
Supplementary Materials for “DINGO: Differential

Network Analysis in Genomics”

In the following sections, we present detailed information about our method,

DINGO, including additional simulation studies and results from the analysis of The

Cancer Genome Atlas (TCGA) glioblastoma (GBM) data.

Section S1 DINGO model

As part of a detailed description of our DINGO model, we briefly review the co-

variance regression model by Hoff and Niu (2012) and generalize the model for the

precision regression model, along with a simplified example for three genes.

Suppose that we observe gene expression profiles for p genes for a sample, denoted

by a p-dimensional vector y ∈ Rp. For the sample, we also observe a covariate

vector x ∈ Rq. In this paper, we consider a binary covariate, which represents the

group of long-term survivors (LTSs) and the group of short-term survivors (STSs).

The binary covariate is coded as x = (1, 1)T or x = (1,−1)T for the LTSs and

STSs, respectively. Although we consider a binary covariate, the model can be easily

generalized to incorporate multiple categories (such as multiple stages of disease and

multiple subtypes) as well as continuous covariates (such as age and time). We now

assume a general covariate vector x ∈ Rq.

Section S1.1 Covariance regression model

The covariance regression model (Hoff and Niu, 2012) is used to estimate a covari-

ance function Cov(y|x) for covariates x. The linear regression model expresses the

conditional mean E(y|x) as Q′x, where Q′ is the p × q matrix of coefficients. This

model restricts the p-dimensional vector of the conditional mean of y given x to a

q-dimensional subspace of Rp. Hoff and Niu (2012) suggested a covariance regression
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model as a natural generalization of the mean regression to a model for covariance

matrices

Cov(y|x) = Ψ′ + Q′xxTQ′T,

where Ψ′ is a p×p positive definite matrix and Q′ is a p× q matrix. This covariance

function is positive definite for all x. They call Ψ′ a baseline covariance matrix. In

the covariance regression model, the covariance matrix of y is expressed as a baseline

covariance matrix plus a rank-1, p × p positive definite matrix that depends on x.

This model describes marginal correlations among genes given covariates. In the

DINGO model, we are interested in fitting partial correlations (correlations between

any two genes when all the other genes remain constant) and visualizing a differential

network that describes the differences in partial correlations between groups.

Section S1.2 Precision regression model

Our DINGO model is based on the mean function E(y|x) = Gy + Qx, where G is a

p×p matrix of coefficients specifying relations among the p genes of y, and Q is a p×q
matrix of coefficients for x. Therefore, we assume that each variable of y is affected

by other p − 1 genes of y as well as the explanatory variables in x. We define the

coefficient G as a global component because it specifies relations among the p genes

and is independent of x. If x specifies groups of the GBM samples, LTSs and STSs,

then G reflects the global relations among the p genes of GBM patients regardless

of the patients’ survival times. We estimate the group-specific partial correlations

in two steps. Step 1. Estimate the global relations. Step 2. Using the residual

data after removing the effects of global relations, fit the covariance regression model

(Hoff and Niu, 2012).

In Step 1 of our DINGO estimation, we consider the global network model,

y = Gy + ε (1)
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where the elements of G = (Gab)p×p specify the global relations among the variables

of y, ε is a p×1 vector following Np(0,L) where L is the “local” Gaussian graphical

model (GGM) whose elements specify relations among variables in y after removing

the effects of the global relations. In Step 2 of the DINGO estimation, we connect

the local GGM L with the covariate x using the covariance regression model,

L(x)−1 = Cov (ε|x)

= QxxTQT + Ψ,

where Q = [Qab]p×q is a p × q matrix, which is the main construction of interest,

and Ψ = diag(ψ1, . . . , ψp), with ψ1 > 0, . . . , ψp > 0, is a p × p diagonal matrix

whose elements represent variances for pure noise in y. From this model, we assume

that after taking out the effects of relations among y and the covariates x, the p

variables in y are independent by restricting Ψ to be a diagonal matrix. By using

the inverse formula in Miller (1981), the covariance regression model on L(x)−1

can be expressed on the precision matrix function L(x) in equation (1) in Section

2.1. This is the precision regression model as opposed to the covariance regression

model. This model represents covariate-dependent Gaussian graphical models. We

can calculate the group-specific GGMs. From equation (1), we can see that

L = Cov(ε)−1

= (I− G)−TCov(y)−1(I− G)−1

= (I− G)−TN (I− G)−1.

Thus, we can obtain the group-specific GGMs by the convolution

N (x) = G ⊕L(x),

= (I− G)TL(x)(I− G),

where L(x) is taken from equation (1) in Section 2.1. Each element of L(x) can
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be calculated for the two-group setting. L(x) for x(i) = (1, 1)T and x(i) = (1,−1)T

in the precision regression model determine dependencies in the LTSs and STSs,

respectively. We denote the local group-specific component L(x) as L
(
(1, 1)T

)
=

[L(1)
ab ]p×p for the LTSs and L

(
(1,−1)T

)
= [L(2)

ab ]p×p for the STSs. The diagonal and

off-diagonal elements are

L(1)
aa =

1

ψa

− (Qa1 +Qa2)
2

(1 + κ(1))ψ2
a

, L(1)
ab = −(Qa1 +Qa2)(Qb1 +Qb2)

(1 + κ(1))ψaψb

,

where κ(1) =
∑p

k=1(Qk1 +Qk2)
2/ψk, and

L(2)
aa =

1

ψa

− (Qa1 −Qa2)
2

(1 + κ(2))ψ2
a

, L(2)
ab = −(Qa1 −Qa2)(Qb1 −Qb2)

(1 + κ(2))ψaψb

,

where κ(2) =
∑p

k=1(Qk1 − Qk2)
2/ψk. Additionally, we can obtain a baseline compo-

nent denoted by L
(
(1, 0)T

)
= [L(0)

ab ]p×p,

L(0)
aa =

1

ψa

− Q2
a1

(1 + κ(0))ψ2
a

, L(0)
ab = − Qa1Qb1

(1 + κ(0))ψaψb

,

where κ(0) =
∑p

k=1Q
2
k1/ψk. For an edge between Ya and Yb, the local group-specific

components that differ from the baseline component are determined by the coeffi-

cients Qa2 and Qb2. If both Qa2 = 0 and Qb2 = 0, then the edge intensities for both

local group-specific components are the same as those of the baseline component.

All parameters Q and Ψ are estimated by adapting the expectation-maximization

algorithm described in Hoff and Niu (2012) by setting Ψ as a diagonal matrix.

Section S1.3 Simplified example

In Section 2.2, we describe the detailed estimation of our DINGO model when we

have two groups. We take a simple example where p = 3, n = 4 for two groups and
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suppose we have the data as follows:

y(1) =
(
y11 y12 y13

)T ∈ R3 , x(1) =
(
1 −1

)T ∈ R2

y(2) =
(
y21 y22 y23

)T ∈ R3 , x(2) =
(
1 −1

)T ∈ R2

y(3) =
(
y31 y32 y33

)T ∈ R3 , x(3) =
(
1 1

)T ∈ R2

y(4) =
(
y41 y42 y43

)T ∈ R3 , x(4) =
(
1 1

)T ∈ R2.

Let Y =
(
y(1) y(2) y(3) y(4)

)T
and X =

(
x(1) x(2) x(3) x(4)

)T
be the data

matrices for all four individuals. Suppose that we obtain the precision matrix, N
for the three variables from GLasso (Friedman et al., 2008) using Y as

N =

 1 0.2 0
0.2 1 0
0 0 1


Then we have the global network model for individual i,

y(i) = Gy(i) + ε(i)

=

 0 0.2 0
0.2 0 0
0 0 0

y(i) + ε(i),

and this induces the equations,

yi1 = 0.2yi2 + εi1

yi2 = 0.2yi1 + εi2

yi3 = εi3

for i ∈ {1, 2, 3, 4}. From the global network model for data matrix Y, Y = YGT+E ,

we can obtain the residual data matrix E = Y(I − GT) = (ε(1), . . . ε(n))
T, with

ε(i) ∼ Np(0,L) for all i ∈ {1, . . . , n}.
In Step 2 of our DINGO method, we model the local GGM L to be group-
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specific by fitting the precision regression model. Let the parameters in the precision

regression model in equation (1) of Section 2.1 be

Ψ =

ψ1 0 0
0 ψ2 0
0 0 ψ3

 , and Q =

Q11 Q12

Q21 Q22

Q31 Q32

 .

Those matrices are obtained by using the EM algorithm described in Hoff and Niu

(2012). Then we can obtain the local group-specific component L(x) for the two the

groups that have respective covariate vectors x =
(
1 1

)T
and x =

(
1 −1

)T
, by

applying the matrices into equation (1) in Section 2.1. Or, each element of the local

group-specific components are obtained by using equations listed in Section S1.2. By

convolution in equation (2) in Section 2.1, we can build the group-specific GGMs.

Then we make inference on the edge-wise differences of the sets of partial correlations

obtained from the group-specific GGMs (described in Section 2.2 and Section S1.4).

