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Supplementary Appendices to “Applying Multivariate Discrete Distributions to Genetically 
Informative Count Data” by R. M. Kirkpatrick & M. C. Neale, submitted to Behavior 

Genetics 
 

Appendix A:  The Univariate Poisson and Negative-Binomial Distributions 
 
The Univariate Poisson Distribution 
 
In this section, we briefly review widely known or easily shown properties of the Poisson 
distribution.  Further details may be found in such references as Forbes, Evans, Hastings, & 
Peacock (2011) and Johnson, Kemp, & Kotz (2005, chapter 4).  The Poisson distribution is 
unimodal, with support on the set of nonnegative integers.  It is the limiting distribution of sums 
of i.i.d. Bernoulli trials, specifically, it is the limiting form of the binomial distribution as index 
parameter ݊ → ∞, Bernoulli parameter ऀ → 0, but the product ݊ऀ is held constant at some value ߠ.  This parameter, ߠ, is the sole parameter of the univariate Poisson, being both its mean and 
variance.  It is proportional to the rate parameter for a Poisson process, a stochastic process 
characterized by its “memoryless” property, with interarrival times that follow an Exponential 
distribution.  If ܺ	~	Pois(ߠ), then the PMF of X is ݌௑(ݔ) = !ݔ௫ߠ exp(−ߠ)																																																																																																																(1ܣ) 
for x = 0, 1, 2… (zero otherwise) and ߠ > 0.  Though it may be slightly unorthodox, we will 
define a Poisson RV with ߠ = 0 as having unit mass on the event X = 0. 
 
The Poisson possesses an “addition rule” (or more formally, a “convolution property”).  Suppose ଵܺ, … , ܺ௡ are independent Poisson RVs, with ௜ܺ 	~	Pois(ߠ௜), for ݅ = 1, … , ݊.  Then, ∑ ௜ܺ௡௜ୀଵ  is 
also a Poisson RV, with parameter equal to ∑ ௜௡௜ୀଵߠ .  This addition rule is critical to the 
construction of the multivariate Poisson distribution. 
 
Though appealing in its simplicity, the Poisson often poorly approximates the observed 
distributions of real-data count variables.  Perhaps the most common deviation from Poisson 
distribution is overdispersion, which refers to the distribution’s variance exceeding its mean.  If 
the true data-generating distribution is overdispersed, then Poisson-based estimates of variance 
components cannot even be asymptotically unbiased.  We therefore turn our attention to two 
other univariate distributions, the negative binomial and the Lagrangian Poisson, which allow for 
overdispersion (relative to the Poisson), and are similar to one another in many respects. 
 
The Univariate Negative Binomial Distribution 
 
In this section, we briefly review widely known or easily shown properties of the negative 
binomial distribution.  Details may be found in Forbes et al. (2011), Johnson et al. (2005, chapter 
5), and Cameron & Trivedi (1986). 
 
The negative binomial distribution is unimodal and has support on the set of nonnegative 
integers.  It may be derived from “inverse sampling” of Bernoulli trials.  Suppose we are to 
observe a sequence of i.i.d. Bernoulli trials, each of which has probability of success equal to ऀ, 
until we have observed some critical number ߥ of successes.  As is conventional, let ँ = 1 − ऀ.  
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The count of trials ending in failure that precede the ߥth success is a random variable, X, which 
follows a Pascal distribution.  In the special case that ߥ = 1, we are dealing with a geometric 
distribution.  The negative binomial distribution is a generalization of the Pascal distribution, in 
which parameter ߥ may take non-integer values. 
 
The negative binomial may also be derived as a Gamma mixture of Poisson.  Consider a RV X, 
following a Poisson distribution in which the parameter ߠ itself is a random variable, following a 
Gamma distribution with shape parameter ߥ and rate parameter ऀ ÷ ँ.  When ߠ is integrated out 
of the joint density of X and ߠ, the result is that X marginally has a negative binomial distribution 
with index parameter ߥ and Bernoulli parameter ऀ.  Symbolically, ܺ	~	NB(ߥ, ऀ), with PMF ݌௑(ݔ) = ቀߥ + ݔ − ߥ1 − 1 ቁऀఔँ௫ = Γ(ߥ + ݔ)Γ(ݔ + 1)Γ(ߥ)ऀఔݍ௫																																																											(2ܣ) 
for ݔ = 0, 1, 2, … (zero otherwise), 0 < ऀ < 1, and ߥ > 0.  We will define a negative-binomial 
RV with ߥ = 0 as one with unit mass on the event ܺ = 0.  The expectation and variance of the 
negative binomial are: E(ܺ) = ݍऀߥ (ܺ)var (3ܣ)																																																																																																																																			 = ଶݍऀߥ  (4ܣ)																																																																																																																																
Thus, the distribution is obligatorily overdispersed relative to Poisson—its variance always 
exceeds its mean.  Indeed, the Bernoulli parameter ऀ is the ratio of the mean to the variance. 
 
