
Importing raw genotype data with argyle
Andrew P Morgan

2015-10-07

Introduction

This vignette demonstrates the steps required to load genotype data from output files produced by Illumina
BeadStudio. Two files are expected: one named like *Sample_Map.zip, the sample manifest, and one named
like *FinalReport.zip, which contains genotype calls and hybridization intensity values. These are plain-text
reports compressed with ZIP. For Mac and Linux users, they will be decompressed on-the-fly by argyle;
Windows users will need to unzip them before starting the import process.

The FinalReport is expected to have the following columns: SNP Name (unique marker name), Sample ID
(unique sample name), Allele1 - Forward (first allele call, one of ACGTN), Allele 2 - Forward (second
allele call, one of ACGTN), X (hybridization intensity in the x dimension) and Y (intensity in the y dimension).
Column names are preceeded by a header section describing the number of samples and markers genotyped.
Each row after the column names represents a single genotype (ie. a sample-marker pair). Homozygous calls
will have the same value in columns Allele 1 and Allele 2; heterozygous calls will have diffferent values in
the two columns; and missing calls will have an N in both columns. Allele calls are made with respect to the
forward strand for ease of comparison with public databases and reference genome sequences.

In addition to the Sample_Map and FinalReport, argyle requires the user to supply a marker map for the
array. This should be a dataframe with at least the following six columns: chr (chromosome), marker
(unique marker name, to be matched to SNP Name in FinalReport), cM (genetic position in centimorgans),
pos (physical position in base pairs), A1 (reference allele) and A2 (alternate allele). Alleles should be specified
with respect to the forward strand, as in FinalReport. The dataframe should have row names, and these
should match the values in the marker column.

The marker map must be prepared ahead of time, and doing so requires knowledge of the array
platform. Maps for the Mouse Universal Genotyping Array series are available for download at
http://csbio.unc.edu/CCstatus/.

This and other vignettes included with argyle makes use of genotyping reports from the Mouse Universal
Genotyping Arrays for the house mouse (Mus musculus) sold by Neogen Inc. Users of other platforms should
consult their vendor with specific questions about file formats.

Example dataset

We use an example dataset from the MegaMUGA array consisting of 96 samples x 77808 markers. It consists
of two files, residing in ~/argyle/datasets/mega_example:

ls -lh ~/argyle/datasets/mega_example

total 321224
-rw-r--r--@ 1 apm staff 157M Oct 7 15:24 FinalReport.zip
-rw-r--r--@ 1 apm staff 5.0K Oct 7 15:55 Sample_Map.txt

1

http://csbio.unc.edu/CCstatus/

Importing from BeadStudio files

First, load the argyle package and (for convenience) set the working directory for the R session.

library(argyle)
setwd("~/argyle")

Next load the marker map, which has been pre-constructed and saved in an Rdata file. The object is a
dataframe called snps.

load("snps.megamuga.Rdata")
head(snps)

chr marker cM pos A1 A2
UNC6 chr1 UNC6 1.4995 3000355 T C
JAX00000010 chr1 JAX00000010 1.5620 3125499 A G
JAX00240603 chr1 JAX00240603 1.6075 3242877 C T
JAX00240610 chr1 JAX00240610 1.6111 3256689 C T
JAX00240613 chr1 JAX00240613 1.6260 3313481 T C
JAX00240636 chr1 JAX00240636 1.6433 3379644 C A

To import genotypes, use the read.beadstudio() function. Argument in.path specifies the directory in
which argyle will search for the Sample_Map and FinalReport files, and prefix gives the file name prefix (in
our case, none). The marker map (argument snps) must also be provided. Genotypes at markers not present
in the marker map will be omitted from the output. If keep.intensity = TRUE (the default), hybridization
intensities will be imported along with genotype calls.

geno <- read.beadstudio(prefix = "", in.path = "./datasets/mega_example", snps = snps, keep.intensity = TRUE)

Reading sample manifest from < ./datasets/mega_example/Sample_Map.txt > ...
Reading genotypes and intensities for 77808 markers x 96 samples from < ./datasets/mega_example/FinalReport.zip > ...
Constructing genotype matrix...
Constructing intensity matrices...
77808 sites x 96 samples
Done.