Section S1.4 Bootstrap procedure to obtain differential scores

We build a differential network by thresholding the difference in the conditional

dependencies between two groups for each pair of genes. The two group-specific

GGMs are denoted by N (1) and N (2) for the LTSs and STSs. The corresponding

sets of p(p − 1)/2 partial correlations for the LTSs and STSs are denoted by {ρ̂(1)ab :

a, b ∈ V and a < b} and {ρ̂(2)ab : a, b ∈ V and a < b}, respectively. For an edge

between a and b, we hypothesize that two conditional dependencies corresponding

to a pair of genes a and b are the same: H0 : ρ
(1)
ab = ρ

(2)
ab vs. HA : ρ

(1)
ab 6= ρ

(2)
ab .

Given a conditional dependence estimate ρ̂, the test statistic can be constructed by

Fisher’s Z transformation φ(ρ̂) = 0.5 log{(1 + ρ̂)/(1 − ρ̂)}, and all the transformed

conditional dependencies are denoted by {φ(1)
ab : a, b ∈ V and a < b} and {φ(2)

ab :

a, b ∈ V and a < b}, respectively. Specifically, one may reject the null hypothesis

at level α if |φ(1)
ab − φ

(2)
ab |/

√
1/(n1 − p− 1) + 1/(n2 − p− 1) > Φ−1(1 − α/2), where

n1 and n2 are the sample sizes for the LTSs and STSs, and Φ is the cdf of N(0, 1).
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Although this statistic is asymptotic and follows a normal distribution under the

null hypothesis, it is only valid when the sample sizes are large enough. Moreover,

our group-specific GGMs are jointly estimated through the two components G and

L(x) with parameters Q and Ψ from all n1 + n2 = n samples. The two conditional

dependencies are correlated and the asymptotic variance of the difference is not

known. The bootstrap estimate of the standard error for the difference φ̂
(1)
ab − φ̂

(2)
ab is

calculated as follows:

1. Obtain Ê = Y(I− Ĝ
T

), where Ĝ is the estimate of G from Step 1 of DINGO.

2. Draw the bth bootstrap resample with replacement to obtain Ê
∗b

and X∗b.

3. Using Ê
∗b

and X∗b, fit the precision regression model in equation (1) in Section

2.1 and calculate Fisher’s Z transformed conditional dependence differences

dbij = φ̂
(1)b
ij − φ̂

(2)b
ij for all i < j and i, j ∈ V .

Iterate step 2 through step 3 above B times, and calculate the bootstrap standard

error estimates for all edges i < j as sBij =
√

1
B−1

∑B
b=1

(
dbij − d̄ij

)2
, where d̄ij =∑B

b=1 d
b
ij/B. From this bootstrap procedure, we construct a differential score as

Differential Score: δ
(12)
ij =

φ̂
(1)
ij − φ̂

(2)
ij

sBij
.

Section S2 Application

Section S2.1 Long-term survivors and short-term survivors
from TCGA glioblastoma data

Among 233 patients (TCGA GBM data), 70 were censored; the quantiles of the

survival times (in days) were 5 (0%),153.50 (25%), 219.22 (33%), 341.10 (45%),

383.00 (50%), 407.20 (55%) 481.76 (66%), 541.50 (75%) and 3880 (100%). Due to

censoring, the survival time T is not always observable: instead, for patient i, we
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Figure S1: Survival and censoring time distribution. The vertical lines, from left to
right, are 25% (dashed), 33% (dashed), 45% (dashed), 50% (solid), 55% (dashed),
66% (dashed) and 75% (dashed).

observed

zi = min(ti, ci) and δi = I(ti ≤ ci), (2)

where ci is the censoring time for an individual i. For the cutoffs k1 and k2, we define

xi = 1 if zi > k2, xi = −1 if zi < k1 and δi = 1. The cutoffs k1 and k2 are used to

discretize the total dataset into distinct extreme survival groups: LTSs versus STSs.
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Table S1: The numbers of patients (%) in the survival groups according to the cutoffs
k1 and k2 set by the quantiles of the survival times.

k1 k2 LTSs (%) STSs (%) Missed (%)
383.00 (50 %) 383.00 (50%) 92 (39.48) 81 (34.76) 60 (25.75)
341.10 (45%) 407.20 (55%) 83 (35.62) 73 (31.33) 77 (33.05)
219.22 (33%) 481.76 (66%) 64 (27.47) 54 (23.18) 115 (49.36)
153.50 (25%) 541.50 (75%) 48 (20.60) 41 (17.60) 144 (61.80)

The middle group (k1 ≤ xi ≤ k2) and the patients with censoring time less than k1

were not used in this analysis.

Figure S1 displays the survival/censoring time for all 233 patients. Vertical lines

depict the quantiles of the observed survival times. For several choices of the cutoffs

k1 and k2, Table S1 shows the number of patients (%) classified into each group.

We chose k1 = 341.10 and k2 = 407.20, which correspond to the 45th and 55th

percentiles, and result in 83 patients being classified as LTSs and 73 classified as

STSs, with 77 patients being excluded from the analysis.

Section S2.2 Analysis of RTK/PI3K, p53, Rb signaling path-
ways

For the 83 LTSs and 73 STSs, we analyzed mRNA, DNA copy number, methyla-

tion and microRNA data corresponding to genes involved in the GBM pathways

http://cbio.mskcc.org/cancergenomics/gbm/pathways. Those genes are listed

as follows: AKT1, AKT2, AKT3, PIK3CA, PIK3CB, PIK3CD, PIK3R1, PIK3R2,

FOXO1, FOXO3, FOXO4, PIK3CG, PDPK1, IRS1, SRC, GAB1, PTEN, IGF1R,

PDGFRA, PDGFRB, EGFR, ERBB2, ERBB3, FGFR1, FGFR2, MET, NRAS,

HRAS, KRAS, ARAF, BRAF, RAF1, GRB2, NF1, CBL, SPRY2, CDKN2A, CDKN2C,

CDKN2B, CCND1, CCND2, CDK4, CDK6, RB1, MDM2, MDM4, TP53, PIK3C2B,

PIK3C2G.

Data processing
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We downloaded data from TCGA website for analysis, which included mRNA, DNA

copy number, methylation and microRNA data generated from the Affymetrix HT

Human Genome U133 Array Plate Set, Agilent Human Genome CGH Microarray

244A, Illumina Infinium Human DNA Methylation 27, and the Agilent 8× 15K Hu-

man miRNA-specific microarray. For DNA copy number and methylation data, we

took the first principal components for several sites that correspond to a gene in

the GBM pathways. The proportion of variances explained by the first principal

Figure S2: Proportion of variances explained by the first principal component. (a)
Copy number data (b) Methylation data.

components are displayed in Figure S2. For DNA copy number data, the quantiles

corresponding to probabilities 0, 0.25, 0.5, 0.75 and 1 of the numbers of sites cor-

responding to genes were 1, 4, 7, 12 and 43, and the quantiles of the proportions

of variances explained by the first principal components were 0.35, 0.51, 0.63, 0.85

and 1. For methylation data, the quantiles corresponding to probabilities 0, 0.25,

0.5, 0.75 and 1 of the numbers of sites corresponding to genes were 1, 2, 2, 2 and

21 and the quantiles of the proportions of variances explained by the first principal

components were 0.29, 0.55, 0.64, 0.82 and 1. For microRNA data, we took only

human microRNAs. The number of vertices (p) consisted of 49 genes for mRNA, 51

for copy number, 50 for methylation, and 470 for microRNA.
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Section S2.3 Comprehensive analysis of pathways in KEGG,
BIORCARTA and REACTOME

We undertook a more comprehensive analysis of multiple pathways curated from

existing databases (such as KEGG, BIOCARTA and REACTOME). This provides a

more comprehensive landscape of GBM progression. We analyzed 24 pathways from

KEGG and BIOCARTA, and 70 pathways from REACTOME, which we selected on

the basis of the literature Hanahan and Weinberg (2011), McLendon et al. (2008),

Parsons et al. (2008) and Verhaak et al. (2010). The LTSs and STSs are defined in

Section S2.1 (83 LTSs and 73 STSs).

Using mRNA expression data, we performed DINGO for the genes in each path-

way. From this analysis, we can investigate which pathways are differentially ex-

pressed between LTSs and STSs. For our DINGO method, we set the cutoff for the

absolute values of the differential scores as 2: edges with greater than 2 in their ab-

solute values of the differential scores are determined to be edges in the differential

networks. Pathways that possess more differential edges are considered to better

differentiate between the two groups, LTSs and STSs.