Like the Poisson, the negative binomial also has an addition rule.  Suppose ଵܺ, … , ܺ௡ are 
independent negative-binomial RVs, with ௜ܺ 	~	NB(ߥ௜, ऀ), for ݅ = 1,… , ݊.  Then, ܻ = ∑ ௜ܺ௡௜ୀଵ  is 
also a negative-binomial random variable, with ܻ	~	NB(∑ ௜௡௜ୀଵߥ , ऀ). 
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Appendix B.  The Bivariate Poisson Distribution, with Application to Twin Modeling 
 

The bivariate Poisson (Teicher, 1954; Holgate, 1964; Johnson, Kotz, & Balakrishnan, 1997) is 
constructed as follows.  Consider three independent (latent) RVs ܺ଴, ଵܺ, and ܺଶ, where  ܺ଴	~	Pois(ߠ଴) ଵܺ	~	Pois(ߠଵ) ܺଶ	~	Pois(ߠଶ)																																																																																																																																(1ܤ) 
Now, define (observable) RVs ଵܻ and ଶܻ, where ଵܻ = ܺ଴ + ଵܺ ଶܻ = ܺ଴ + ܺଶ																																																																																																																																(2ܤ) 
Then,  ଵܻ	~	Pois(ߠ଴ + ଴ߠ)Pois	~	ଵ) ଶܻߠ +  (3ܤ)																																																																																																																						(ଶߠ
and ଵܻ and ଶܻ jointly follow a bivariate Poisson distribution, with cov( ଵܻ, ଶܻ) =  ଴.  Since theߠ
latent variables ܺ଴, ଵܺ, and ܺଶ are independent, their joint PMF is ݔ)܆݌଴, ,ଵݔ (ଶݔ = (଴ݔ)௑଴݌ ∙ (ଵݔ)௑ଵ݌ ∙ =	(ଶݔ)௑ଶ݌ (଴ݔ)௑଴݌ ∙ ଵݕ)௑ଵ݌ − (଴ݔ ∙ ଶݕ)௑ଶ݌ −  (4ܤ)																																																				(଴ݔ
Logically, ݔ଴ cannot exceed the smaller of the pair (ݕଵ,  ଶ).  The distribution of ଵܻ and ଶܻ, afterݕ
marginalizing out ܺ଴, is therefore given by ݕ)܇݌ଵ, (ଶݕ = ෍ (଴ݔ)௑଴݌ ∙ ଵݕ)௑ଵ݌ − (଴ݔ ∙ ଶݕ)௑ଶ݌ − ଴)୫୧୬(௬భ,௬మ)ݔ

௫బୀ଴ 	
= exp(−ߠ଴ − ଵߠ − (ଶߠ ෍ !଴ݔ଴௫బߠ ∙ ଵݕ)ଵ௬భି௫బߠ − !(଴ݔ ∙ ଶݕ)ଶ௬మି௫బߠ − ଴)!୫୧୬(௬భ,௬మ)ݔ

௫బୀ଴  (5ܤ)																				
 
