Supplement to:

A Biotin Biosynthesis Gene Restricted to Helicobacter

Hongkai Bi^{1,2}*, Lei Zhu³, Jia Jia^{1,2} and John E. Cronan^{3,4}*

¹Department of Pathogenic Biology, ²Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China Departments of ³Microbiology and ⁴Biochemistry, University of Illinois, B103

Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave, Urbana, Illinois 61801, USA.

Bacterial	Genotype	Reference
Strains		or source
E. coli		
DH5a	$\Delta(argF-lac)$ 169 φ 80d <i>lacZ58</i> (M15) $\Delta phoA8$ glnV44	Lab stock
	deoR481 gyrA96, recA1 endA1, hsdR17	
BL21 (Tuner)	$F^- ompT hsdS_B (r_B^- m_B^-) gal dcm lacYl$	Novagen
Rosetta(DE3) pLysS	$F^- ompT hsdS_B (r_B^- m_B^-) gal dcm (DE3) pLysS$	Novagen
STL24	MG1655, Δ <i>bioH</i>	1
ER90	$\Delta bioF \ bioC \ bioD$	2,3
H. pylori 26695	Wild-type strain	4
Plasmids		
pET-28b	Km ^r , T7 promoter-based expression vector, pBR322	Novagen
	origin	
pBluescript SKII	Amp ^r , cloning vector	Stratagene
pHel2	Cm ^r , <i>E. coli-H. pylori</i> shuttle vector	5
pTRKL2	Erm ^r , low-copy-number <i>E. coli/Lactococcus</i> shuttle	6
	vector	
pBAD24M	Amp ^r , NcoI site of pBAD24 changed to an NdeI site,	7
	modified pBR322 origin	
pBAD33	Cm ^r , expression vector containing P _{BAD} promoter	8
	and <i>araC</i> , pACYC184 origin	
pBHK565	Amp ^r , <i>HP0287</i> (<i>bioV</i>) cloned into the NdeI and SalI	This work
	sites of pBAD24M	
pBHK566	Amp ^r , <i>HP0288</i> cloned into the NdeI and SalI sites of	This work
	pBAD24M	
pBHK555	Km ^r , <i>bioV</i> cloned into the NdeI and SalI sites of	This work
	pET-28b	
pBHK624	Amp ^r , BioV S31A of BHK565	This work

Supplementary Table 1. Bacterial strains and plasmids used in this study

pBHK570	Amp ^r , BioV D141A of BHK565	This work
pBHK571	Amp ^r , BioV H167A of BHK565	This work
pBHK616	Km ^r , BioV S31A of BHK555	This work
pBHK576	Km ^r , BioV D141A of BHK555	This work
pBHK577	Kmr, BioV H167A of BHK555This we	
pBHK532	Cm ^r , PCR-amplified <i>HpAcpS</i> inserted between the	This work
	KpnI and HindIII sites of pBAD33	
pBHK531	Km ^r , PCR-amplified <i>HpAcpP</i> inserted between the	This work
	NcoI and HindIII sites of pET28-b	
pBHK638	Amp ^r , Km ^r , pBluecript SKII (+) containing a	This work
	cassette consisting of the regions upstream and	
	downstream 600 bp of the bioV gene flanking the	
	kanamycin resistance (aphA3) gene	
pBHK639	Cm ^r , Km ^r , pHel2 containing the cassette consisting	This work
	of the regions upstream and downstream 600 bp of	
	the $bioV$ gene flanking the kanamycin resistance	
	(<i>aphA3</i>) gene	
pZL394	Amp ^r , <i>HCD_02280 (HcbioV</i>) cloned into the NdeI	This work
	and SalI sites of pBAD24M	
pZL395	Amp ^r , <i>Hac_0547 (HabioV</i>) cloned into the NdeI and	This work
	Sall sites of pBAD24M	
Oligonucleotides	Sequence	
bioV-f	ATCTGC <u>CATATG</u> CGTTTTTTTAGTGGTTTTGG	
bioV-r	ACTCT <u>GTCGAC</u> TTAAGATTTTTGCAACAAAT GG	
HP0288-f	CGTCGG <u>CATATG</u> AAAAAATTTGGTTTGG	
HP0288-r	ATTCT <u>GTCGAC</u> TTAAAGCACATTTTTTCCAA GC	
HbioV-f	CAGGTC <u>CATATG</u> CGTTTTTTTAGTGGTTTTG	