Table S2, Table S3 and Table S4 display the names of pathways, numbers of genes

per pathway, the numbers (proportions) of the differential edges from DINGO, and

lists (degree) of hub genes. The hub genes are defined by vertices that have degrees

greater than 5% of the total number of differential edges. By applying our DINGO

model to genes in the pathways from KEGG and BIOCARTA, we found the p53

pathway to best differentiate between the groups. The “pathways in cancer” was

ranked in the top 2, and pathways related to glioblastoma and apoptosis had more

than 4% differential edges. From REACTOME, the GRB2 and NOTCH2 pathways

were the top 2 ranked pathways with more than 7% differential edges. We also found

FGFR-related pathways to be top-ranked pathways with more than 5% differential
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edges. For all three databases, KEGG, BIOCARTA and REACTOME, the apoptosis

pathways were among those that best differentiated between LTSs and STSs.

Biological interpretation

The p53 gene has an important role in promoting apoptosis in response to several

oncogenes such as the c-Myc oncogene and CASP9 gene (the top hub in the pathway

with 19 differential edges), which is an essential downstream component of p53 in

Myc-induced apoptosis (Soengas et al., 1999). Moreover, p53 mutations are one of

the genetic events that molecularly differentiate clinical subtypes of GBM (Ruano

et al., 2009). CASP9 with APAF1 enhances p53-mediated apoptotic cell death in

glioblastoma (Shinoura et al., 2002). The pathways in cancer that ranked among the

top 2 from KEGG (http://www.genome.jp/kegg-bin/show_pathway?hsa05200)

are integrated pathways for 14 cancers, including glioblastoma. The PIK3R1 genes

(with degree 106) in the cancer pathways was reported as a potential therapeutic

target in GBM (Weber et al., 2011). We found the integrin signaling pathways to

be among the top-ranked pathways from REACTOME. From GRB2 to the MAPK

signaling pathway was the top-ranked pathway, and from P130CAS to the MAPK

signaling pathway was the 12th ranked pathway among 70 pathways from REAC-

TOME (Table S3). The integrin signaling pathway, which explains how MAPK

signaling is activated by GRB2 and P130CAS, is displayed in Box 1 in (Guo and

Giancotti, 2004). Integrins are expressed in glioblastoma cells, have a possible role

in invasion, and are potential treatment targets for glioblastoma (Desgrosellier and

Cheresh, 2010; Bello et al., 2001). It was also reported that MAPK signaling con-

tributes to the development of malignant glioblastoma (Nakada et al., 2011; Sheng

et al., 2010). Because FGFR inhibition can reduce proliferation and induce cell

death in tumor models, FGFRs are considered to be attractive targets for therapeu-

tic intervention in cancer (Dienstmann et al., 2014). We found FGFR pathways to

rank as numbers 3, 4, 5 and 7, with more than 5% differential edges (Table S3).

The administration of an FGFR prolongs the survival of mice that harbor FGFR3-
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TACC3-initiated glioblastomas (Dienstmann et al., 2014; Singh et al., 2012). It is

reported that increased NOTCH2 signaling (rank 2 from REACTOME in Table S3)

contributes to increased tumor growth in GBM (Fan et al., 2010; Tchorz et al., 2012).

Effects of c-Myc gene

For assessing the direct effects of the c-Myc gene, this comprehensive analysis of

pathways included the MYC gene. The differential networks for neighbors of the

MYC gene are shown in Figure S3.
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Table S2: Differential networks for genes in pathways from KEGG and BIOCARTA
Pathway pa DINGOb Hub genes (degree)c

1 P53 PATHWAY 64 105 (0.05) BAI1 (10), BCL2 (14), CASP9 (19), CCNB2 (6), CCND1 (7), CCND2 (9),
CCND3 (7), CD82 (12), CDKN1A (7), CHEK1 (10), E2F1 (11), FAS (6), IGF1
(14), PCNA (11), SERPINE1 (18)

2 PATHWAYS IN CANCER 301 2110 (0.05) CEBPA (117), PIK3R1 (106)
3 ERK5 PATHWAY 17 6 (0.04) CREB1 (5), MAPK1 (1), MAPK3 (1), MAPK7 (1), MEF2A (1), MEF2C (2),

SHC1 (1)
4 IGF1MTOR PATHWAY 19 7 (0.04) AKT1 (2), EIF2S1 (5), EIF2S3 (1), PDPK1 (1), PPP2CA (2), RPS6 (2),

RPS6KB1 (1)
5 MAPK PATHWAY 254 1310 (0.04) CACNA2D2 (66), CEBPA (97), FGFR1 (74), PPP3CA (92), TP53 (67)
6 APOPTOSIS 87 147 (0.04) BAD (9), BCL2 (8), BID (9), BIRC3 (12), CASP7 (9), CCR5 (8), CD247

(15), CD4 (13), CSF2RB (31), DFFA (33), IL1A (11), IL1B (15), PPP3CA
(8), PRKAR1A (11)

7 P53HYPOXIA PATHWAY 22 9 (0.04) ABCB1 (2), ATM (3), BAX (2), CSNK1A1 (3), HIC1 (4), IGFBP3 (2), TAF1
(2)

8 TGF BETA PATHWAY 83 132 (0.04) BMP2 (11), BMP4 (14), BMP5 (9), BMPR1A (9), ID1 (10), MAP3K7 (25),
MAPK1 (20), RBX1 (12), RHOA (9), ROCK2 (18), SMAD2 (8), SMAD4 (8),
SMAD9 (11), TGFB1 (12), THBS3 (9), ZFYVE16 (14)

9 VEGF PATHWAY 85 133 (0.04) ARNT (16), FLT4 (18), HSPB1 (7), MAP2K2 (11), MAPK11 (7), MAP-
KAPK2 (14), NRAS (8), PIK3CA (10), PIK3CB (9), PIK3R3 (9), PLA2G3 (15),
PLA2G4B (26), PLA2G5 (11), PPP3CB (8), SHC2 (9), SPHK2 (14), VEGFA
(10)

10 EGF PATHWAY 29 15 (0.04) CSNK2A1 (9), EGF (3), EGFR (1), FOS (1), JAK1 (2), MAP2K1 (1), MAPK3
(1), PIK3CA (2), PLCG1 (2), PRKCA (1), RASA1 (3), STAT3 (3), STAT5B (1)

11 GLIOMA 59 61 (0.04) CALM1 (4), CDK4 (7), CDKN2A (15), HRAS (6), IGF1 (4), NRAS (4), PIK3CG
(11), PIK3R1 (6), PLCG2 (12), SOS2 (15), TP53 (4)

12 PTEN PATHWAY 16 4 (0.03) FOXO3 (1), ITGB1 (1), MAPK1 (1), PDPK1 (3), PIK3CA (2)
13 P38MAPK PATHWAY 39 24 (0.03) DAXX (8), MAP3K5 (2), MAP3K7 (4), MAPKAPK2 (4), MEF2A (2),

RAPGEF2 (3), RIPK1 (9), SHC1 (3), STAT1 (2), TGFB1 (2), TRADD (2)
14 NOTCH PATHWAY 36 20 (0.03) APH1A (4), DLL3 (5), DVL1 (2), DVL3 (2), HDAC1 (2), JAG1 (2), LFNG (3),

NCOR2 (2), NOTCH1 (4), NOTCH3 (5), NUMB (2), PSENEN (4)
15 ERBB PATHWAY 80 100 (0.03) CAMK2A (18), CAMK2G (6), CBLC (8), EIF4EBP1 (6), MAPK10 (12), NCK1

(10), NCK2 (18), PAK1 (7), PAK6 (18), PAK7 (18)
16 IL1R PATHWAY 31 14 (0.03) IL1A (3), IRAK1 (1), JUN (2), MAP3K1 (1), MAP3K7 (1), MAPK14 (1),

MYD88 (2), NFKB1 (2), RELA (7), TGFB3 (1), TOLLIP (6), TRAF6 (1)
17 MTOR PATHWAY 56 45 (0.03) BRAF (4), EIF4A2 (3), EIF4E2 (12), EIF4EBP1 (8), IGF1 (6), MAPK1 (3),

PIK3CA (3), PPP2CA (4), RPS6 (9), RPS6KA1 (5), RPS6KA3 (7), RPS6KB2
(4), VEGFB (7)

18 CDK5 PATHWAY 10 1 (0.02) HRAS (1), MAPK3 (1)
19 RAS PATHWAY 23 5 (0.02) CDC42 (4), PIK3CA (2), PIK3R1 (1), RAF1 (1), RALGDS (1), RELA (1)
20 EGFR SMRTE PATHWAY 11 1 (0.02) MAP3K1 (1), ZBTB16 (1)
21 ERK PATHWAY 26 5 (0.02) ELK1 (1), MKNK2 (1), NGFR (2), PPP2CA (1), PTPRR (3), STAT3 (2)
22 BARR MAPK PATHWAY 12 1 (0.02) MAPK1 (1), PLCB1 (1)
23 RB PATHWAY 12 1 (0.02) CHEK1 (1), MAPK14 (1)
24 MET PATHWAY 34 6 (0.01) CRKL (1), GAB1 (1), GRB2 (5), HRAS (1), ITGB1 (1), MAP2K2 (1), PAK1

