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Appendix A: The Univariate Poisson and Negative-Binomial Distributions
The Univariate Poisson Distribution

In this section, we briefly review widely known or easily shown properties of the Poisson
distribution. Further details may be found in such references as Forbes, Evans, Hastings, &
Peacock (2011) and Johnson, Kemp, & Kotz (2005, chapter 4). The Poisson distribution is
unimodal, with support on the set of nonnegative integers. It isthe limiting distribution of sums
of i.i.d. Bernoulli trials, specifically, it isthe limiting form of the binomial distribution asindex
parameter n — oo, Bernoulli parameter p — 0, but the product np is held constant at some value
6. This parameter, 9, isthe sole parameter of the univariate Poisson, being both its mean and
variance. It isproportional to the rate parameter for a Poisson process, a stochastic process
characterized by its“memoryless’ property, with interarrival times that follow an Exponential
distribution. If X ~ Pois(0), then the PMF of Xis

X

0
px(x) = —exp(~0) (41)
forx=0, 1, 2... (zero otherwise) and 8 > 0. Though it may be dlightly unorthodox, we will
define a Poisson RV with 8 = 0 as having unit mass on the event X = 0.

The Poisson possesses an “addition rule” (or more formally, a*“convolution property”). Suppose
X4, ..., X, areindependent Poisson RV's, with X; ~ Pois(6;),fori =1, ...,n. Then, }i-, X; is
also a Poisson RV, with parameter equal to }.;-, 6;. Thisaddition ruleiscritical to the
construction of the multivariate Poisson distribution.

Though appealing in its simplicity, the Poisson often poorly approximates the observed
distributions of real-data count variables. Perhaps the most common deviation from Poisson
distribution is overdispersion, which refersto the distribution’ s variance exceeding its mean. If
the true data-generating distribution is overdispersed, then Poisson-based estimates of variance
components cannot even be asymptotically unbiased. We therefore turn our attention to two
other univariate distributions, the negative binomial and the Lagrangian Poisson, which allow for
overdispersion (relative to the Poisson), and are similar to one another in many respects.

The Univariate Negative Binomial Distribution

In this section, we briefly review widely known or easily shown properties of the negative
binomial distribution. Details may be found in Forbes et al. (2011), Johnson et a. (2005, chapter
5), and Cameron & Trivedi (1986).

The negative binomial distribution is unimodal and has support on the set of nonnegative
integers. It may be derived from “inverse sampling” of Bernoulli trials. Suppose we are to
observe a sequence of i.i.d. Bernoulli trias, each of which has probability of success equal to p,
until we have observed some critical number v of successes. Asisconventiond, letg =1 — p.



The count of trials ending in failure that precede the vth successis arandom variable, X, which
follows a Pascal distribution. In the special casethat v = 1, we are dealing with a geometric
distribution. The negative binomial distribution is a generalization of the Pascal distribution, in
which parameter v may take non-integer values.

The negative binomia may also be derived as a Gamma mixture of Poisson. Consider aRV X,
following a Poisson distribution in which the parameter 8 itself is arandom variable, following a
Gamma distribution with shape parameter v and rate parameter p + g. When 6 isintegrated out
of the joint density of X and 8, the result is that X marginally has a negative binomial distribution
with index parameter v and Bernoulli parameter p. Symbolically, X ~ NB(v, p), with PMF
_(Vrx—1\ o, x _ rv+x) VX

forx =0,1,2,... (zero otherwise), 0 < p < 1,and v > 0. We will define a negative-binomial
RV with v = 0 as one with unit mass on the event X = 0. The expectation and variance of the

negative binomial are:

_a
E(X) = p (A3)

v
var(X) = p_z (A4)
Thus, the distribution is obligatorily overdispersed relative to Poisson—its variance aways
exceeds its mean. Indeed, the Bernoulli parameter p istheratio of the mean to the variance.

Like the Poisson, the negative binomial also has an addition rule. Suppose X3, ..., X,, are
independent negative-binomial RVs, with X; ~ NB(v;, p),fori =1,...,n. Then, Y =Y., X; is
also anegative-binomial random variable, withY ~ NBQY 'L, v, p).