We will here describe our application of the bivariate Poisson distribution to twin modeling in 
the simplest case, the monophenotype ACE model in a classical twin study.  For MZ twins, ܺ଴	~	Pois( ஺ܸ + ஼ܸ) ଵܺ, ܺଶ	~	Pois( ாܸ)																																																																																																																							(6ܤ) 
and therefore, ଵܻ, ଶܻ	~	Pois( ஺ܸ + ஼ܸ + ாܸ) cov( ଵܻ, ଶܻ) = ஺ܸ + ஼ܸ																																																																																																																(7ܤ) 
For DZ twins, ܺ଴	~	Pois( ஼ܸ + 0.5 ஺ܸ) ଵܺ, ܺଶ	~	Pois( ாܸ + 0.5 ஺ܸ)																																																																																																									(8ܤ) 
and therefore,  ଵܻ, ଶܻ	~	Pois( ஺ܸ + ஼ܸ + ாܸ) cov( ଵܻ, ଶܻ) = 0.5 ஺ܸ + ஼ܸ																																																																																																											(9ܤ) 
This model is depicted as a path diagram in the figure. The model can be fit to raw data, and 
maximum-likelihood estimates of variance components ஺ܸ, ஼ܸ, and ாܸ can be obtained. 
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Figure S1.  Monophenotype bivariate-Poisson twin model, for MZ (A) and DZ (B) twins. 
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Figure provides visual representation of Eq.s (B6) thru (B9).  All unlabeled single-headed arrows have path 
coefficients of 1.0.  The latent variables are Poisson distributed, and therefore their means (not shown) are equal to 
their variances. 
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Appendix C.  The Trivariate Poisson Distribution 

 
Define three rvs ଵܻ, ଶܻ, and ଷܻ, where ଵܻ = ܶ + ଵܷଶ + ଵܷଷ + ଵܹ ଶܻ = ܶ + ଵܷଶ + ܷଶଷ + ଶܹ ଷܻ = ܶ + ܷଶଷ + ଵܷଷ + ଷܹ																																																																																																							(1ܥ) 
and ܶ, ଵܷଶ, ܷଶଷ, ଵܷଷ, ଵܹ, ଶܹ, and ଷܹ are mutually independent rvs such that ܶ	~	Pois(ߠ଴) ଵܷଶ	~	Pois(ߠଵଶ) ܷଶଷ	~	Pois(ߠଶଷ) ଵܷଷ	~	Pois(ߠଵଷ) ଵܹ	~	Pois(ߠଵ) ଶܹ	~	Pois(ߠଶ) ଷܹ	~	Pois(ߠଷ)																																																																																																																												(2ܥ) 
Then, ଵܻ	~	Pois(ߠ଴ + ଵଶߠ + ଵଷߠ + ଴ߠ)Pois	~	ଵ) ଶܻߠ + ଵଶߠ + ଶଷߠ + ଴ߠ)Pois	~	ଶ) ଷܻߠ + ଶଷߠ + ଵଷߠ +  (3ܥ)																																																																																												(ଷߠ
and ଵܻ, ଶܻ, and ଷܻ jointly follow a trivariate Poisson distribution.  The variance matrix of their 
joint distribution is ઱ = ൥ߠ଴ + ଵଶߠ + ଵଷߠ + ଵߠ ଴ߠ + ଵଶߠ ଴ߠ + ଴ߠଵଷߠ + ଵଶߠ ଴ߠ + ଵଶߠ + ଶଷߠ + ଶߠ ଴ߠ + ଴ߠଶଷߠ + ଵଷߠ ଴ߠ + ଶଷߠ ଴ߠ + ଶଷߠ + ଵଷߠ +  (4ܥ)															ଷ൩ߠ
The distribution is specified by seven parameters, and ઱ has six unique elements.  Therefore, it 
may be parametrized in terms of its variance matrix ઱ and the common-to-all component, ߠ଴. 
For ease of notation, let X represent the vector of latent variables, i.e. ܆ = ሾܶ, ଵܷଶ, ܷଶଷ, ଵܷଷ, ଵܹ, ଶܹ, ଷܹ	ሿ்.  Because the latent variables are independent, their joint 
PMF is equal to the product of their marginal PMFs: (ܠ)܆݌ = (ݐ)௧݌ ∙ (ଵଶݑ)௨ଵଶ݌ ∙ (ଶଷݑ)௨ଶଷ݌ ∙ (ଵଷݑ)௨ଵଷ݌ ∙ (ଵݓ)௪ଵ݌ ∙ (ଶݓ)௪ଶ݌ ∙  (ଷݓ)௪ଷ݌
Upon rearrangement of and substitution from (C1), we can express ݓଵ, ݓଶ, and ݓଷ in terms of 
the observable variables, ݕଵ, ݕଶ, and ݕଷ, and the other latent variables: (ܠ)܆݌ = (ݐ)௧݌ ∙ (ଵଶݑ)௨ଵଶ݌ ∙ (ଶଷݑ)௨ଶଷ݌ ∙ (ଵଷݑ)௨ଵଷ݌ ∙ ଵݕ)௪ଵ݌ − ଵଷݑ − ଵଶݑ − ∙(ݐ ଶݕ)௪ଶ݌ − ଶଷݑ − ଵଶݑ − (ݐ ∙ ଷݕ)௪ଷ݌ − ଶଷݑ − ଵଷݑ −  (ݐ
To obtain the joint PMF of ܇ = ሾ ଵܻ, ଶܻ, ଷܻሿ், all that remains is to marginalize T, ଵܷଶ, ܷଶଷ, and ଵܷଷ out of the expression: 
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(ܡ)܇݌ = ෍ 	 ෍ 	 ෍ 	 ෍ ୫୧୬(௬మି௨భమ,௬యି௨భయ)ି௧(ܠ)܆݌
௨మయୀ଴