(1), PIK3R1 (1)
a Number of genes in the pathway (p).
b Number (proportion) of differential edges from DINGO. The proportions are divided by the number of all possible pairs of vertices (p(p − 1)/2).
c Hub genes are defined by vertices that have degrees greater than 5% of the total number of differential edges.
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Table S3: Differential networks for genes in pathways from REACTOME
Pathway pa DINGOb Hub genes (degree)c

1 GRB2 SOS PROVIDES LINKAGE TO MAPK SIG-
NALING FOR INTERGRINS

13 6 (0.08) APBB1IP (2), PTK2 (2), RAP1A (3), SRC (3), TLN1 (2)

2 SIGNALING BY NOTCH2 10 3 (0.07) ADAM10 (2), APH1A (2), NCSTN (1), PSEN1 (1)
3 SIGNALING BY FGFR3 MUTANTS 10 3 (0.07) FGF1 (1), FGF18 (1), FGF2 (2), FGF5 (2)
4 FGFR4 LIGAND BINDING AND ACTIVATION 10 3 (0.07) FGF1 (2), FGF2 (2), FGF20 (1), FGFR4 (1)
5 FGFR LIGAND BINDING AND ACTIVATION 18 10 (0.07) FGF1 (1), FGF22 (1), FGF23 (1), FGF3 (9), FGF6 (2), FGF8 (1), FGF9 (2),

FGFR1 (1), FGFR3 (1), FGFR4 (1)
6 TGF BETA RECEPTOR SIGNALING IN EMT EP-

ITHELIAL TO MESENCHYMAL TRANSITION
12 4 (0.06) ARHGEF18 (1), PARD3 (1), RHOA (1), RPS27A (4), UBA52 (1)

7 FGFR2C LIGAND BINDING AND ACTIVATION 11 3 (0.05) FGF17 (1), FGF2 (3), FGF8 (1), FGFR2 (1)
8 APOPTOSIS 132 448 (0.05) BAD (36), BID (32), CASP9 (32), CYCS (28), DAPK2 (34), E2F1 (33),

HIST1H1B (26), MAPK8 (34), PKP1 (49), PRKCD (30), PSMA7 (31), PSMC1
(31)

9 PROLONGED ERK ACTIVATION EVENTS 17 7 (0.05) BRAF (1), HRAS (1), KIDINS220 (7), MAPK1 (1), MAPK3 (1), NTRK1 (1),
RAF1 (1), RAP1A (1)

10 EXTRINSIC PATHWAY FOR APOPTOSIS 13 4 (0.05) CASP10 (1), CFLAR (1), FAS (1), RIPK1 (3), TNFSF10 (2)
11 SHC1 EVENTS IN EGFR SIGNALING 13 4 (0.05) EGFR (1), GRB2 (1), MAP2K2 (1), MAPK1 (1), RAF1 (3), YWHAB (1)
12 P130CAS LINKAGE TO MAPK SIGNALING FOR

INTEGRINS
13 4 (0.05) APBB1IP (1), FGA (1), PTK2 (2), RAP1A (2), SRC (2)

13 SIGNALING BY CONSTITUTIVELY ACTIVE
EGFR

16 6 (0.05) CBL (2), CDC37 (2), GAB1 (4), HRAS (1), PIK3CA (2), UBA52 (1)

14 PI3K AKT ACTIVATION 29 20 (0.05) AKT1 (6), BAD (3), CASP9 (2), FOXO1 (5), IRS2 (5), NR4A1 (3), NTRK1 (2),
PIK3CA (2), PIK3CB (3), PIK3R1 (4), TSC2 (4)

15 RAS ACTIVATION UOPN CA2 INFUX THROUGH
NMDA RECEPTOR

15 5 (0.05) CALM1 (2), CAMK2A (3), CAMK2B (3), GRIN1 (2)

16 SIGNALING BY EGFR IN CANCER 91 193 (0.05) ADCY1 (14), ADCY7 (10), ADCY8 (31), ADCY9 (11), ADRBK1 (21), AKT1
(10), CDC37 (11), CDC42 (22), FOXO3 (14), ITPR2 (21), MAPK1 (11), MAPK3
(15), PDPK1 (10), PRKACG (10), PRKAR1B (19), PRKCA (17), SPRY1 (12),
YWHAB (12)

17 DOWNREGULATION OF TGF BETA RECEPTOR
SIGNALING

19 8 (0.05) PPP1CA (1), PPP1CB (2), RPS27A (2), SMAD3 (2), SMAD7 (1), SMURF1
(1), SMURF2 (1), ZFYVE9 (6)

18 SIGNALING BY NOTCH4 10 2 (0.04) ADAM10 (1), APH1A (2), PSEN1 (1)
19 TRAF6 MEDIATED INDUCTION OF NFKB AND

MAP KINASES UPON TLR7 8 OR 9 ACTIVATION
65 92 (0.04) ATF2 (17), CREB1 (15), DUSP6 (10), HMGB1 (12), MAP2K2 (15), MAP2K3

(5), MAP2K6 (5), MAPK8 (9), PPP2CA (5), PPP2R1A (16), PPP2R1B (5),
RPS6KA1 (8), TLR7 (9), TRAF6 (5)

20 SIGNALING BY ERBB2 84 153 (0.04) ADCY2 (17), ADRBK1 (17), CASP9 (11), CDC37 (26), CREB1 (8), EREG (26),
FOXO3 (18), FOXO4 (11), FYN (9), MAP2K1 (9), MAPK1 (12), PLCG1 (20),
PRKAR1B (18), YES1 (10)

21 NOTCH1 INTRACELLULAR DOMAIN REGU-
LATES TRANSCRIPTION

33 23 (0.04) CREBBP (20), HDAC4 (2), NCOR2 (2), TBL1XR1 (2), TLE1 (2), TLE3 (2)

22 SIGNALING BY TGF BETA RECEPTOR COM-
PLEX

54 62 (0.04) CCNT1 (14), CCNT2 (11), FKBP1A (5), MEN1 (5), MTMR4 (4), PPP1CB (6),
RHOA (5), SMURF2 (8), TGFBR2 (4), UBE2D3 (16), USP9X (5), XPO1 (11)

23 GASTRIN CREB SIGNALLING PATHWAY VIA
PKC AND MAPK

154 509 (0.04) EDN1 (47), EDN2 (30), EDN3 (32), GNA15 (46), GNB5 (34), GNG4 (40),
HBEGF (27), HRH1 (33), NPFFR1 (48), RGS19 (33)

24 IL1 SIGNALING 32 21 (0.04) CHUK (6), IKBKB (3), IL1A (8), IL1B (3), IL1RN (3), MAP2K4 (4), MAP3K7
(3), NOD1 (2), PELI1 (2), TRAF6 (2)

25 PI3K EVENTS IN ERBB4 SIGNALING 29 17 (0.04) AKT2 (6), CDKN1A (2), CREB1 (3), ERBB4 (1), FOXO3 (2), PDPK1 (4),
PIK3CA (3), PIK3R1 (1), PTEN (5), RPS6KB2 (1), TRIB3 (4), TSC2 (2)

26 NFKB AND MAP KINASES ACTIVATION MEDI-
ATED BY TLR4 SIGNALING REPERTOIRE

62 79 (0.04) APP (11), ATF1 (4), CREB1 (4), DUSP4 (15), DUSP6 (18), IRAK1 (5), LY96
(6), MAP2K2 (10), MAPKAPK3 (8), MEF2C (5), NFKBIB (11), PPP2R1A (5),
RPS6KA1 (6), TLR3 (16)

27 SIGNALING BY FGFR 92 173 (0.04) CALM2 (25), CHUK (33), FGF23 (10), FGF7 (12), FOXO3 (9), ITPR2 (18),
PDE1B (15), PIK3R1 (11), PPP2CB (18), PRKACA (11), PRKAR1B (25), SRC
(13), TSC2 (14)

28 GRB2 EVENTS IN ERBB2 SIGNALING 19 7 (0.04) EGF (1), HRAS (7), MAPK1 (1), MAPK3 (1), NRAS (1), NRG1 (1), NRG2 (1),
RAF1 (1)

29 PI3K EVENTS IN ERBB2 SIGNALING 35 24 (0.04) AKT1 (3), CHUK (2), CREB1 (2), ERBB4 (8), GRB2 (2), HBEGF (2), PIK3R1
(11), PTEN (2), RPS6KB2 (5), TSC2 (3)

30 PI3K CASCADE 55 59 (0.04) EIF4EBP1 (4), FGF18 (10), FGF2 (21), FGF20 (3), FGF5 (15), INSR (5),
PIK3R2 (3), PPM1A (4), PRKAA1 (4), PRKAG2 (6), STK11 (6), TSC2 (6)

31 SIGNALING BY NOTCH 77 116 (0.04) E2F3 (11), EIF2C1 (6), EIF2C3 (14), EIF2C4 (7), FBXW7 (8), LFNG (13),
PSEN1 (16), RPS27A (7), ST3GAL6 (6), TBL1X (18), TBL1XR1 (18), TLE1
(16), TP53 (6), UBA52 (15)

