTFF | ELFGS  | SVYGVS         | PRAWI         |
| MarA        | MSRR     | NTDAI | TIHS          | LDWI  | EDNLES | SPLS           | LEKVS          | ERSGY            | SKWHLÇ | ORMEKE | ETGHS          | LGQYI         |
| SoxS        | ]        | MSHQK | IIQDI         | IWAI  | DEHID  | 2PLN           | IDVVA          | KKSGY            | SKWYLÇ | QRMFRI | TVTHQT         | LGDYI         |
| Rob         | ]        | MDQAG | IIRDI         | LIWL  | EGHLD  | 2PLS           | LDNVA          | AKAGY            | SKMHTČ | QRMFKI | OVTGHA         | IGAYI         |
| Rma         | M        | FISAQ | VIDTI         | VEWI  | DDNLN  | 2PLR           | IDDIA          | RHAGYS           | SKWHLČ | QRLFMQ | YKGES          | LGRYV         |
| PqrA        |          | -MAEN | VVND          | LKWL  | ETQLQI | NEGIK          | IDTIA          | NKSGYS           | SKWHLÇ | QRIFKE | FKGCT          | LGEYV         |
|             |          |       | : :           |       | :.     |                | ••••           | • *              | :      | •••*   | :              | ::            |
|             |          |       |               |       |        |                |                | RH2              |        |        |                |               |
|             | 220      | 225   | 230           | 238   | 5 240  | 245            | 250            | 255              | 260    | 265    | 270            | 275           |
| ExsA        | SERR     | ILYAH | QLLLN         | ISDMS | IVDIA  | EAGES          | SQSYF          | TQSYRI           | RRFGCI | PSRSF  | RQGKDE         | CRAKNN        |
| MarA        | RSRK     | MTEIA | <b>ØK</b> LKI | ESNEP | ILYLA  | RYGFE          | SQQTL          | TRTFKI           | NYFDVE | PPHKYF | RMTNMQ         | GESRFL        |
| SoxS        | RQRR     | LLLAA | VELRI         | TERP  | IFDIA  | DLGYV          | SQQTF          | SRVFRI           | RQFDRI | PSDYF  | RHRL           |               |
| ROD         | DVDD.    | LCKCA | VALDI         | TAPP  | TLDTAI | OYRFD          | SQOTF          | TRAFK            | KOFAQI | PALYF  | RSPEW          | SAFG          |
| Dana        | INFININ. | LOVON | VALIA         | IIANI |        | £              |                |                  | ~ ~    |        |                |               |
| Rma<br>BarA | RERK     | LKLAA | RDLLI         | DTDQK | VYDIC  | KYGFD          | SQQTF          | TRIFT            | RTFNLE | PGAYF  | REKHG          | RTH           |
| Rma<br>PqrA | RERK     | LKLAA | RDLLI         | DTDQK | VYDICI | KYGFD<br>MYGFS | SQQTF<br>SQATF | TRIFT!<br>TRIFK! | RTFNLE | PGAYF  | KEKHG<br>EHGEL | RTH<br>PDTRRF |

FIG S7. Amino acid alignment of AraC family protein DNA-binding domains. ExsA amino acids are numbered, and recognition helices (RH1 and RH2) are indicated with a bold line. Boxes outline amino acids that were mutagenized in ExsA.