HabioV-r	ATCGT <u>GTCGAC</u> TTAAGATTTTTGCAACAAAT GG	
HcbioV-r	ATCTT <u>GTCGAC</u> TTATTTCCACCCTTTTGATTC	
HPAcpS-f	AATTA <u>GAGCTC</u> AGGAGTAAACGAATGATTG GCATAGATATTG	
HPAcpS-r	GCGCG <u>GGTACC</u> TTATTCATTTGACGAAGAAA C	
HPAcpP-f	ACTGAA <u>CCATGG</u> GCATGGCTTTATTTGAAGA TATTC	
HPAcpP-r	GGCC <u>AAGCTT</u> AAGCCAGTTTATTATCCTC	
S31A-f	CCTTAATCGCACCCATAGCAAAGCCTGACAC ATCATA	
S31A-r	TATGATGTGTCAGGCTTTGCTATGGGTGCGA TTAAGG	
D141A-f	AAAAGGGCTTGAATGTCAGTGATTTTAGCTT TTAAACCGATAAACACTTCAATC	
D141A-f	GATTGAAGTGTTTATCGGTTTAAAAGCTAAA ATCACTGACATTCAAGCCCTTTT	
H167A-f	CGACTTAAGATTTTTGCAACAAAGCGTTGCA ATCCTTAAACTGCCACA	
H167A-r	TGTGGCAGTTTAAGGATTGCAACGCTTTGTT GCAAAAATCTTAAGTCG	
BioVmut1	AATGA <u>CTCGAG</u> AATGAAAGCGCTCTAAACG	
BioVmut2	ATAGA <u>GTCGAC</u> TTCACCCGTTCAATAAATCA T	
BioVmut3	ATAAA <u>GTCGAC</u> GCGAACCATTTGAGGTGATA G	
BioVmut4	TTTCATCTTCCACCTTTTTTAAAACAATTCAT CCAGT	
BioVmut5	ACTGGATGAATTGTTTTAAAAAAGGTGGAAG ATGAAA	
BioVmut6	ATTAT <u>GGATCC</u> TGCTACCCTCTCATTTCCTA	

The underlined sequences are restriction sites.

Genes/genetic loci	Enzyme activity		
Biotin biosynthesis and attachment			
<i>bplA</i> (HP1140)	Biotin protein ligase		
<i>bioC</i> (HP1254)	SAM-dependent malonyl-ACP <i>O</i> -methyltransferase		
<i>bioV</i> (HP0287)	Pimeloyl-ACP methyl ester esterase		
<i>bioF</i> (HP0598)	8-amino-7-oxononanoate synthase		
<i>bioA</i> (HP0976)	7,8-diaminononanoate synthase		
<i>bioD</i> (HP0029)	Desthiobiotin synthase		
<i>bioB</i> (HP1406)	Biotin synthase, SAM radical enzyme		
Fatty acid biosynthesis			
accA (HP0557)	Carboxyl-transferase subunit		
<i>accB</i> (HP0371)	Biotin carboxyl carrier protein (BCCP)		
<i>accC</i> (HP0370)	Biotin carboxylase		
<i>accD</i> (HP0950)	Carboxyl-transferase subunit		
<i>acpP</i> (HP0559)	apo-ACP		
<i>acpS</i> (HP0808)	Holo-ACP synthase		
fabD (HP0090)	Malonyl-CoA : ACP transacylase		
<i>fabF</i> (HP0558)	3-Ketoacyl-ACP synthase II		
<i>fabH</i> (HP0202)	3-Ketoacyl-ACP synthase III		
fabG (HP0561)	3-Ketoacyl-ACP reductase		
<i>fabZ</i> (HP1376)	3-Hydroxyacyl-ACP dehydrase		
<i>cfa</i> (HP0416)	Cyclopropane fatty acyl phospholipid synthase		
fabI (HP0195)	Enoyl-ACP reductase I		
<i>ufaA</i> (HP0773)	Involved in unsaturated fatty acid biosynthesis		

Supplementary Table 2. *H. pylori* biotin and fatty acid synthesis genes

Abbreviation: SAM, S-adenosylmethionine

Supplementary Figure 1. The DNA segment common to the complementing clones from the clone bank plasmids. The map at the top of the panel is a section of the pathogenic *H. pylori* strain 26695 genome sequence. HP0287 and HP0288 are ORFs annotated as coding for a hypothetical protein and a membrane protein, respectively. The arrows below the region map represent the four clone bank plasmids that complemented growth the *E. coli* $\Delta bioH$ mutant strain STL24on biotin-free media.