32 MAP KINASE ACTIVATION IN TLR CASCADE 43 35 (0.04) ATF1 (4), ATF2 (2), DUSP3 (4), DUSP4 (9), DUSP6 (9), MAP2K1 (4),
MAP2K2 (6), MAPK10 (3), MEF2A (2), MEF2C (4), PPP2CB (3), PPP2R1A
(12), RIPK2 (3)

33 PRE NOTCH EXPRESSION AND PROCESSING 31 18 (0.04) ATP2A2 (1), B4GALT1 (2), CCND1 (2), CREBBP (1), E2F1 (1), E2F3 (7),
EP300 (2), RAB6A (8), RBPJ (3), SNW1 (3), TFDP1 (1), TMED2 (3), TNRC6B
(2)

34 DOWNSTREAM SIGNALING OF ACTIVATED
FGFR

82 127 (0.04) ADCY9 (10), FGF18 (9), FGF3 (10), FGF5 (7), FGF9 (27), GSK3A (8), ITPR2
(7), MAP2K2 (10), MAPK3 (9), PRKACA (17), PRKAR1B (24), PTEN (7),
TSC2 (17)

35 PKB MEDIATED EVENTS 21 8 (0.04) CAB39 (1), EIF4B (1), PDE3B (1), PPM1A (1), PRKAA1 (1), PRKAB2 (1),
PRKAG2 (1), RPS6KB1 (8), TSC2 (1)

a Number of genes in the pathway (p).
b Number (proportion) of differential edges from DINGO. The proportions are divided by the number of all possible pairs of vertices (p(p − 1)/2).
c Hub genes are defined by vertices that have degrees greater than 5% of the total number of differential edges.
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Table S4: Differential networks for genes in pathways from REACTOME
Pathway pa DINGOb Hub genes (degree)c

36 MAPK TARGETS NUCLEAR EVENTS MEDIATED
BY MAP KINASES

29 15 (0.04) ATF1 (2), ATF2 (1), DUSP3 (2), DUSP4 (7), DUSP6 (8), FOS (2), MAPK1 (1),
MEF2A (2), MEF2C (2), PPP2CB (2), RPS6KA5 (1)

37 ACTIVATED NOTCH1 TRANSMITS SIGNAL TO
THE NUCLEUS

20 7 (0.04) APH1A (2), DTX4 (2), NCSTN (1), NUMB (2), PSEN1 (3), RPS27A (1),
UBA52 (3)

38 CDK MEDIATED PHOSPHORYLATION AND RE-
MOVAL OF CDC6

45 36 (0.04) CDC6 (7), CDK2 (11), PSMA3 (10), PSMA4 (2), PSMA6 (3), PSMB8 (7),
PSMB9 (6), PSMC2 (2), PSMC6 (3), PSMD14 (3), PSMD8 (2), PSME1 (3),
PSME2 (6), RPS27A (2)

39 SIGNALING BY ERBB4 76 102 (0.04) BTRC (7), CREB1 (9), CSN2 (8), EREG (7), GHR (10), KRAS (10), MAPK1
(7), MDM2 (9), PIK3CA (7), PTEN (9), RAF1 (12), RBX1 (7), STAT5B (15),
TSC2 (9), UBA52 (14), YAP1 (7)

40 ROLE OF DCC IN REGULATING APOPTOSIS 8 1 (0.04) APPL1 (1), MAGED1 (1)
41 REGULATION OF APOPTOSIS 53 49 (0.04) PSMA1 (20), PSMA3 (4), PSMB7 (5), PSMB8 (14), PSMB9 (13), PSMC5 (3),

PSMD4 (5), PSMD6 (3), PSMD8 (3)
42 REGULATION OF HYPOXIA INDUCIBLE FAC-

TOR HIF BY OXYGEN
22 8 (0.03) CA9 (1), CREBBP (1), EGLN1 (1), EPO (1), TCEB2 (1), UBA52 (1), UBE2D2

(1), UBE2D3 (3), VEGFA (6)
43 EGFR DOWNREGULATION 22 8 (0.03) AP2A2 (1), AP2S1 (1), CLTC (5), EGF (1), EPS15 (4), EPS15L1 (1), HGS (2),

STAM (1)
44 SIGNALING BY FGFR IN DISEASE 102 178 (0.03) CALM2 (27), CHUK (33), FGF7 (11), FGFR1OP (11), ITPR2 (29), PPP2CB

(10), PRKAR1B (28), PRKCE (12), RPS27A (13), SRC (11), UBA52 (10)
45 P53 DEPENDENT G1 DNA DAMAGE RESPONSE 51 43 (0.03) PSMA1 (5), PSMA3 (3), PSMB7 (3), PSMB8 (19), PSMB9 (20), PSMD4 (3)
46 ACTIVATED POINT MUTANTS OF FGFR2 14 3 (0.03) FGF1 (2), FGF18 (1), FGF2 (1), FGF5 (2)
47 SIGNALING BY NOTCH1 51 42 (0.03) ARRB2 (4), CCNC (8), DLK1 (6), HDAC2 (4), HDAC3 (4), HEY2 (7), NCOR1

(10), PSEN1 (8), SNW1 (3), TLE1 (7), TLE2 (4), TLE3 (5)
48 P53 INDEPENDENT G1 S DNA DAMAGE CHECK-

POINT
47 35 (0.03) CDC25A (2), PSMA1 (10), PSMA3 (5), PSMB2 (3), PSMB8 (4), PSMB9 (5),

PSMC2 (3), PSMC3 (3), PSMC6 (3), PSMD1 (3), PSMD13 (3), PSMD14 (7),
PSMD7 (3), PSMD8 (12)

49 ERK MAPK TARGETS 20 6 (0.03) DUSP3 (1), DUSP6 (6), MAPK14 (1), MEF2A (1), MEF2C (1), RPS6KA1 (1),
RPS6KA5 (1)

50 FGFR1 LIGAND BINDING AND ACTIVATION 12 2 (0.03) FGF17 (1), FGF2 (2), FGF8 (1)
51 SHC1 EVENTS IN ERBB4 SIGNALING 17 4 (0.03) HRAS (4), MAPK3 (1), NRG1 (1), NRG2 (1), RAF1 (1)
52 CD28 DEPENDENT PI3K AKT SIGNALING 17 4 (0.03) CD28 (1), CD86 (4), LCK (1), PIK3CA (1), PIK3R1 (1)
53 G BETA GAMMA SIGNALLING THROUGH

PI3KGAMMA
19 5 (0.03) AKT2 (1), GNB1 (1), GNB3 (2), GNG13 (1), GNG7 (3), PIK3CG (1), PIK3R5

(1)
54 P38MAPK EVENTS 13 2 (0.03) KRAS (1), RALB (2), RALGDS (1)
55 ACTIVATED TAK1 MEDIATES P38 MAPK ACTI-

VATION
13 2 (0.03) MAPK11 (1), NOD2 (1), TRAF6 (2)

56 SIGNALING BY FGFR MUTANTS 36 16 (0.03) BCR (1), CPSF6 (1), FGF1 (1), FGF18 (2), FGF2 (2), FGF20 (1), FGF9 (2),
FGFR3 (1), GAB1 (7), HRAS (4), PIK3CA (2), STAT5A (5), TRIM24 (1),
ZMYM2 (2)

57 NEGATIVE REGULATION OF FGFR SIGNALING 32 12 (0.02) FGF17 (3), FGF2 (4), FGF6 (1), FGF8 (1), FGFR1 (1), FGFR3 (4), MAPK1
(1), MAPK3 (1), PPP2CA (1), PPP2R1A (6), SRC (1)

58 NUCLEAR SIGNALING BY ERBB4 35 14 (0.02) APH1A (2), ERBB4 (1), ESR1 (1), GFAP (2), GH2 (1), GHR (3), NCSTN (1),
PGR (1), PRLR (9), PSEN1 (1), PSEN2 (4), PSENEN (1), STAT5B (1)

59 VEGF LIGAND RECEPTOR INTERACTIONS 10 1 (0.02) FLT4 (1), VEGFA (1)
60 SIGNALLING TO RAS 24 6 (0.02) MAPK1 (2), MAPK11 (2), MAPK14 (1), MAPK3 (1), MAPKAPK2 (3), RALA

(3)
61 SIGNALING BY FGFR1 MUTANTS 24 6 (0.02) BCR (1), CPSF6 (1), FGF2 (3), FGF23 (1), FGF9 (2), GRB2 (1), ZMYM2 (3)
62 PRE NOTCH PROCESSING IN GOLGI 15 2 (0.02) ATP2A2 (1), MFNG (1), NOTCH4 (2)
63 DOWNREGULATION OF ERBB2 ERBB3 SIGNAL-

ING
11 1 (0.02) RPS27A (1), UBA52 (1)

64 CREB PHOSPHORYLATION THROUGH THE AC-
TIVATION OF RAS

25 5 (0.02) ACTN2 (2), CALM1 (2), CAMK2A (2), CAMK2B (1), HRAS (1), NEFL (2)

