Population-based analyses with argyle
Andrew P Morgan

2015-10-10

Introduction

In this vignette we introduce argyle utilities for analyzing genotypes from natural populations. We make use
of a dataset containing genotypes for 28 wild-caught mice, representing the three subspecies of Mus musculus,
from the Mouse Diversity Array (Yang et al. 2011). The MDA is a high-density Affymetrix array; for sake of
demonstration we use only the 14306 markers on chromosome 19.

This vignette also provides an overview of utilities for interacting with genotypes stored in the PLINK (Purcell
et al. 2007) binary format. PLINK is widely used software with many utilities for management of genetic
datasets and association studies. Although PLINK accepts many input formats, they are all converted to
a space-efficient binary intermediate prior to analysis. The PLINK binary fileset consists of three parts
distinguished by their suffix:

e *.bed — biallelic genotype data, stored in two bits per genotype

e *.bim — marker map

o x.fam — “family file” with sample identifiers, pedigree information (if applicable) and other sample
metadata

For a more detailed description see the PLINK documentation.

library(argyle)

The PLINK interface

argyle can use genotypes stored in PLINK format in two ways: either by reading them into the R session
as a genotypes object, or by maintaining a pointer to the PLINK fileset on disk without holding genotypes
themselves in memory. The latter is useful when working with large datasets that do not fit comfortably in
RAM.

To load data from a PLINK fileset as a genotypes object, use read.plink(). This function takes a single
argument, prefix, and expects to find three files: prefix.bed, prefix.bim and prefix.fam.

wilds <- read.plink("datasets/wild.chri9")

Reading family info from: <datasets/wild.chr19.fam>
Reading marker info from: <datasets/wild.chr19.bim>
Reading binary genotypes from: <datasets/wild.chr19.bed>

summary (wilds)

--- wilds ---

A genotypes object with 14306 sites x 28 samples

Allele encoding: 01

Intensity data: no

Sample metadata: yes (13 male / 15 female / O unknown)
Filters set: 0 sites / O samples

http://pngu.mgh.harvard.edu/~purcell/plink

table(samples(wilds)$£fid)

##
cas dom mus
10 9 9

Genotypes are read in the 01 encoding: numeric, as counts of the non-reference allele.

If we prefer to keep the data out of memory, we can instead create a pointer to the fileset using plinkify():

ptr <- plinkify("datasets/wild.chr19")
print (ptr)

-- Pointer to a PLINK fileset --
Source: /Users/apm/Dropbox/pmdvlab/argyle/manuscript/vignettes/datasets/wild.chr19.bed
Ouput dir: /private/var/folders/_r/xn9svcws2sv9xns4291r0x_00000gp/T/RtmpzDab5Y

This pointer keeps track of both the location of the target fileset, and the location of a scratch space where
any intermediate files created by calls to PLINK utilities — and PLINK generates lots of such files — are stored,
to avoid cluttering the working directory. By default argyle uses the R session’s temporary file directory as
scratch space. Contents of that directory are wiped when the R session is terminated.

The argyle package also provides wrapper functions for many PLINK utilities. Functions in this family all
have the suffix *plink. They are executed as command-line calls and assume that an executable named
plink (or a link by the same name) is in the user’s path. With the exception of those marked with an asterisk
below, they will work with either PLINK v1.0.x or the more recent (and much faster) PLINK v1.9+.

o mds.plink — classical multidimensional scaling (MDS) for visualizing population structure

e pca.plink — principal components analysis (PCA) for visualizing population structure

e 1d.plink — pairwise linkage disequilibrium (LD) calculations

e prune.plink — pruning of markers based on local LD

e filter.plink — general-purpose filtering based on allele frequency, Hardy-Weinberg equilibrium,
chromosome, position, blacklists, ...

o weir.fst.plink* — calculation of between-population fixation indices (Fs;) using Weir & Cockerham’s
estimator)

e assoc.plink — genotype-phenotype association tests under a variety of models

e tdt.plink — transmission disequilibrium test (TDT), a family-based association test

Population structure

Preliminary analyses of patterns of relatedness between samples — that is, population structure — often make
use of a dimension-reduction procedure such as principal components analysis (PCA) or multidimensional
scaling (MDS). PCA, as applied to genotypes at biallelic markers, amounts to eigendecomposition of the
(co)variance of allele counts at each marker. argyle provides a pca() method for genotypes objects, and an
accompanying plot () function which produces an informative plot of the projection of samples onto PCs.

pc <- pca(wilds)

Preparing input matrices...
replacing missing values with minor-allele frequency...

Computing principal components of genotypes matrix...
(using base::prcomp() ...)
Done.

plot(pc, screeplot = TRUE)

. 3
_ 2 v £ 30%-
° 5- 'Q C_G
=) o
- 0-)
g @ 20% -
_25 -
3 : 5
a 1 = 10% -
-50 .. Cg
| | | | o\o | | |
-50 0 50 100 PC1 PC2 PC3

PC1 (32.7%)

Missing values are substituted with the allele population allele frequency at the corresponding marker; when
many genotypes are missing this will tend to cause the points to “contract” into a blob in the center of the
subspace defined by the PCs.

