

Fig. S1. Growth defect of strains in LB medium. Strains whose relevant genotypes are indicated were streaked and the plates photographed after 24 hours (A) or 40 hours (B) of incubation at 37°C. The ppGpp⁰ $\Delta lon/$ pRCspoT strain was maintained in the presence of Amp and IPTG.

Fig. S2. The synthetic growth defect of $ppGpp^0 \Delta lon$ strain is not suppressed by *lexA3*. Strains whose relevant genotypes are indicated were studied for plating defect (A) or the instability of plasmid pRCspoT (B) Plating defect was monitored in LB medium in the absence or presence of 1mM IPTG. Plasmid loss was monitored in LB medium containing 1mM IPTG and X-Gal.

Supplementary tables

Table S1. Co-transduction frequency of Δlon ::Kan and tsx::Tn10^a markers by phage P1 transduction.

Strain	Relevant genotype	Number of Tet ^R	Number of	co-transduction (%)
		transductants	Tet ^R	
		screened	transductants	
			that are Kan ^R	
MG1655	Wild-type	263	38	14 ^b
CF12510	$\Delta relA$	305	60	19
HR202	$\Delta relA \Delta spoT$	270	0	<0.4
AN120 ^c	$\Delta relA \Delta spoT/$	270	33	12
	pRCspoT			

a- tsx::Tn10 is linked 66% to lon^+ as deduced by introducing tsx::Tn10 by phage P1 transduction into MG1655 Δlon ::Kan (AN207); 51 Tet^R Kan^S transductants were scored after screening 77 Tet^R transductants. P1 lysate prepared on an MG1655 tsx::Tn10 Δlon ::Kan strain was used for performing the co-transduction experiments.

b- The reason for decrease in co-transduction frequency from the expected 66% is not apparent.

c- Transductants were selected and screened in the presence of Amp and IPTG.

Strain	Relevant genotype ^a	Frequency of plasmid loss
		(white colonies / total
		colonies)
AN131	Wild-type	0.35 (54/156)
AN207	Δ <i>lon</i> ::kan	0.46 (344/752)
AN256	$\Delta relA::FRT$	0.26 (74/280)
AN120	$\Delta relA \Delta spoT$	0.21 (46/216)
AN844	$\Delta relA$::FRT Δlon ::Kan	0.34 (167/492)
AN519	$\Delta relA \Delta spoT \Delta lon$::Kan	<0.001 (0/952)
AN567	$\Delta relA \Delta spoT \Delta lon::Kan \Delta sulA::FRT$	0.23 (218/966)
AN568	$\Delta relA \Delta spoT \Delta lon::Kan \Delta rcsB::FRT$	<0.001 (0/873)
ANI512	Aught Aug at Alaun Kar / a DA D24	<0.00((0/175)
ANJIZ	$\Delta retA \Delta spot \Delta ton::Kan / pBAD24$	<0.006 (0/175)
		<0.003 (0/357)
AN513	$\Delta relA \Delta spoT \Delta lon::Kan / plon' (- arabinose)$	
AN513	$\Delta relA \Delta spoT \Delta lon:: Kan / plon+ (+ arabinose)$	0.15 (139/916)
AN514 ^b	$\Delta relA \Delta spoT \Delta lon$::Kan / plon S679A	<0.004 (0/238)
	(+ arabinose)	
AN515 ^b	$\Delta relA \Delta spoT \Delta lon::Kan / plon K362Q$	<0.005 (0/201)
	(+ arabinose)	
AN516 ^b	$\Delta relA \Delta spoT \Delta lon::Kan / plon S679A K362Q$	<0.009 (0/106)
	(+ arabinose)	

 Table S2. Quantification of pRCspoT plasmid instability.