65 PRE NOTCH TRANSCRIPTION AND TRANSLA-
TION

18 2 (0.01) E2F1 (1), E2F3 (1), EIF2C3 (2)

66 TGF BETA RECEPTOR SIGNALING ACTIVATES
SMADS

22 3 (0.01) FURIN (1), SMAD4 (1), TGFBR2 (1), UCHL5 (3)

67 SPRY REGULATION OF FGF SIGNALING 13 1 (0.01) GRB2 (1), UBA52 (1)
68 ENERGY DEPENDENT REGULATION OF MTOR

BY LKB1 AMPK
13 1 (0.01) PRKAG2 (1), RHEB (1)

69 SIGNALING BY FGFR1 FUSION MUTANTS 14 1 (0.01) CPSF6 (1), STAT5A (1)
70 INTRINSIC PATHWAY FOR APOPTOSIS 26 3 (0.01) AKT1 (1), APAF1 (2), BCL2 (1), CASP8 (1), MAPK8 (1)
a Number of genes in the pathway (p).
b Number (proportion) of differential edges from DINGO. The proportions are divided by the number of all possible pairs of vertices (p(p − 1)/2).
c Hub genes are defined by vertices that have degrees greater than 5% of the total number of differential edges.
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Figure S3: Differential networks for neighbors of MYC gene

Section S3 Simulation Studies

Section S3.1 Case I

The global component G is generated under a specific structure. A directed acyclic

graph (DAG) is a directed graph with no directed cycles. Pathways can be rep-

resented by a DAG. With a sample size (n) of 150 (75 for each group), we con-

sider two settings, n > p and n < p. For the n > p simulation setting, we

generate datasets that reflect the mRNA expression data studied in the applica-

tion data example in Section 3, which includes 49 genes in the pathways. The
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structure of zeros in G = {Gab}49×49 is determined by the DAG of the signaling

pathways in TCGA glioblastoma data (http://cbio.mskcc.org/cancergenomics/

gbm/pathways). Specifically, we set Gab as a random sample from Unif(0.2,0.8),

with a randomly assigned sign when there is an edge from b to a in the path-

ways. Otherwise, Gab is set to be zero. The 49 intercept terms in the first col-

umn of Q, {Qi1 : i = 1, . . . , p} are set by random samples from Unif(-0.5,0.5). We

consider the following 4 different simulation settings according to the effect sizes

{Qi2 : i = 1, . . . , p} and noise level specified by the diagonal elements of Ψ:

A1. (low effect, low noise) : Qi2 ∼ Unif(0.1, 0.3) and Ψ = diag(0.1, . . . 0.1),

A2. (low effect, high noise) : Qi2 ∼ Unif(0.1, 0.3) and Ψ = diag(1, . . . 1),

A3. (high effect, low noise) : Qi2 ∼ Unif(0.2, 0.8) and Ψ = diag(0.1, . . . 0.1),

A4. (high effect, high noise) : Qi2 ∼ Unif(0.2, 0.8) and Ψ = diag(1, . . . 1),

where all signs of {Qi2 : i = 1, . . . , p} are randomly selected.

For n < p with n = 150 and p = 100 and 500, we determine the structure of G by

generating a scale-free network using the Barabasi-Albert algorithm (Barabási and

Albert, 1999). We specify Q and Ψ as the setting A4 (high effect, high noise).

For the design matrix X = (x(1), . . . ,x(n))
T where x(i) = (1, xi)

T, the randomly

selected 75 values of {xi : i = 1, . . . , n} are assigned by 1 (group 1) and other values

are assigned by -1 (group 2). After specifying all parameters, G, Q and Ψ and

generating the design matrix X, each row vector, y(i) ∈ Rp of Y = (y(1), . . . ,y(n))
T is

independently generated from Np

(
0,N (x(i))

)
using equations (1) and (2) in Section

2.1.

Partial correlation coefficients are computed from a precision matrix by

ρab = − Ωab√
ΩaaΩbb
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for a precision matrix Ω = [Ωab]. In our simulation study, the accuracy of the group-

specific networks are evaluated by the sum of the squared error (SSE) of the partial

correlation coefficients as

SSE =
∑
a<b

(ρ̂ab − ρab)2,

where {ρ̂ab : a, b ∈ V and a < b} are the estimates of {ρab : a, b ∈ V and a < b}.
To measure the reliability of the induced ordering of the conditional dependence

estimates for a network structure, the true network needs to be determined on the

basis of a specific cutoff of the true conditional dependencies. We determine the

Figure S4: Orders of true absolute partial correlations versus true absolute partial
correlations of the group 2 network from simulation data under the (high effect, high
noise) setting. The red vertical line displays the cutoff for the true absolute partial
correlations τ1 = 0.06.

cutoff (denoted by τ1) of the absolute partial correlations for the true networks by

plotting the order of the true absolute partial correlations versus the values. For

example, Figure S4 displays the order of the true absolute partial correlations versus

true absolute partial correlations of a group-specific network under the high effect,

high noise setting. Around order 1,000 (τ1 = 0.06), the increase in the absolute

values become steep and the pairs with absolute conditional dependencies greater

than τ1 are set to be edges in the true network. After setting the true network
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with a cutoff, τ1, we calculate the true positive rate (TPR), the false positive rate

(FPR) and the false discovery rate (FDR) of identifying the true network structure

that corresponds to a given cutoff τ1, by varying cutoffs on the partial correlation

estimates. We average those measures over 100 replicate datasets in each of the 4

scenarios. The values of the averaged 1-FPR versus TPR are displayed as average

receiver operating characteristic (ROC) curves, and the values of the averaged TPR

versus 1-FDR are displayed as average precision recall (PR) curves.

Section S3.2 Case II

The simulation scheme for Case I has two limitations: [1] the group-specific network

structure is not obvious because the true group-specific partial correlations are not

sparse; and [2] the local group-specific component is generated from a quadratic pa-

rameterization with covariates x in equation (1) in Section 2.1: this parameterization

is the same as the assumption of our DINGO model. To overcome these limitations,

we performed more realistic simulations where the group-specific data are generated

from two separate GGMs that induce sparse partial correlations.

Suppose we have two groups as a covariate. We simulate the group-specific data

from multivariate normal distributions with precision matrices from two GGMs where

some of the edges are common to both groups and some are unique to the groups.

Let x be a univariate binary covariate taking values 1 or 2. There are nx individuals

for each group. For i ∈ {1, . . . , nx}, we assume the following structural equation

model for each group:

y(i) = Gxy(i) + ε(i),

where y(i) is a p × 1 vector of the ith observed value of Y in group x; Gx specifies

the relations among variables in V = {1, . . . , p} in group x; and ε(i) is a p × 1

vector following Np(0, Ip) with p × p identity matrix Ip. Note that we have the

unit noise variances and zero noise covariances for both groups. To generate Gx for
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x = 1 and 2, we first construct a common structure and then add additional edges

differently to the graphs for the two groups. As the common graph, we consider the

random DAG model (Erdős and Rényi, 1960), which is called the ER model. The

ER model constructs a DAG of p vertices by connecting vertices randomly. Each

edge is included in the graph with probability α independent from all other edges.

There are (p − 1)α numbers of edges in expectation and α controls the sparsity in

the common structure. The Gx for x = 1 and 2 are generated as follows: (1) let G
be a p × p zero matrix; (2) replace each entry of G with a uniform random sample

from the [0.5, 1] interval with probability α (the nonzero entries are selected with

the restriction of no directed cycle); (3) set G1 = G2 = G; (4) replace a randomly

selected entry from the zero entries of G1 and G2 with a uniform random sample from

the [0.5, 1] interval. With the restriction of no directed cycle, step (4) is repeated

γ ×K, where K is the number of nonzero elements in G and γ controls the ratio of

the number of individual edges to the number of common edges (heterogeneity of the

graphs). Then, y(i) ∼ Np(0, (I−G1)−1(I−G1)−T) for the individual i in group 1 and

y(i) ∼ Np(0, (I− G2)−1(I− G2)−T) for the individual i in group 2. We can generate

the n1 and n2 samples separately from the distributions. We consider 4 simulation

settings in Table S5, with the number of vertices p, the level of sparsity α, and the

level of heterogeneity γ.

Table S5: Simulation setting

no. of vertices level of sparsity level of heterogeneity no. of edges (proportion)
p α γ group 1 group 2
50 0.01 0.25 40 (0.033) 42 (0.034)
50 0.01 0.75 81 (0.066) 56 (0.046)
200 0.005 0.25 530 (0.027) 224 (0.011)
200 0.005 0.75 1901 (0.096) 1368 (0.069)
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This simulation setting gives sparsity values from 90% to 99% to the group-

specific GGMs. Figure S5 displays the simulated group-specific GGMs, induced by

G1 and G2 under the scenario (p, α, γ) = (50, 0.01, 0.75). There are 34 common

edges, and 47 and 22 unique edges to the group 1 and group 2 GGMs. We set the

samples sizes n1 = n2 = 75.