Like all the plotting functions in argyle, the plot() method for PCA results uses ggplot2. The plot it
returns can be customized and extended like any ggplot object. For example, we can produce a more polished
figure by suppressing the screeplot (by omitting screeplot = TRUE) and coloring the points by the value of
fid (sample group), which in this case corresponds to their subspecies of origin.

library(ggplot2)

cols <- c("dom" = "blue", "mus" = "red", "cas" = "green")

groups <- c("dom" = "M. m. domesticus", "mus" = "M. m. musculus",
"cas" = "M. m. castaneus")

show = "nothing" draws just the skeleton of the plot,
so we can add our own layers for finer control
plot(pc, show = "nothing") +
geom_point (aes(colour = fid)) +
scale_colour_manual ("subspecies", values = cols,
breaks = names(groups),
labels = groups) +
theme (legend.text = element_text(face = "italic"))

»°
25 - [1S
o
S subspecies
© 0- .
o e M. m. domesticus
—
af e M. m. musculus
8 =25+ e M. m. castaneus
s
_50 -
[)
I I I I
-50 0 50 100

PC1 (32.7%)

Compare this to the result obtained by multidimensional scaling (MDS) using PLINK.

mds <- mds.plink(ptr)
ggplot(mds) +
geom_point(aes(x = MDS1, y = MDS2, colour = fid)) +
scale_colour_manual ("subspecies", values = cols,
breaks = names(groups),
labels = groups) +
theme_bw() + theme(legend.text = element_text(face = "italic")) +
coord_equal()

0.10 — °
[]
8
0.05 - °
'.‘ o subspecies
% 0.00 - e M. m. domesticus
g e M. m. musculus
-0.05 - ® M. m. castaneus
0.10 '
¢
I I I I I
-0.2 -0.1 0.0 0.1 0.2

MDS1

MDS and PCA give, as expected, qualitatively similar results that support a clear genetic differentiation of
the present samples according to subspecies of origin.

Allele frequencies

Obtain non-reference allele counts with freq() and plot the allele-frequency spectrum.

f <- freq(wilds, "samples")

hist(f, breaks = seq(0,1,0.025),
col = "grey", border = NA,
main = NULL, xlab = "allele frequency bin",
ylab = "frequency")

00 —

frequency
4
|

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

allele frequency bin

In working with genotypes from natural populations it may be advantageous to recode genotypes in terms of
the count of the minor allele rather than the non-reference allele. This can be done with recode():

wilds.recode <- recode(wilds, "relative")

Recoding to 0/1/2 using empirical frequencies.

summary (wilds.recode)

--- wilds.recode ---

A genotypes object with 14306 sites x 28 samples

Allele encoding: relative

Intensity data: no

Sample metadata: yes (13 male / 15 female / O unknown)
Filters set: 0 sites / O samples

Caution: once alleles are recoded as major/minor within a dataset, they cannot be unambiguously
reverted to the reference/alternative encoding.

Now inspect the allele-frequency spectrum again. It should have closer to the expected L-shape. Note that
this is now a folded AF'S since values are constrained to fall on the interval [0, %]

f <- freq(wilds.recode, "samples")
hist(f, breaks = seq(0,0.5,0.025),

frequency

col = "grey", border = NA,
main = NULL, xlab = "allele frequency bin",
ylab = "frequency")

10 12

8
I

0.0 0.1 0.2 0.3 0.4 0.5

allele frequency bin

Population differentiation

Fy; measures differentiation of alleles between populations — that is, the proportion of variance in allele
frequencies which lies between versus within populations. The unbiased F; estimator of Weir & Cockerham
is implemented in PLINK and wrapped by argyle.

fst <- weir.fst.plink(ptr)

-- Pointer to a PLINK fileset --

Source: /Users/apm/Dropbox/pmdvlab/argyle/manuscript/vignettes/datasets/wild.chr19.bed
Ouput dir: /private/var/folders/_r/xn9svcws2sv9xns4291r0x_00000gp/T/RtmpzDab5Y

[1] "--fst --family --keep-cluster-names cas dom "

[1] "--fst --family --keep-cluster-names cas mus "

[1] "--fst --family --keep-cluster-names dom mus "

print(fst)

cas dom mus

cas 0.550060 0.4957020 0.4916060

##

dom 0.495702 0.6228444 0.6646920

mus 0.491606 0.6646920 0.7161333

The return value is a (symmetric) matrix whose off-diagonal entries are Fy; values and whose diagonal entries
are the mean inbreeding coefficient in each population. Populations are assigned according to the value of
fid in the sample metadata.

References

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, and M. A. Ferreiraet al., 2007 PLINK: A tool set for
whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559-575.

Yang, H., J. R. Wang, J. P. Didion, R. J. Buus, and T. A. Bellet al., 2011 Subspecific origin and haplotype
diversity in the laboratory mouse. Nat Genet 43: 648—655.

	Introduction
	The PLINK interface
	Population structure
	Allele frequencies
	Population differentiation
	References