AN825	$\Delta dksA::FRT \Delta lon::Kan$	0.43 (176/410)
AN688	$\Delta relA \Delta spoT \Delta lon::Kan / pdksA'$	<0.005 (0/221)
AN689	$\Delta relA \Delta spoT \Delta lon::Kan / pdksA$	0.24 (72/304)
AN690	$\Delta relA \Delta spoT \Delta lon$::Kan / pdksA ^{NN}	0.2 (68/332)
AN677	$\Delta relA \Delta spoT \Delta lon::Kan /pCL1920$	<0.001 (0/855)
AN678	$\Delta relA \Delta spoT \Delta lon::Kan / pCLftsQAZ$	0.43 (148/348)
AN679	$\Delta relA \Delta spoT \Delta lon::Kan / pCLsdiA$	0.41 (112/272)
AN680	$\Delta relA \Delta spoT \Delta lon::Kan / pSCftsQAZ$	0.39 (192/488)
AN792	$\Delta relA \Delta spoT \Delta lon::Kan / pCA24N$	<0.01 (0/95
AN793	$\Delta relA \Delta spoT \Delta lon::Kan / pCA24NftsZ$	0.15 (8/52)
AN840	$\Delta relA \ \Delta spoT \ \Delta lon::FRT \ att \ \lambda::(P_{208}-ftsZ-gfp)$ (+ 0.1mM IPTG)	0.19 (68/364)
AN647	$\Delta relA \Delta spoT lexA3 mal::Tn9$	0.22 (67/311)
AN648	$\Delta relA \Delta spoT \Delta lon::Kan lexA3 mal::Tn9$	<0.002 (0/646)
AN750	$\Delta relA \Delta spoT \Delta lon::FRT \Delta recA::Kan$	<0.002 (0/453)

a - All strains studied carry the $\Delta lacZYAI$::FRT allele on the chromosome and either plasmid pRCspoT (Amp^R) or pRC_{Sp}-spoT (Sp^R) except AN825 which carries pRCdksA (Amp^R). Segregation of blue and white colonies was followed in LB agar plates with IPTG and X-gal. Whenever a second plasmid was present in the strain appropriate antibiotic was added to select for the plasmid and whenever required inducer was added as indicated to activate expression of the plasmid borne gene. b –frequency of plasmid loss was similar in the presence or absence of arabinose.

Table S3. Strains and plasmids.

Strain or	Relevant genotype or features	Source or
plasmid		reference
MG1655	$F^{-}\lambda^{-}ilvG^{-}rfb$ -50 rph-1, sequenced wild-type K12	Lab collection
AG1	recA1 endA1 gyrA96 thi-1 hsdR17 $(r_K m_K^+)$ supE44 relA1	(1)
JW0093	AG1 / pCA24NftsZ	(1)
AN56	MG1655 Δ <i>relA</i> ::FRT	This study
HR202	MG1655 $\Delta relA \Delta spoT$	This study
AN131	MG1655 Δ <i>lac</i> ::FRT / pRCspoT	This study
AN256	AN131 Δ <i>relA</i> ::FRT	This study
AN120	HR202 Δ <i>lac</i> ::FRT / pRCspoT	This study
AN207	AN131 ∆ <i>lon</i> ::Kan	This study
AN844	AN256 Δlon ::Kan	This study
AN519	AN120 Δ <i>lon</i> ::Kan	This study
AN518	HR202 Δ <i>lac</i> ::FRT Δ <i>lon</i> ::Kan / pRC _{sp} -spoT	This study
AN512	AN518 / pBAD24	This study
AN513	AN518 / plon ⁺	This study
AN514	AN518 / plonS679A	This study

AN515	AN518 / plonK362Q	This study
AN516	AN518 / plonS679A K362Q	This study
AN565	AN120 $\Delta sulA$:: FRT	This study
AN567	AN565 Δ <i>lon</i> ::Kan	This study
AN568	AN519 $\Delta rcs B$::FRT	This study
AN647	AN120 lexA3 (Ind ⁻) malB::Tn9	This study
AN648	AN647 <i>∆lon</i> ::Kan	This study
AN750	AN120 Δlon ::FRT $\Delta recA$::Kan	This study
AN658	MG1655 Δlac::FRT sulA-lacZ	This study
AN837	AN658 <i>srl300</i> ::Tn10	This study
AN838	AN837 recA56 srl300::Tn10	This study
AN839	AN658 <i>lexA3</i> (Ind ⁻) <i>malB</i> ::Tn9	This study
AN660	HR202 Δlac ::FRT sulA-lacZ	This study
AN774	AN658 Δlon ::FRT	This study
AN743	AN660 Δlon ::FRT	This study
AN803	MG1655 Δ <i>lac</i> ::FRT Δ <i>sulA</i> ::Kan	This study
AN825	MG1655 Δ <i>lac</i> ::FRT Δ <i>dksA</i> ::FRT Δ <i>lon</i> ::Kan / pRCdksA	This study
AN688	AN518 / pdksA'	This study
AN689	AN518 / pdksA	This study