Appendix B. TheBivariate Poisson Distribution, with Application to Twin Modeling

The bivariate Poisson (Teicher, 1954; Holgate, 1964; Johnson, Kotz, & Balakrishnan, 1997) is
constructed as follows. Consider three independent (latent) RVs X,, X, and X,, where

Xo ~ Pois(6y)

X, ~ Pois(6,)

X, ~ Pois(8,) (B1)
Now, define (observable) RVsY; andY,, where

Y, = X, + X4

Y, =X, + X, (B2)

Then,

Y, ~ Pois(6, + 6;)

Y, ~ Pois(6, + 6,) (B3)
and Y; and Y, jointly follow a bivariate Poisson distribution, with cov(Y;,Y,) = 8,. Sincethe
latent variables X, X;, and X, are independent, their joint PMF is

Px (X0, X1, X2) = Pxo(xo) * Px1(X1) " Px2(x2)

= Pxo(*0) * Px1 (V1 — X0) * Px2(¥2 — o) (B4)
Logicaly, x, cannot exceed the smaller of the pair (y,,y,). Thedistribution of ¥; and Y,, after
marginalizing out X, istherefore given by
min(y;,y2)

py(y1,y2) = Z Pxo(X0) * Dx1(y1 — X0) * Px2 (Y2 — Xo)

x0=0
min(y1,y2) Xo gY1~%o g2~ %o
B n g Jo ._1 2

x0=0

We will here describe our application of the bivariate Poisson distribution to twin modeling in
the simplest case, the monophenotype ACE model in aclassical twin study. For MZ twins,

Xo ~ Pois(V, + V)

X1, X5 ~ Pois(Vg) (B6)
and therefore,

Y1, Y5 ~Pois(Vy + Vi + Vg)

cov(Y,,Y,) =V, + V, (B7)
For DZ twins,

Xo ~ Pois(V; + 0.5V))

X1, X, ~ Pois(Vg + 0.5V,) (B8)
and therefore,

Y1, Y, ~Pois(Vy + Vi + Vi)

cov(Y;, Y,) = 0.5V, + V, (B9)
Thismodel is depicted as a path diagram in the figure. The model can be fit to raw data, and
maximum-likelihood estimates of variance components Vy, V., and V can be obtained.



Figure S1. Monophenotype bivariate-Poisson twin model, for MZ (A) and DZ (B) twins.
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Figure provides visual representation of Eq.s (B6) thru (B9). All unlabeled single-headed arrows have path

coefficients of 1.0. The latent variables are Poisson distributed, and therefore their means (not shown) are equal to

their variances.




Appendix C. The Trivariate Poisson Distribution

DefinethreervsY;, Y,, and Y3, where

Y, =T+ U, + Uz + W,

Y, =T+ Uy + Ups + W,

Yo =T 4 Uy + Uz + Wy (C1)
and T, Uy,, Uys, Usz, Wy, W,, and W5 are mutually independent rvs such that

T ~ Pois(6,)

Uy, ~ Pois(613)

Uzz ~ Pois(623)

Uy3 ~ Pois(813)

W; ~ Pois(6,)

W, ~ Pois(6,)

W5 ~ Pois(63) (C2)
Then,

Y; ~ Pois(6y + 61, + 0,5 + 6;)

Y, ~ Pois(6y + 015 + 0,3 + 6,)

Ys ~ Pois(8y + 0,3 + 015 + 65) (€3)
and Y, Y,, and Y; jointly follow atrivariate Poisson distribution. The variance matrix of their
joint distribution is

2 = 90 + 612 90 + 912 + 923 + 92 90 + 923 (C4')

The distribution is specified by seven parameters, and X has six unique elements. Therefore, it
may be parametrized in terms of its variance matrix ¥ and the common-to-all component, 6,,.
For ease of notation, let X represent the vector of latent variables, i.e.
X = [T,U;,, Uy, Uy, Wy, W, W5 ]7. Because the latent variables are independent, their joint
PMF is equal to the product of their marginal PMFs:

Px(X) = p(6) * Purz(Wi2) * Puzz(W23) * Puiz(Ua3) - Pwi(Wy) - Puz(W2) - Puz(ws)
Upon rearrangement of and substitution from (C1), we can express w,, w,, and wy in terms of
the observable variables, y,, y,, and y5, and the other latent variables:

Px(X) = p(6) * Purz(W2) * Puzz(WU23) * Puizs(Ua3) - Pwi (V1 — Usz — Uy — 8)

“Pwz2(V2 — Uzz — Uiz — 1) Pz (V3 — Upz — Uy — 1)

To obtain the joint PMF of Y = [V}, Y,, Y517, all that remainsisto marginalize T, U,,, U,53, and
U, 5 out of the expression:



min (y) min(y,,yz)—t min(y;—u;3,y3)—t min(y,—uy2,y3-uy3)-t

py(y) = ; Z Z Z px(X)

Uu12=0 u13=0 Uz3=0
min (y) min(y;,y;)-t min(y;—ui2,y3)—t min(y;—u12,y3—U13)—t

= Z pe(t) Z Pui2(U12) Z Pu13(Us3) Z Puz3(Uz3) * Pw1 (1 — Ugz — Ugp — 1)

uz2=0 uy3=0 U3=0
“Pw2(V2 —Uzz —Upp — 1) Pz (V3 — Uz —Ug3 — t)
=exp(—6y — 612 — 03 — 0,3 —0; — 6, — 63) 913]193/2933/3

min (y) ¢ min(yq,y;)-t Upy min(y; —uq2,y3)—t Ups min(y; —u12,Y3-U13)—t
Y2 . - Q
t! Uqp! Uq3!
t=0 u12=0 U.13=0 u23=0

where
Uz3 n~U13~ U2~ n—Uz3— U2~ n—U13~Uz3~T
_ 0,3°0, 0, 0,

B Upz! (Y —Ugs — U — O (Y — Uz — U, — OV (Y — ug3 — Upz — 1)!

We note that the form in (C5) holds generally for trivariate discrete distributions constructed via latent-variate reduction.

(€5)



Appendix D. Diphenotype and Triphenotype Twin Analysiswith Multivariate Poisson

LetY = [Yy4, Yq2, Yoy, Yo, ]T denote a multivariate-Poisson random vector. The first of the two subscripts distinguishes twin #1 and
twin #2 in apair from one another, whereas the second subscript distinguishes one phenotype from the other. For example, Y,; would
represent twin #2' s scores on phenotype #1. Define the elements of Y as follows:

Yp.=T+U +V,+ W,

Yi, =T+ U, +V, + W,

You =T+ U, +V, + Wy

Yo, =T+ Uy, +V, + W, (D1)
where

T ~ Pois(6,)

U, ~ Pois(8,4)

U,~ Pois(8,,,)

V, ~ Pois(0,,,)

V, ~ Pois(6,,,)

W, ~ Pois(6,,,)

W, ~ Pois(6,,,)

W5 ~ Pois(6,,3)

W, ~ Pois(6,,4) (D2)
Intuitively, T represents what is common to both traits and both twins, and accounts for the cross-trait cross-twin covariance; U; and
U,, what is common to both traits within a given twin (#1 or #2); V; and V,, what contributes to the cross-twin covariance within a
given trait (#1 or #2); and the W's, what is unique to a particular twin on a particular trait. Most of the time, twin data are of an
intraclass nature and it is arbitrary which twin is#1 or #2. Then, it can be assumed that 6,,;, = 6,,, = 6, that 8,,;, = 6,,; = ¢,, and
that 6,,, = 0,,. = ¢,. With this assumption, the covariance matrix of Y is

var(Y) = X
0:+6,+0, +¢; 0:+ 0, 0;+ 6, 0,
_ 0+ 06, 0:+0,+0,,+ ¢, 0; 0 +0,, (D3)
0+ 0, 0; 0;+0,+0, +¢; 0, + 6,
0, 6:+0,, 0, + 6, 0:+06,+0,,+ ¢,

This4 x 4 matrix £ can be written in terms of the 2 X 2 matrices A, C, and E. Matrix A can be defined in terms of a singular matrix

a;, a . . 0 L L
A, =|"° *landadiagona matrix A; = a1 ,asA = A; + A,; likewisefor C and E. The construction in terms of A, C, and
a, a 0 a