୫୧୬(௬భି௨భమ,௬య)ି௧
௨భయୀ଴

୫୧୬(௬భ,௬మ)ି௧
௨భమୀ଴

୫୧୬	(ܡ)
௧ୀ଴  

= ෍ (ݐ)௧݌	 ෍ (ଵଶݑ)௨ଵଶ݌ ෍ (ଵଷݑ)௨ଵଷ݌ ෍ (ଶଷݑ)௨ଶଷ݌ ∙ ଵݕ)௪ଵ݌ − ଵଷݑ − ଵଶݑ − ୫୧୬(௬మି௨భమ,௬యି௨భయ)ି௧(ݐ
௨మయୀ଴

୫୧୬(௬భି௨భమ,௬య)ି௧
௨భయୀ଴

୫୧୬(௬భ,௬మ)ି௧
௨భమୀ଴

୫୧୬	(ܡ)
௧ୀ଴ ∙ ଶݕ)௪ଶ݌ − ଶଷݑ − ଵଶݑ − (ݐ ∙ ଷݕ)௪ଷ݌ − ଶଷݑ − ଵଷݑ − = (5ܥ)																																																																																														(ݐ exp(−ߠ଴ − ଵଶߠ − ଶଷߠ − ଵଷߠ − ଵߠ − ଶߠ − (ଷߠ ∙ ∙ଷ௬యߠଶ௬మߠଵ௬భߠ ෍ !ݐ଴௧ߠ ෍ !ଵଶݑଵଶ௨భమߠ ෍ !ଵଷݑଵଷ௨భయߠ ෍ ܳ୫୧୬(௬మି௨భమ,௬యି௨భయ)ି௧

௨మయୀ଴
୫୧୬(௬భି௨భమ,௬య)ି௧

௨భయୀ଴
୫୧୬(௬భ,௬మ)ି௧

௨భమୀ଴
୫୧୬	(ܡ)
௧ୀ଴  

where ܳ = ଵିߠଶଷ௨మయߠ ௨భయି௨భమି௧ߠଶି ௨మయି௨భమି௧ߠଷି ௨భయି௨మయି௧ݑଶଷ! ݕ) − ଵଷݑ − ଵଶݑ − !(ݐ ݕ) − ଶଷݑ − ଵଶݑ − !(ݐ ݕ) − ଵଷݑ − ଶଷݑ −  !(ݐ
We note that the form in (C5) holds generally for trivariate discrete distributions constructed via latent-variate reduction. 
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Appendix D.  Diphenotype and Triphenotype Twin Analysis with Multivariate Poisson 
 