Supplementary Figure 2. Purification of *H. pylori* holo-ACP.

The *H. pylori* apo-ACP was expressed in *E. coli* Rosetta (DE3) pLysS transformed with pBHK531 carrying the *H. pylori acpP* gene (lane 1). The plasmid pBHK532 carrying the *H. pylori acpS* gene was also transformed into the strain to express the holo-ACP (lane 2). The *H. pylori* apo-ACP (lane 1) and holo-ACP (lane 2) were purified as described previously for the *E. coli* proteins ⁹.

Supplementary Figure 3. SDS-PAGE analysis of the purified BioV and three mutant BioV proteins. Protein samples were separated by electrophoresis using 4-20% gradient SDS-PAGE.

Supplementary Figure 4. Expression of the *bioV* homologues from *Helicobacter* acinonychis or *Helicobacter cetorum* allows growth of an *E. coli* Δ *bioH* strain.

Transformants of strain STL24 (an *E. coli ∆bioH* strain) were grown at 37°C on biotin-free minimal medium. Growth was tested in either the presence or the absence of arabinose as in Fig. 2. The growth of all strains in the presence of biotin was used as a positive control. The strains tested were: MG1655 (wild type), STL24 carrying plasmids pZL394 and pZL395 encoding *HcbioV* and *HabioV*, respectively, or the vector plasmid (Vec), pBAD24M.

Supplementary Figure 5. Multiple protein sequence alignments of seven BioV homologues from different *Helicobacter* species.

The predicted protein sequences of the BioV homologues are HP0287 from *H. pylori*, Hac_0547 from *H. acinonychis*, HCD_02280 from *H. cetorum*, HFELIS_03760 from *H. felis*, HBZC1_04080 from *H. bizzozeronii*, HSUHS5_1172 from *H. suis* and HHE01_17100 from *H. heilmannii*. The identical residues are in white letters with red background, and the varied residues are in black letters. The predicted protein secondary structure of BioV is given in cartoon form, which is based on the structural architecture of the arylesterase from *Pseudomonas fluorescens* (PDB: 3HI4)¹⁰. Designations: α : alpha-helix; β : beta-sheet; T: Turn; η : coil. The solid circle, triangle and asterisk denote the active-site residues.

Supplemental References

- 1. Lin, S., Hanson, R.E. & Cronan, J.E. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. *Nat Chem Biol* **6**, 682-8 (2010).
- Choi-Rhee, E. & Cronan, J.E. A nucleosidase required for in vivo function of the S-adenosyl-L-methionine radical enzyme, biotin synthase. *Chem Biol* 12, 589-93 (2005).
- 3. Choi-Rhee, E. & Cronan, J.E. Biotin synthase is catalytic in vivo, but catalysis engenders destruction of the protein. *Chem Biol* **12**, 461-8 (2005).
- 4. Tomb, J.F. et al. The complete genome sequence of the gastric pathogen *Helicobacter pylori*. *Nature* **388**, 539-47 (1997).
- Heuermann, D. & Haas, R. A stable shuttle vector system for efficient genetic complementation of *Helicobacter pylori* strains by transformation and conjugation. *Mol Gen Genet* 257, 519-28 (1998).
- 6. O'Sullivan, D.J. & Klaenhammer, T.R. High- and low-copy-number *Lactococcus* shuttle cloning vectors with features for clone screening. *Gene* **137**, 227-31 (1993).
- Zhu, L., Lin, J., Ma, J., Cronan, J.E. & Wang, H. Triclosan resistance of *Pseudomonas* aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. *Antimicrob Agents Chemother* 54, 689-98 (2010).
- Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. *J Bacteriol* 177, 4121-30 (1995).
- 9. Cronan, J.E. & Thomas, J. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. *Methods Enzymol* **459**, 395-433 (2009).
- 10. Yin de, L.T. et al. Switching catalysis from hydrolysis to perhydrolysis in *Pseudomonas fluorescens* esterase. *Biochemistry* **49**, 1931-42 (2010).