The function returns a genotypes object with the stated dimensions. Depending on hardware and operating
system, a dataset of this size (∼ 150 Mb ZIP-compressed) can be expected to take less than one minute.

The genotypes object

The genotypes object is the central data structure of the argyle package. The design mimics the file
structure used by PLINK (see here for details). A genotypes is a matrix with markers in rows and samples in
columns; each entry is a biallelic genotype call. Row names match marker names, and column names match
sample names. The genotypes class inherits from the matrix in base R, so all functions which work for
matrices – apply(), dim() and so on – will also work for genotypes objects. Marker and sample metadata
are stored as attributes of the matrix.

For a high-level overview genotypes object, use summary():

2

http://pngu.mgh.harvard.edu/~purcell/plink/

summary(geno)

--- geno ---
A genotypes object with 77808 sites x 96 samples
Allele encoding: native
Intensity data: yes (raw)
Sample metadata: yes (0 male / 0 female / 96 unknown)
Filters set: 0 sites / 0 samples
File source: /Users/apm/Dropbox/pmdvlab/argyle/manuscript/vignettes/datasets/mega_example (on 2015-10-07 17:26:39)
Checksum: ccf22694fee67b07e68b8aeb6fb5b053

As expected, the object contains 77808 markers and 96 samples. Alleles are encoded using the native scheme
for BeadStudio – that is, as nucleotides (ACGT) with respect to the forward strand for homozygous calls, H for
heterozygous calls, and N for no-calls (missing data). Intensity data is present, and raw indicates that no
intensity normalization has been applied yet. No filters have been set. A checksum is computed during the
import process that can be used to check file integrity if re-importing the same data again.

To peek at the contents of the object, use head():

head(geno)

Genotypes matrix:
B-1 B-10 B-101 B-102 B-103 B-104 B-105 B-106 B-107 B-108
UNC6 N H C H H T H C T C
JAX00000010 H H G H H A H G A G
JAX00240603 N H T H H C H T H T
JAX00240610 C C C C C C C C C C
JAX00240613 H H C H H T H C T C
JAX00240636 C C C C C C C C H C
JAX00240649 C C T H C C C C C C
JAX00000040 G G G G G G G G G G
UNC010515443 G G H H G G G G H G
UNC9371 C C H C C C C C H C
##
Marker map:
chr marker cM pos A1 A2
chr1 UNC6 1.4995 3000355 T C
chr1 JAX00000010 1.5620 3125499 A G
chr1 JAX00240603 1.6075 3242877 C T
chr1 JAX00240610 1.6111 3256689 C T
chr1 JAX00240613 1.6260 3313481 T C
chr1 JAX00240636 1.6433 3379644 C A
chr1 JAX00240649 1.6480 3445065 C T
chr1 JAX00000040 1.6480 3534900 G A
chr1 UNC010515443 1.6480 3658709 G A
chr1 UNC9371 1.6480 3882799 C T
##
Sample info:
fid iid mom dad sex pheno
B-.1 B-.1 0 0 0 -9
B-.10 B-.10 0 0 0 -9
B-.101 B-.101 0 0 0 -9
B-.102 B-.102 0 0 0 -9

3

B-.103 B-.103 0 0 0 -9
B-.104 B-.104 0 0 0 -9
B-.105 B-.105 0 0 0 -9
B-.106 B-.106 0 0 0 -9
B-.107 B-.107 0 0 0 -9
B-.108 B-.108 0 0 0 -9

This shows the top corner of the genotypes matrix, and corresponding rows from the marker map and sample
metadata. Sample names are truncated to keep the output compact.

To access sample metadata, use samples():

head(samples(geno))

fid iid mom dad sex pheno
B-.1 B-.1 B-.1 0 0 0 -9
B-.10 B-.10 B-.10 0 0 0 -9
B-.101 B-.101 B-.101 0 0 0 -9
B-.102 B-.102 B-.102 0 0 0 -9
B-.103 B-.103 B-.103 0 0 0 -9
B-.104 B-.104 B-.104 0 0 0 -9

This function returns a dataframe with (at least) six columns: fid (a “family” identifier, or more generally
any grouping variable; it defaults to the sample name), iid (unique sample name), mom and dad (pedigree
information, if any; 0 indicates missing data), sex (0 = unknown, 1 = male, 2 = female), and pheno
(phenotype; -9 indicates missing data). Row names match the iid column.