Let ܇ = ሾ ଵܻଵ, Yଵଶ, Yଶଵ, Yଶଶሿ் denote a multivariate-Poisson random vector.  The first of the two subscripts distinguishes twin #1 and 
twin #2 in a pair from one another, whereas the second subscript distinguishes one phenotype from the other.  For example, ଶܻଵ would 
represent twin #2’s scores on phenotype #1.  Define the elements of ܇ as follows: ଵܻଵ = ܶ + ଵܷ + ଵܸ + ଵܹ ଵܻଶ = ܶ + ଵܷ + ଶܸ + ଶܹ ଶܻଵ = ܶ + ܷଶ + ଵܸ + ଷܹ ଶܻଶ = ܶ + ܷଶ + ଶܸ + ସܹ																																																																																																																																																																															(1ܦ) 
where ܶ	~	Pois(ߠ௧) ଵܷ	~	Pois(ߠ௨ଵ) ܷଶ~	Pois(ߠ௨ଶ) ଵܸ	~	Pois(ߠ௩ଵ) ଶܸ	~	Pois(ߠ௩ଶ) ଵܹ	~	Pois(ߠ௪ଵ) ଶܹ	~	Pois(ߠ௪ଶ) ଷܹ	~	Pois(ߠ௪ଷ) ସܹ	~	Pois(ߠ௪ସ)																																																																																																																																																																																													(2ܦ) 
Intuitively, ܶ represents what is common to both traits and both twins, and accounts for the cross-trait cross-twin covariance; ଵܷ and ܷଶ, what is common to both traits within a given twin (#1 or #2); ଵܸ and ଶܸ, what contributes to the cross-twin covariance within a 
given trait (#1 or #2); and the W’s, what is unique to a particular twin on a particular trait.  Most of the time, twin data are of an 
intraclass nature and it is arbitrary which twin is #1 or #2.  Then, it can be assumed that ߠ௨ଵ = ௨ଶߠ ≡ ௪ଵߠ ௨, thatߠ = ௪ଷߠ ≡ ߶ଵ, and 
that ߠ௪ଶ = ௪ସߠ ≡ ߶ଶ.  With this assumption, the covariance matrix of ܇ is  (܇)ݎܽݒ = ઱ 

= ൦ߠ௧ + ௨ߠ + ௩ଵߠ + ߶ଵ ௧ߠ + ௨ߠ ௧ߠ + ௩ଵߠ ௧ߠ௧ߠ + ௨ߠ ௧ߠ + ௨ߠ + ௩ଶߠ + ߶ଶ ௧ߠ ௧ߠ + ௧ߠ௩ଶߠ + ௩ଵߠ ௧ߠ ௧ߠ + ௨ߠ + ௩ଵߠ + ߶ଵ ௧ߠ + ௧ߠ௨ߠ ௧ߠ + ௩ଶߠ ௧ߠ + ௨ߠ ௧ߠ + ௨ߠ + ௩ଶߠ + ߶ଶ൪																																																				(3ܦ) 
This 4 × 4 matrix ઱ can be written in terms of the 2 × 2 matrices ۱ ,ۯ, and ۳.  Matrix ۯ can be defined in terms of a singular matrix ۯ௦ = ቂܽ௦ ܽ௦ܽ௦ ܽ௦ቃ and a diagonal matrix ۯௗ = ൤ܽௗଵ 00 ܽௗଶ൨, as ۯ = ௦ۯ +  :and ۳ will illustrate the differences between the covariance matrix for MZ twins, ઱ெ௓, and for DZ twins, ઱஽௓ ,۱ ,ۯ ௗ; likewise for ۱ and ۳. The construction in terms ofۯ
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઱ெ௓ = ቂۯ + ۱ + ۳ ۯ + ۯ۱ + ۱ ۯ + ۱ + ۳ቃ ઱஽௓ = ቂۯ + ۱ + ۳ ۯ0.5 + ۯ۱0.5 + ۱ ۯ + ۱ + ۳ቃ																																																																																																																																																																	(4ܦ) 
With all this in mind, for MZ twins: ߠ௧ = ܽ௦ + ܿ௦ ߠ௨ = ℯ௦ ߠ௩ଵ = ܽௗଵ + ܿௗଵ ߠ௩ଶ = ܽௗଶ + ܿௗଶ ߶ଵ = ℯௗଵ ߶ଶ = ℯௗଶ																																																																																																																																																																																																												(5ܦ) 
And for DZ twins ߠ௧ = 0.5ܽ௦ + ܿ௦ ߠ௨ = 0.5ܽ௦ + ℯ௦ ߠ௩ଵ = 0.5ܽௗଵ + ܿௗଵ ߠ௩ଶ = 0.5ܽௗଶ + ܿௗଶ ߶ଵ = 0.5ܽௗଵ + ℯௗଵ ߶ଶ = 0.5ܽௗଶ + ℯௗଶ																																																																																																																																																																																										(6ܦ) 
The joint pmf of  ܆ = ሾܶ, ଵܷ, ܷଶ, ଵܸ, ଶܸ, ଵܹ, ଶܹ, ଷܹ, ସܹሿ் is (ܠ)ܠ݌ = (ݐ)௧݌ ∙ (ଵݑ)௨ଵ݌ ∙ (ଶݑ)௨ଶ݌ ∙ (ଵݒ)௩ଵ݌ ∙ (ଶݒ)௩ଶ݌ ∙ (ଵݓ)௪ଵ݌ ∙ (ଶݓ)௪ଶ݌ ∙ (ଷݓ)௪ଷ݌ ∙  (7ܦ)																																															(ସݓ)௪ସ݌
Recall that: ݓଵ = ଵଵݕ − ݐ − ଵݑ − ଶݓ ଵݒ = ଵଶݕ − ݐ − ଵݑ − ଷݓ ଶݒ = ଶଵݕ − ݐ − ଶݑ − ସݓ ଵݒ = ଶଶݕ − ݐ − ଶݑ −  (8ܦ)																																																																																																																																																																																	ଶݒ
Upon substitution, (ܠ)ܠ݌ = (ݐ)௧݌ ∙ (ଵݑ)௨ଵ݌ ∙ (ଶݑ)௨ଶ݌ ∙ (ଵݒ)௩ଵ݌ ∙ (ଶݒ)௩ଶ݌ ଵଵݕ)௪ଵ݌ ∙ − ݐ − ଵݑ − (ଵݒ ∙ ଵଶݕ)௪ଶ݌ − ݐ − ଵݑ − (ଶݒ ∙ ଶଵݕ)௪ଷ݌ − ݐ − ଶݑ − (ଵݒ ∙ ଶଶݕ)௪ସ݌ − ݐ − ଶݑ −  (9ܦ)																					(ଶݒ
To simplify notation, let ܡ = ሾݕଵଵ, ,ଵଶݕ ,ଶଵݕ (ܡ)ܡ݌ ,ଶଶሿ்.  Thenݕ = ෍ 	 ෍ 	 ෍ 	 ෍ 	୫୧୬(௬మభି௩భ,௬మమି௩మ)ି௧