S S d2

E will illustrate the differences between the covariance matrix for MZ twins, X,,,, and for DZ twins, Z,,:



5y  _[A+C+E A+C ]
Mz A+C A+C+E
_[A+C+E O.5A+C]

Xz = 05A+C A+C+E
With all thisin mind, for MZ twins:

0, = ag + ¢,

0, = es

Oy1 = ag1 + Cax
B2 = gz + Caz

¢1=eqn
b, = eqz
And for DZ twins
0, = 0.5a + c;
6, = 0.5a, + e;

9171 == O.Sadl + Cdl

91;2 = O.Sadz + Cao

¢)1 - 0.5ad1 + ed1

¢2 = 0.5ad2 + €42
TheJ0|nt pmf Of X = [T, Ul' U2, Vll Vz, Wl’ Wz, Wg, W4]T |S

Px(X) = pe(t) - Pur (Uy) * Puz(W2) * Pp1 (V1) * Pr2(V2) * Puwr (W) * Duz(W2) * Dz (W3) - Dya(Wa)
Recall that:

Wy =y —t—u —1v

Wy =Yz —l— U — 1,

W3 =Y —l— U =V

Wy = Yo —L— Uy — V3
Upon substitution,

px(x) = pt(t) ) pul(ul) ) Puz(uz) ) pvl(vl) ) va(UZ) :

Pwi(V1i1 —t — U — V1) " Puo (V12 =t — Uy —V3) " Dus (Va1 —t — Uy — V1) Pua (Vo2 — t — U — 1)

TO Slmp“fy nOtaIIOFI, |et y - [yll, ylz, y21, yzz]T. Then,

min (y) min(yi12,¥22)—t min(y11,¥21)—t min(yz1—v1,y22—v2)—t min(y,1-v4,y12-v2)—t

py(y) = ; VZZO Z Z Z Px (%)

U1=0 u2=0 u1=0

(D4)

(D5)

(D6)

(D7)

(D8)

(D9)



min (y) min(y12,Y22)—t min(y;1,Y21)—t min(y;1—v1,¥22-v2)-t

Z p:(t) Z Pv2(V2) Z Pv1(v1) Z Puz(Uz) " Dwz(Vo1 —t — Uy — V1)
t=0

U2=0 171=0 u2=0
min(y1—v1,¥12-v2)-t
Pwa(Vaz —t — Uy — V) Z Pu1(U) P11 —t — Uy = V1) Py (V12 —t — Uy — 1)
u1=0

or alternately, and if we do not make the rang&e of summation explicit in the notation,

py(Y) = eXp( 91: v2 9171 2¢1 - 2¢ )¢13/11+y21¢y12+y22
6¢ (¢1¢2) 2t (9v2¢2 2)v2 (9v1¢1 2"
R
DA te s S

where

Q — (9u¢1¢2)u2

Ul (V21 =t — Uy — V) (Vo2 — t — Uy — 13)!

and

R = (0u¢1¢2)u1

u! i —t—uy —v)! 2 —t —uy —vp)!

Now, in the triphenotype case, let Y = [Y;4, Y2, Y13, Yo1, Y52, Yo3]7 denote a multivariate-Poisson random vector. As before, the first
of the two subscripts distinguishes twin #1 and twin #2 in a pair from one another, whereas the second subscript distinguishes one
phenotype from the other. Define the elements of Y as follows:

Y11, =8S+T1 + U1, +0+ U3+ Vi + Wiq, + 0+ Wyg3

Yip =S4Ty + U1y +Upas +0+ Vi + Wy + Wyps +0

Yis=S4+Ty+0+Ujo3 +Upz+Viz+ 0+ Wi + Ways

Yoy =S+ T+ Upyp + 04 Upyz+ Voy + Wiy + 04+ Wyygs

Yoo =S4Ty +Upip+Uzoz +0+ Vo +Wypp + Wyp3+0

Vo3 =S+ Ty + 0+ Upps 4+ Upqz + Voz + 0+ Wyps + Wy g5 (D10)
The latent variables are distributed as follows:

S ~ Pois(6,)