We compared our DINGO method with the two separate estimations, MLE and

GLasso. DINGO and MLE provide saturated (non-sparse) group-specific partial

correlations. For the DINGO and MLE, we change the cutoffs for the estimated

Figure S5: The simulated group-specific GGMs induced by G1 and G2 under the
setting (p, α, γ) = (50, 0.01, 0.75). There are 34 common edges (purple), and 47 and
22 unique edges (orange) to the group 1 and group 2.

partial correlations to draw the receiver operating characteristic (ROC) and precision

recall (PR) curves. For the GLasso, we changed the tuning parameter η in equation

(3) of the main text from 0.001 to 1 for the two p = 50 settings and from 0.01 to

2 for the two p = 200 settings to obtain the ROC and PR curves. For SSE, we

selected the tuning parameter η, using the Bayesian information criterion (BIC) for
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the GLasso. For MLE and DINGO, we used the saturated group-specific partial

correlations for the MLE and DINGO. Since MLE is not valid for the sample size of

75 and the number of variables of 200, we display results for the GLasso and DINGO

for the two p = 200 settings. The simulation results are displayed in Figure S6 -

Figure S9 based on 100 replications of the data. Our DINGO model performs better

in terms of SSE and ROC curves under all four settings. Although from the PR

curves, we see that GLasso performs better than DINGO when the recall is small,

DINGO generally performs better for almost all regions of the recall.
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Figure S6: Simulation results for the (p, α, γ) = (50, 0.01, 0.25) scenario from 100
simulation datasets. Group 1 network: (a) boxplots of log(SSE); (b) receiver operat-
ing characteristic (ROC) curves; (c) precision recall (PR) curves.; Group 2 network:
(d) boxplots of log(SSE); (e) ROC curves; (f) PR curves. Regions of one standard
error for the y-axis are shaded with the corresponding colors of the ROC and PR
curves.
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Figure S7: Simulation results for the (p, α, γ) = (50, 0.01, 0.75) scenario from 100
simulation datasets. Group 1 network: (a) boxplots of log(SSE); (b) receiver operat-
ing characteristic (ROC) curves; (c) precision recall (PR) curves.; Group 2 network:
(d) boxplots of log(SSE); (e) ROC curves; (f) PR curves. Regions of one standard
error for the y-axis are shaded with the corresponding colors of the ROC and PR
curves.
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Figure S8: Simulation results for the (p, α, γ) = (200, 0.005, 0.25) scenario from
100 simulation datasets. Group 1 network: (a) boxplots of log(SSE); (b) receiver
operating characteristic (ROC) curves; (c) precision recall (PR) curves.; Group 2
network: (d) boxplots of log(SSE); (e) ROC curves; (f) PR curves. Regions of one
standard error for the y-axis are shaded with the corresponding colors of the ROC
and PR curves.
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Figure S9: Simulation results for the (p, α, γ) = (200, 0.005, 0.75) scenario from
100 simulation datasets. Group 1 network: (a) boxplots of log(SSE); (b) receiver
operating characteristic (ROC) curves; (c) precision recall (PR) curves.; Group 2
network: (d) boxplots of log(SSE); (e) ROC curves; (f) PR curves. Regions of one
standard error for the y-axis are shaded with the corresponding colors of the ROC
and PR curves.
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Section S4 Comparison of DINGO on real data

We compare DINGO to a much larger set of methods on real data. Using the mRNA

expression data, used in Section 3, for genes involved in the RTK/PI3K, p53, and

Rb signaling pathways, we explicitly compared our group-specific and differential

network methods with other methods in the literature.

Group-specific networks: We first compare the estimated local group-specific net-

works obtained from DINGO with those obtained from the following four methods:

(1) Maximum likelihood estimation (MLE) estimates the precision matrix

by maximizing the likelihood.

(2) Graphical Lasso (GLasso) (Friedman et al., 2008) estimates a sparse preci-

sion matrix by maximizing the L1 penalized likelihood.

(3) Weighted correlation network analysis (WGCNA) (Langfelder and Hor-

vath, 2008) estimates the weighted correlation network using marginal correla-

tion.

(4) GeneNet (Schäfer and Strimmer, 2005) provides shrinkage estimates of partial

correlations.

All the above methods provide weighted edges for assessing the network topology.

After sorting the absolute values of the weights in decreasing order, we took the top

120 (10% of the total number of edges) for each method for performance comparisons.

We then calculated the number of common edges for all pairs of methods. The results

are shown in Table S6 for long-term survivors (LTSs) and Table S7 for short-term

survivors (STSs), respectively. We observed some degree of similarity between the

methods and, in particular, found that our DINGO method is closer to GeneNet

and GLasso. We conjecture this is due to the use of penalized partial correlation

estimates by these three methods.
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Table S6: Number (%) of common edges for LTSs
DINGO MLE GLasso WGCNA GeneNet

DINGO - 30 (25) 52 (43.33) 48 (40) 60 (50)
MLE - - 31 (25.83) 21 (17.5) 56 (46.67)
GLasso - - - 55 (45.83) 55 (45.83)
WGCNA - - - - 35 (29.17)
GeneNet - - - - -

Table S7: Number (%) of common edges for STSs
DINGO MLE GLasso WGCNA GeneNet

DINGO - 30 (25) 57 (47.5) 55 (45.83) 56 (46.67)
MLE - - 38 (31.67) 27 (22.5) 56 (46.67)
GLasso - - - 56 (46.67) 60 (50)
WGCNA - - - - 48 (40)
GeneNet - - - - -

Differential network: We also compare the differential networks from DINGO with

those from a differential coexpression analysis method using DCGL (Differential Co-

expression Analysis and Differential Regulation Analysis of Gene Expression Mi-

croarray Data) R package (Liu et al., 2010). The DCGL is a tool for identifying

differentially coexpressed genes and links based on marginal correlation. Applying

DCGL to our dataset discovered 71 edges. For our DINGO method, we use the

differential score from a bootstrap procedure and assess the degree of similarity. For

varying cutoffs on the differential score, we estimate the similarity of the two net-

works using the F-score (Knaack et al., 2014), which is calculated as follows. The

number of edges that are present in both networks is defined as common edges and

the precision and recall are defined as the ratio of the number of common edges

to the number of edges for both the DINGO and DGCL networks. The F-score is

then defined as the harmonic mean of precision and recall, and reflects the degree of

similarity.

Figure S10 displays the number of edges detected by DINGO, varying cutoffs

on the differential score versus F-score to compare the networks from DINGO and

DCGL. We observed that the degree of similarity shows an increasing trend, i.e.,
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both methods have a few edges in common. However, the overall degree of simi-

larity is low, which we conjecture is due to different estimation techniques in the

respective algorithms. DCGL uses a filtering technique before fitting the differential

network and handles marginal correlations, i.e., two genes at a time. In constrast,

DINGO uses a model-based approach to fit group-specific partial correlations, which

obtains more refined associations than marginal correlations because they look at

the pathway/gene-set as a whole.

Figure S10: Number of edges versus F-score to compare networks obtained from
DINGO and DCGL.
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Section S5 Supplementary figures and tables

Figure S11: Simulation results for the (low effect, low noise) scenario from 100 sim-
ulation datasets. Group 1 network: (a) boxplots of log(SSE); (b) receiver operating
characteristic (ROC) curves; (c) precision recall (PR) curves.; Group 2 network: (d)
boxplots of log(SSE); (e) ROC curves; (f) PR curves.
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Figure S12: Simulation results for the (low effect, high noise) scenario from 100 sim-
ulation datasets. Group 1 network: (a) boxplots of log(SSE); (b) receiver operating
characteristic (ROC) curves; (c) precision recall (PR) curves.; Group 2 network: (d)
boxplots of log(SSE); (e) ROC curves; (f) PR curves.
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Figure S13: Simulation results for the (high effect, low noise) scenario from 100 sim-
ulation datasets. Group 1 network: (a) boxplots of log(SSE); (b) receiver operating
characteristic (ROC) curves; (c) precision recall (PR) curves.; Group 2 network: (d)
boxplots of log(SSE); (e) ROC curves; (f) PR curves.
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Figure S14: Simulation results for the (high effect, high noise) scenario from 100 sim-
ulation datasets. Group 1 network: (a) boxplots of log(SSE); (b) receiver operating
characteristic (ROC) curves; (c) precision recall (PR) curves.; Group 2 network: (d)
boxplots of log(SSE); (e) ROC curves; (f) PR curves.
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Figure S15: Differential networks between the LTSs and STSs of glioblastoma esti-
mated from microRNA expression. The vertices are ordered by degrees (number of
connections). The blue (red) edges indicate a positive (negative) score. The solid
(dashed) lines represent conserved (differential) signs in the dependencies between
the long-term survivors and short-term survivors. The thickness of the edges cor-
responds to the strength of the associations, with stronger scores having greater
thickness.
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Table S8: Notations
Notation Type Definition

n scalar sample size
p scalar number of genes
y p× 1 vector observations for p genes over a sample
x scalar binary covariate
Y n× p matrix data matrix for y for all n samples
X n× q matrix design matrix for covariates for all n samples
x q × 1 vector row of the design matrix X
V set set of vertices
E set set of edges
N p× p matrix GGM (precision matrix) of y