AN690	AN518 / pdksA ^{NN}	This study
AN352	AN519 <i>rpoB*35 btuB</i> ::Tn10	This study
AN353	AN519 rpoB L571P btuB::Tn10	This study
AN826	AN519 <i>btuB</i> ::Tn10	This study
AN677	AN519 / pCL1920	This study
AN678	AN519 / pCLftsQAZ	This study
AN679	AN519 / pCLsdiA	This study
AN680	AN519 / pSCftsQAZ	This study
AN792	AN519 / pCA24N	This study
AN793	AN519 / pCA24NftsZ	This study
AN840	AN518 attλ::(P ₂₀₈ -ftsZ-gfp, Amp)	This study
AN819	HR202 Δlac ::FRT / plon ⁺	This study
Plasmids		
pCL1920	pSC101-based; Sp ^R	(2)
pBAD24	ColE1-derived; Amp ^R	(3)
pCP20	pSC101 temperature-sensitive replicon, Amp ^R , Cm ^R	(4)
pRC7	Mini-F based; Amp ^R	(5)
pRCspoT	pRC7 with <i>spoT</i>	This study
pRCdksA	pRC7 with <i>dksA</i>	This study

pRC _{Sp} -spoT	<i>bla</i> of pRCspoT replaced with <i>aadA</i> gene; Sp ^R	This study
plon ⁺	pBAD24 with <i>lon</i> ⁺	(6)
plonS679A	pBADlonS679A	(6)
plonK362Q	pBADlonK362Q	(6)
plonS679A	pBADlonS679A K362Q	(6)
K362Q		
pMN8	pCL1920-ftsQAZ (pCLftsQAZ)	(7)
pMN15	pCL1920-sdiA (pCLsdiA)	(7)
pTB63	pSC101-based carrying <i>ftsQAZ</i> (pSCftsQAZ); Tet ^R	(8)
pCA24N	Cloning vector used in ASKA Library; Cm ^R	(1)
pCA24NftsZ	pCA24N carrying His ₆ -ftsZ	(1)
pJK537	pBR322-dksA (pdksA); Amp ^R	(9)
pHM1684	pBR322-dkaA ^{NN} (pdksA ^{NN}), aspartic acid residues at	Mike Cashel
	71 and 74 positions replaced with asparagine; Amp ^R .	
pHR53	pBR322-dksA' (pdksA'), dksA deleted after 36 th amino	This study
	acid; Amp ^R	

 Table S4. Primers used in the study.

Primer	Sequence
JGOpRC7spoTFP	ATGAATTCGTTAATCACAAAGCGGGTCG
JGOpRC7spoTRP	ATAAGCTTAATTTCGGTTTCGGGTGACT
JGOpRC7dksAFP	ATGAATTCGATAGTGCGTGTTAAGGAG
JGOpRC7dksARP	ATAAGCTTAGCCAGCCATCTGTTTTTCG
JGOspecpRChomFP	ACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGT ATGCGCTCACGTAACTGGTC
JGOspecpRChomRP	AATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAG TTATTTGCCGACTACCTTGG
JGOdellacZYAIFP	CACCATCGAATGGCGCAAAAACCTTTCGCGGTATGGCATGA ATTCCGGGGGATCCGTCGACC
JGOdellacZYAIRP	CGTATCAGGCAATTTTTATAATTTAAACTGACGATTCAACG TGTAGGCTGGAGCTGCTTCG

References

- Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H. 2005. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291-299.
- 2. Lerner CG, Inouye M. 1990. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic Acids Res 18:4631.
- Guzman LM, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121-4130.
- 4. Cherepanov PP, Wackernagel W. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene **158:9-14**.
- Bernhardt TG, de Boer PA. 2004. Screening for synthetic lethal mutants in Escherichia coli and identification of EnvC (YibP) as a periplasmic septal ring factor with murein hydrolase activity. Mol Microbiol 52:1255-1269.
- Van Melderen L, Gottesman S. 1999. Substrate sequestration by a proteolytically inactive Lon mutant. Proc Natl Acad Sci U S A 96:6064-6071.
- Reddy M. 2007. Role of FtsEX in cell division of Escherichia coli: viability of ftsEX mutants is dependent on functional SufI or high osmotic strength. J Bacteriol 189:98-108.

- Bernhardt TG, de Boer PA. 2005. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over Chromosomes in E. coli. Mol Cell 18:555-564.
- Kang PJ, Craig EA. 1990. Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J Bacteriol 172:2055-2064.