௨మୀ଴
୫୧୬(௬భభ,௬మభ)ି௧

௩భୀ଴
୫୧୬(௬భమ,௬మమ)ି௧

௩మୀ଴
୫୧୬	(ܡ)
௧ୀ଴ ෍ ୫୧୬(௬భభି௩భ,௬భమି௩మ)ି௧(ܠ)ܠ݌

௨భୀ଴  
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= ෍ (ݐ)௧݌ ෍ (ଶݒ)௩ଶ݌ ෍ (ଵݒ)௩ଵ݌ ෍ (ଶݑ)௨ଶ݌ ∙ ଶଵݕ)௪ଷ݌ − ݐ − ଶݑ − ଵ)୫୧୬(௬మభି௩భ,௬మమି௩మ)ି௧ݒ
௨మୀ଴

୫୧୬(௬భభ,௬మభ)ି௧
௩భୀ଴

୫୧୬(௬భమ,௬మమ)ି௧
௩మୀ଴

୫୧୬	(ܡ)
௧ୀ଴ ∙ ଶଶݕ)௪ସ݌ − ݐ − ଶݑ − (ଶݒ ෍ (ଵݑ)௨ଵ݌ ∙ ଵଵݕ)௪ଵ݌ − ݐ − ଵݑ − (ଵݒ ∙୫୧୬(௬భభି௩భ,௬భమି௩మ)ି௧

௨భୀ଴ ଵଶݕ)௪ଶ݌ − ݐ − ଵݑ −  (ଶݒ
 
or alternately, and if we do not make the ranges of summation explicit in the notation, (ܡ)ܡ݌ = exp(−ߠ௧ − ௩ଶߠ − ௩ଵߠ − ௨ߠ2 − 2߶ଵ − 2߶ଶ)߶ଵ௬భభା௬మభ߶ଶ௬భమା௬మమ∙෍ߠ௧௧(߶ଵ߶ଶ)ିଶ௧ݐ! ෍(ߠ௩ଶ߶ଶି ଶ)௩మݒଶ! ෍(ߠ௩ଵ߶ଵି ଶ)௩భݒଵ! ෍ܳ௨మ௩భ௩మ௧ ෍ܴ௨భ  

where ܳ = !ଶݑ௨మ(௨߶ଵ߶ଶߠ) ଶଵݕ) − ݐ − ଶݑ − !(ଵݒ ଶଶݕ) − ݐ − ଶݑ −  !(ଶݒ
and ܴ = !ଵݑ௨భ(௨߶ଵ߶ଶߠ) ଵଵݕ) − ݐ − ଵݑ − !(ଵݒ ଵଶݕ) − ݐ − ଵݑ −  !(ଶݒ
 