T,, T, ~ Pois(6,)
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U112, U1z ~ Pois(8y12)

Ui23, Uz 23 ~ Pois(6,,3)

U113, U153 ~ Pois(8y13)

Vi1, V21 ~ Pois(8,1)

V12, Va2, ~ Pois(8,,)

Vi3, Vo3 ~ Pois(0,,)

W12, Wo 12 ~ Pois(8y12)

Wo,23, W3 23 ~ Pois(0y,,3)

Wi13, W3 13 ~ Pois(6,,13) (D11)
So, there are 21 latent variablesin al, 6 of which (the V's) would get redefined in terms of the observable variables, with the
remaining 15 marginalized out of the expression to get the PMF of Y (which we do not write out here).

The covariance matrix of Y is6 X 6, but it can be constructed from 3 x 3 matrices A, C, and E, which are similar to one another in
structure. For instance,
as + aqp + a3 as + aqy as + aq3
A= as + aq, as +aq, +aqs as + ass
ag + aqs ag + ass ag + a3 + ays3

(D12)

edl 0 0
0 e;p O ] For MZ twins, the parameter
0 0 ed3

and likewise for C, though E requires the addition of adiagona matrix E; =

substitutions are:

0; = ag + ¢,

0; = e

Ou12 = €12

Ou2z = €23

Oyu13 = €13

01 = ear

91}2 = €3q

0,3 = €3q

Owiz = a2 + C12

Owaz = Qz3 + Ca3

Owis = a3 + €13 (D13)
For DZ twins:
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0; = ¢s + 0.5a,
0, = 0.5a5 + e;
0,12 = e, + 0.5a,,
0,23 = €33 + 0.5a,5
0,13 = €13 + 0.5a43

Ov1 = €a1
B2 = €qz
03 = €ey3

9W12 = C12 + 0.5a12
9W23 == C23 + 0.56123
9W13 = (13 + 0.5a13 (D14)

Merely evaluating the PMF (which we do not present explicitly) for asingle observation can be computationally demanding; the
limiting factor isthe minimum of y. For example, suppose all six elements were equal to 8. Then, marginalizing out the latent
variables would entail computing a sum over 915—in excess of 100 trillion—terms.
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Appendix E. On Dispersion Parametersand Twin Modeling

This Appendix uses the same notation as in the “Monophenotype Twin Modeling” section of the
main text. Let usassume that latent variables X, X;, and X, are Lagrangian Poisson. Suppose
that for MZ twins:

E(X,) = 2.5

var(X,) =5

E(X;) =EX,;) =25

var(X;) = var(X,) =5
Then, X,, X;, and X, areLGP(1.77, 0.293). Therefore, Y; and Y, are marginally
LGP(3.53,0.293), with expectation 5 and variance 10.

Now, suppose that for DZ twins,

E(X,) = 2.5

var(X,) = 2.5

E(X,) =EX,) =25

var(X;) = var(X,) = 7.5
Then, Y; and Y, have expectation 5 and variance 10 for DZ twins, just asthey do for MZ twins.
But,

X, ~ LGP(2.5,0)

X1, X, ~ LGP(1.44,0.423)
and since X; and X, do not have the same value for parameter 1 as X,, Y; and Y, are not LGP.
Even though the phenotypic distribution has the same mean and variance for both MZ and DZ
twins, it is not the same for both zygosity groups. This can be clearly seen by computing, say,
the third central moment for the two zygosity groups. Per Consul & Famoye (2006), the third
central moment of a LGP distribution is

us =01 +21)(1—-1)~°
For MZ twins, thiswould be

iz = 3.53(1+2-0.293)(1 — 0.293)75 = 31.7
For DZ twins, because X, X;, and X, are independent, the third central moment of (say) Y;
would be the sum of the third central moments of X, and X; :

Uz =2.5(1+2-0)(1—0)">+1.44(1+2-0.423)(1 —0.423)"5 = 44.1

To help ensure that the phenotypic distribution be the same for both zygosity groups, we require
that parameter 1 have the same value for latent variables X, X, , and X,, for both MZ and DZ
twins. This has the additional advantage that the resulting marginals of Y; and Y, are themselves
LGP. When (Y;,Y,) isinstead modeled as bivariate negative binomial, we impose the anal ogous
restriction on the latent variables' dispersion parameters p, and the marginalsof ¥; and Y, are
then negative binomial.