N (x) p× p matrix function group-specific GGMs (precision matrices) of y
G p× p matrix global component (coefficient matrix for the global net-

work model)
ε p× 1 vector residual vector after taking out effects of the global re-

lations
L p× p matrix local GGM (precision matrix of ε)

L(x) p× p matrix function local group-specific component
Q p× q matrix coefficient parameter in the precision regression model
Ψ p× p diagonal matrix variance parameter in the precision regression model

ρ
(i)
ab (ρ̂

(i)
ab ) scalar partial correlation (estimate) between vertices a and b

for ith group

φ
(i)
ab (φ̂

(i)
ab ) scalar Fisher’s Z transformation of ρ

(i)
ab (ρ̂

(i)
ab )

sBab scalar bootstrap estimate of standard error for the difference,
φ̂
(1)
ab − φ̂

(2)
ab

δ
(12)
ab scalar differential score for the edge, a-b, between group 1 and

group 2
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Section S6 R code to use DINGO package

The DINGO package can be downloaded at http://odin.mdacc.tmc.edu/~vbaladan/

Veera_Home_Page/Software.html.

> library("DINGO")

The example data are loaded as follows.

> data(gbm)

> dim(gbm)

[1] 156 19

> gbm[1:5,1:5]

x AKT1 AKT2 AKT3 FOXO1A

TCGA-02-2466 1 -1.0029131 -2.10830563 0.1090082 0.6075851

TCGA-02-2483 1 1.2592399 0.15877579 0.1911298 -0.2751667

TCGA-02-2485 1 1.0144639 -0.03734893 8.0576114 1.5937215

TCGA-02-2486 1 0.4817741 -0.97431724 -0.5723904 -0.3706160

TCGA-06-0122 -1 0.4005927 1.08527185 1.3512510 -0.6834011

> x = gbm[,1]

> expDat = gbm[,2:19]

The example dataset includes the group covariate, 1 for LTSs and -1 for STSs (in

the first column from the left) and standardized mRNA expression data for 18 genes

included in the PI3K signaling pathway for 156 TCGA GBM patients (2nd-19th

columns). We have 73 patients in the STSs and 83 patients in the LTSs.

> table(x)

x

-1 1

73 83.
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We fit our DINGO model and calculate the differential scores from 10 bootstrap

samples as follows:

> fit = dingo(dat=expDat,x=x,diff.score=T,B=10)

> names(fit)

[1] "genepair" "levels.x" "R1" "R2" "boot.diff"

[6] "diff.score" "rho" "P" "Q" "Psi" .

All possible pairs of the genes are listed in

> head(fit$genepair)

gene1 gene2

1 AKT1 AKT2

2 AKT1 AKT3

3 AKT2 AKT3

4 AKT1 FOXO1A

5 AKT2 FOXO1A

6 AKT3 FOXO1A.

The coding scheme for the design matrix X is displayed in

> fit$levels.x

[1] 1 -1.

This means that the 2-dimensional covariate vector is x =
(
1 1

)T
for LTSs and

x =
(
1 −1

)T
for STSs. We display the group-specific partial correlations for LTSs

and STSs as

> fit$R1[1:3]

[1] 0.02178679 -0.01730649 -0.01263468

> fit$R2[1:3]

[1] 0.014096913 -0.006587251 0.005055453.

38



The order of those vectors is the same as the order of the rows of “genepair”. The

differences of the Fisher’s Z transformed partial correlations between LTSs and STSs

from B = 10 bootstrap samples are displayed as

> head(fit$boot.diff)

[,1] [,2] [,3] [,4] [,5]

[1,] -0.008095735 0.0030048864 -0.004958005 0.001727282 -0.0147764719

[2,] 0.010092920 0.0037487056 -0.008436010 -0.160430055 0.0007262764

[3,] -0.004409726 -0.0255130082 -0.013268548 0.010232124 0.0104620936

[4,] 0.098827078 0.0009669561 0.037737915 -0.004053196 0.0740319665

[5,] 0.014394249 0.0141214544 0.021714127 0.002786202 -0.0908931983

[6,] -0.017929906 -0.0107630001 0.025720164 -0.065634774 -0.0262401084

[,6] [,7] [,8] [,9] [,10]

[1,] 0.011720537 0.0274612409 -0.0012454039 0.001225594 -0.012686608

[2,] -0.054668542 -0.0045957079 -0.0096877769 -0.001578630 -0.011578423

[3,] -0.026316036 -0.0192654456 -0.0011782967 0.031197794 -0.005915831

[4,] 0.016206441 0.0019505684 -0.0358101174 -0.028695654 0.024097544

[5,] 0.005713372 0.0074173716 -0.0006686498 0.099036700 0.016786118

[6,] 0.034691583 0.0006974551 -0.0086358596 -0.112107824 0.016581086.

The order of the rows corresponds to the order of the “genepair” and the columns

correspond to the bootstrap samples. Differential scores for all edges that correspond

to the order of “genepair” are

> fit$diff.score[1:3]

[1] 0.6223829 -0.2094640 -0.9787110.

The differential edges can be listed as

> fit$genepair[abs(fit$diff.score)>2,]

gene1 gene2
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62 GAB1 PIK3CA

64 PDPK1 PIK3CA

92 AKT1 PIK3CG

93 AKT2 PIK3CG

105 PIK3CD PIK3CG

119 PIK3CD PIK3R1

134 PIK3CD PIK3R2

148 PIK3CA PTEN

150 PIK3CD PTEN

151 PIK3CG PTEN.

Section S7 Computation times for pathway-based

DINGO analysis

While pathways used in our analysis (Section 3) have been implicated in GBM in

prior studies, the exact nature of the pathway components has not been studied

with respect to differential patterns of activation/inactivation related to the patient

prognostic groups. Our re-analysis focuses on the exact pathway breakages using

data from multiple platforms, which sheds a completely different light on the various

biological processes involved in GBM progression.

Although our DINGO model can theoretically handle genome-wide data under

the two-group scenarios, we use a pathway-based approach for illustration due to

the limited sample size (n=156) of the TCGA GBM dataset as well as the computa-

tional times involved in model fitting. In step 1, we use graphical Lasso (GLasso) to

estimate the global component. GLasso is designed for high-dimensional data and

relies on the assumption that the concentration matrix is sparse (most genes are

conditionally independent under a normality assumption). A consistent estimation

of the network is proved under a set of assumptions, including high dimensionality,
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p � n (Meinshausen and Bühlmann, 2006). However the algorithm can efficiently

handle data involving ∼ 1, 000 genes and hundreds of samples (Peng et al., 2009). In

step 2, we estimate the local group-specific component using the precision regression

model, which includes 3p parameters for the two-group setting, where p is the num-

ber of genes. Because we are not explicitly exploiting a sparsity assumption on the

parameters, estimating all 3p parameters is untenable for a genome-wide application

involving more than 22K genes.

Figure S16: Computation times for step 1 and step 2 of DINGO algorithm

Figure S16 displays the computation times for step 1 and step 2 of DINGO when

the sample size is equal to 156 (the same as our application data) using a Linux

server with a 2.67 GHz Intel processor and 96GB of RAM. For step 1 of DINGO,
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we estimate the global component using GLasso, with the tuning parameter selected

among 100 candidates. For step 2 of DINGO, we estimate the local group-specific

component using the EM algorithm. As p increases, the computation time increases

exponentially. DINGO took about 4 hours for p = 1000 and took about 2 days for

p = 2000. Combined with step 3 of DINGO to calculate differential scores from

the bootstrap procedure, the DINGO algorithm might take more than 2 days for

p > 2000. With our current implementation, handling genome-wide data with p

more than 22K is infeasible; we will explore faster implementation in the future

using graphical processing units (GPUs).

As an alternative to fitting genome-wide data, one can pre-filter genes before

using our DINGO model. Specifically, a gene is kept if the gene has high marginal

correlations with many other genes. However, as we emphasized throughout the

paper, a pathway-based approach allows for refined biological interpretations, espe-

cially for practitioners who tend to think in terms of the pathway-based disruptions

involved in disease progression for potential downstream translational use.

For the GBM case study, Figure S17 displays histograms for the number of genes

per pathway from the three well-established databases: KEGG, BIOCARTA, and

REACTOME. The medians (99% quantiles) from all three databases were less than

50 (400). Our illustrative examples are based on these numbers, i.e., 50− 600 genes

can cover almost all known pathways. For p = 50 and p = 600, step 1 and step 2 of

DINGO take around 20 seconds and 57 minutes, respectively, which makes it feasible

to conduct pathway-based differential network analysis.
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Figure S17: Histograms of number of genes per pathway in KEGG, BIOCARTA,
and REACTOME.
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