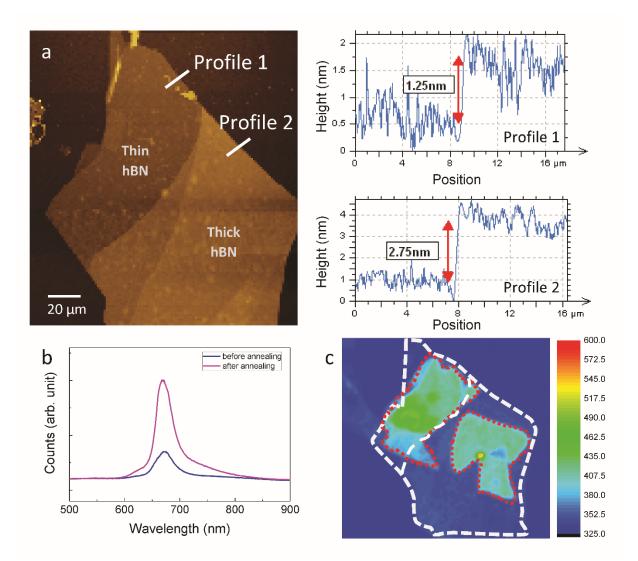
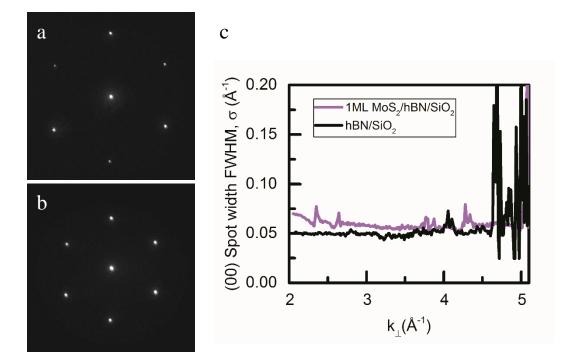
Protecting the properties of monolayer MoS₂ on silicon based substrates with an atomically thin buffer

Michael K.L. Man^{*1}, Skylar Deckoff-Jones¹, A. Winchester¹, Guangsha Shi², Gautam Gupta³, Aditya Mohite³, Swastik Kar⁴, Emmanouil Kioupakis², Saikat Talapatra^{1,5}, K.M. Dani¹

¹ Femtosecond Spectroscopy Unit, Okinawa Inst. of Science & Technology, Graduate University,
1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan.


² Department of Materials Science and Engineering, University of Michigan, 2106 H. H. Dow Bldg.,2300 Hayward St., Ann Arbor, MI 48109, United States

³ Material Synthesis and Integrated Devices, MPA-11, Los Alamos National Laboratory, Los Alamos, NM 87545, USA


⁴ Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States

⁵ Department of Physics, Southern Illinois University Carbondale, Carbondale, Illinois 62901, United States

Supplementary Information

Supplementary Figure S1 | PL measurements for monolayer MoS₂ on top of an hBN buffer layer. a, AFM image of an hBN flake on top of a SiO₂ substrate. The line profile on the right shows that the thickness of hBN varied from 1.25nm to 2.75nm. b, shows the PL signal from monolayer MoS₂ flakes before and after the annealing-cleaning process. It shows that there is at least a 5x enhancement in the PL signal strength as a result of the annealing-cleaning process. c, shows a PL map of the MoS₂/hBN/SiO₂ heterostructure with monolayer MoS₂ (outlined in red) on top of the hBN flake (outlined in white). The thinner part of the hBN (top-left) is separated from the thicker part (bottom-right) by an extra dotted line in between. It shows that the PL signal strength for MoS₂ on hBN of different thickness is comparable, with MoS₂ on thinner hBN giving a slightly stronger signal, possibly due to interference effects.

Supplementary Figure S2 | Flat hBN buffer on SiO₂. Sharp μ -LEED pattern are taken from a, hBN region as thin as ~1nm and b, monolayer MoS₂ on top of the thin hBN (electron energy at 50eV). c, FWHM of the specular (00) diffraction beam – σ , versus incident electron wave vector k_{\perp} shows that both thin hBN and the MoS₂ on top are extremely flat. Thus, even atomically thin hBN on SiO₂/Si is able to provide a stable flat platform for an overlaying monolayer crystal.