At the urging of an anonymous referee, we have considered a possible case where the strict
equality of dispersion parameters might be relaxed. This caseiseasier to present using PGFs
instead of PMFs, so we will use the bivariate negative binomial distribution here, since its PGF is
simpler than that of the LGP. Specifically, the common term X, would have dispersion
parameter p,, for both MZ and DZ twins, and the unique terms, X; and X,, would have
dispersion parameter p,, again for both MZ and DZ twins.
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Suppose that for MZ twins,

Xo ~ NB(vyo, #0)

X1, X; ~NB(vy1, 1)
and for DZ twins,

Xo ~ NB(vpo, £o)

X1, X3 ~NB(vpy, #1)
Then, the marginal phenotypic distribution would not be negative binomial, but that of a
convolution of independent negative-binomial RV s having different dispersion parameters. For
MZ twins, the marginal PGF (i.e., for ¥; and ¥,) would be

_(_#o )”Mo _ < 21 )”Ml
GYM (Z) B (1 - %oz 1 - QIZ

and for DZ twins,
_ Po VDo . ( P1 )VDl

GYD(Z) B (1 - %OZ) 1 - %12
If we set the two PGFs equal to one another, then with a bit of algebraic manipulation it can be
shown that, under the given conditions, the phenotypic distribution will be equal for MZ and DZ
twins, provided that the constraint

2o YMo0~VDo P1 YM1~VD1 1

<1 - %0Z> (1 - %12) N

is satisfied.
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Appendix F: The Bivariate log(y+1)-Normal Distribution

Suppose X; ~ N (uy,02), X, ~ N (uy, 02), and that X; and X, are jointly bivariate normal, with
correlation p. Define

Y, = exp(X;) — 1, and therefore X; = log (Y; + 1)

Y, = exp(X,) — 1, and therefore, X, = log (Y, + 1)
We will cal thejoint distribution of Y; and Y, bivariate log(y+1)-normal. The Jacobian of the
substitution of Y; and Y, for X; and X, is

[0x; O0xq;1 | 1 I

d d +1
J(Y,,Y,) = Y1 V2 _ Y1
dx, O0x, 1
dy; 0dy, v, +1
1

~Ou+ DO+ D)
The PDF of the bivariate log(y+1)-normal isthen
1

(F1)

—-D
RO = e G pZ]) (F2)

for (y4,y,) € (—1,)?, where
D - <IOg(y1 +1) - u1>2 _2p <10g(y1 +1) - m) (10g(yz +1) - uz)

] 01 03

N <10g(yz +1) - uz>2

)

The marginal distribution of, say, Y; has p.d.f
_ —[log(y; + 1) — uy]?
friln) =

*ex
(1 + Doy 2r p( 207
for y; € (—1,00).

(F3)

The parameters u; and u, are the log-scale means, 62 and o are the log-scale variances, and the
log-scale covariance equals pa; g,.

Thejoint distribution of exp(X;) and exp(X,) isan ordinary bivariate lognormal distribution.
Therefore, the joint distribution of Y; and Y, is an ordinary bivariate lognormal distribution
shifted downwardly by 1. Asthe reader islikely aware, shifting a distribution will
correspondingly shift its means, but will not change its variances and covariances. From the
moments of the ordinary bivariate lognormal distribution (Forbes et al., 2011; Balakrishnan &
Lai, 2009), we have the following:

E(Y;) = exp(uy + 0.5062) — 1

E(Y,) = exp(u, + 0.50%) — 1

var(¥;) = exp(2py + of) [exp(of) — 1]

var(Yy) = exp(2u, + 03) [exp(a3) — 1]

cov(Yy,Y,) = exp(0.50% + 0.507 + py + 1) [exp(poy0,) — 1] (F4)



We have confirmed the identitiesin (F4) by (rather laboriously) deriving E (Y?), E(Y2), and
E (YY) from the univariate and bivariate PDFs, though in the interest of brevity we do not
reproduce the derivation here.
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