Similarly, markers() returns the marker map:

head(markers(geno))

chr marker cM pos A1 A2
UNC6 chr1 UNC6 1.4995 3000355 T C
JAX00000010 chr1 JAX00000010 1.5620 3125499 A G
JAX00240603 chr1 JAX00240603 1.6075 3242877 C T
JAX00240610 chr1 JAX00240610 1.6111 3256689 C T
JAX00240613 chr1 JAX00240613 1.6260 3313481 T C
JAX00240636 chr1 JAX00240636 1.6433 3379644 C A

The usual R slicing and indexing conventions work for genotypes objects, and argyle ensures that genotype
calls, marker metadata, sample metadata, and intensity matrices are all kept in sync. For instance, to extract
just the first 10 markers (rows) we can do

g1 <- geno[1:10,]
summary(g1)

--- g1 ---
A genotypes object with 10 sites x 96 samples
Allele encoding: native
Intensity data: yes (raw)
Sample metadata: yes (0 male / 0 female / 96 unknown)
Filters set: 0 sites / 0 samples

4

See that g1 is now a genotypes object of size 10 × 96. Furthermore, we can use subset() to easily perform
more complex filtering. For instance, to extract all markers in the first 50 Mbp of chromosome 1:

g2 <- subset(geno, chr == "chr1" & pos < 50e6)
nrow(g2) # how many markers are left?

[1] 1247

Note that argyle’s subset(), like subset.data.frame() in base R, uses lazy evaluation. By default the
subsetting expression is evaluated in the context of the marker map, but we can also subset according to
sample properties by passing the argument by = "samples":

g3 <- subset(geno, fid != "exclude_me", by = "samples")
ncol(g3) # how many samples are left?

[1] 96

Allele encoding schemes

When reading genotypes from BeadStudio output, alleles are encoded just as they appear in the file (native
mode). However, it is often useful to represent genotypes as allele counts (of the non-reference or minor
allele). To convert to numeric allele encoding with 0 = homozygous reference allele, 1 = heterozygous and 2
= homozygous alternate allele, do

g2.recode <- recode(g2, "01")

Recoding to 0/1/2 using reference alleles.

summary(g2.recode)

--- g2.recode ---
A genotypes object with 1247 sites x 96 samples
Allele encoding: 01
Intensity data: yes (raw)
Sample metadata: yes (0 male / 0 female / 96 unknown)
Filters set: 0 sites / 0 samples

See that the allele encoding is now listed as the 01 mode. In this mode no-calls (N) are converted to true
missing values (NA).

In the numeric encoding it is easy and fast to compute allele frequencies.

af <- rowMeans(g2.recode, na.rm = TRUE)/2
quantile(af, na.rm = TRUE)

0% 25% 50% 75% 100%
0.0000000 0.1875000 0.3854167 0.5729167 1.0000000

If needed we can revert to the native nucleotide encodings without loss of information.

5

g2.recode.again <- recode(g2.recode, "native")

Recoding to character using reference alleles.

identical(g2, g2.recode.again)

[1] TRUE

Other input formats

The argyle package can read PLINK binary filesets, and by extension, any format that can be
converted by PLINK into such a fileset. PLINK-related functions are covered in a separate vignette.

Users whose genotype data is stored in ad hoc formats can still benefit from the functions provided by argyle.
If genotype data can be manipulated into matrix form in R, a genotypes object can be constructed manually
as shown in the example below.

grab a few SNPs from existing map
my.snps <- snps[1:10,]

fake some genotypes (all homozygous for ref allele)
x <- matrix(0, nrow = 10, ncol = 5)

genotype matrix *must* have row and column names
my.samples <- paste0("sample", 1:5)
rownames(x) <- rownames(my.snps)
colnames(x) <- my.samples

now roll it up into a `genotypes` object
g <- genotypes(x, snps, alleles = "01")
summary(g)

--- g ---
A genotypes object with 10 sites x 5 samples
Allele encoding: 01
Intensity data: no
Sample metadata: yes (0 male / 0 female / 5 unknown)
Filters set: 0 sites / 0 samples

6

	Introduction
	Example dataset
	Importing from BeadStudio files
	The genotypes object
	Allele encoding schemes
	Other input formats