 
Now, in the triphenotype case, let ܇ = ሾ ଵܻଵ, Yଵଶ, Yଵଷ, Yଶଵ, Yଶଶ, Yଶଷሿ் denote a multivariate-Poisson random vector.  As before, the first 
of the two subscripts distinguishes twin #1 and twin #2 in a pair from one another, whereas the second subscript distinguishes one 
phenotype from the other.  Define the elements of ܇ as follows: ଵܻଵ = ܵ + ଵܶ + ଵܷ,ଵଶ + 0 + ଵܷ,ଵଷ + ଵܸଵ + ଵܹ,ଵଶ + 0 + ଵܹ,ଵଷ ଵܻଶ = ܵ + ଵܶ + ଵܷ,ଵଶ + ଵܷ,ଶଷ + 0 + ଵܸଶ + ଶܹ,ଵଶ + ଶܹ,ଶଷ + 0 ଵܻଷ = ܵ + ଵܶ + 0 + ଵܷ,ଶଷ + ଵܷ,ଵଷ + ଵܸଷ + 0 + ଷܹ,ଶଷ + ଷܹ,ଵଷ ଶܻଵ = ܵ + ଶܶ + ܷଶ,ଵଶ + 0 + ܷଶ,ଵଷ + ଶܸଵ + ଵܹ,ଵଶ + 0 + ଵܹ,ଵଷ ଶܻଶ = ܵ + ଶܶ + ܷଶ,ଵଶ + ܷଶ,ଶଷ + 0 + ଶܸଶ + ଶܹ,ଵଶ + ଶܹ,ଶଷ + 0 ଶܻଷ = ܵ + ଶܶ + 0 + ܷଶ,ଶଷ + ܷଶ,ଵଷ + ଶܸଷ + 0 + ଷܹ,ଶଷ + ଷܹ,ଵଷ																																																																																																										(10ܦ) 
The latent variables are distributed as follows: ܵ	~	Pois(ߠ௦) ଵܶ, ଶܶ	~	Pois(ߠ௧) 
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ଵܷ,ଵଶ, ܷଶ,ଵଶ	~	Pois(ߠ௨ଵଶ) ଵܷ,ଶଷ, ܷଶ,ଶଷ	~	Pois(ߠ௨ଶଷ) ଵܷ,ଵଷ, ܷଶ,ଵଷ	~	Pois(ߠ௨ଵଷ) ଵܸଵ, ଶܸଵ	~	Pois(ߠ௩ଵ) ଵܸଶ, ଶܸଶ	~	Pois(ߠ௩ଶ) ଵܸଷ, ଶܸଷ	~	Pois(ߠ௩ଶ) ଵܹ,ଵଶ, ଶܹ,ଵଶ	~	Pois(ߠ௪ଵଶ) ଶܹ,ଶଷ, ଷܹ,ଶଷ	~	Pois(ߠ௪ଶଷ) ଵܹ,ଵଷ, ଷܹ,ଵଷ	~	Pois(ߠ௪ଵଷ)																																																																																																																																																																										(11ܦ) 
So, there are 21 latent variables in all, 6 of which (the V’s) would get redefined in terms of the observable variables, with the 
remaining 15 marginalized out of the expression to get the PMF of Y (which we do not write out here). 
 
The covariance matrix of Y is 6 × 6, but it can be constructed from 3 × 3 matrices A, C, and E, which are similar to one another in 
structure.  For instance,  ۯ = ൥ܽ௦ + ܽଵଶ + ܽଵଷ ܽ௦ + ܽଵଶ ܽ௦ + ܽଵଷܽ௦ + ܽଵଶ ܽ௦ + ܽଵଶ + ܽଵଷ ܽ௦ + ܽଶଷܽ௦ + ܽଵଷ ܽ௦ + ܽଶଷ ܽ௦ + ܽଵଷ + ܽଶଷ൩																																																																																																																(12ܦ)  
and likewise for ۱, though ۳ requires the addition of a diagonal matrix ܧௗ = ൥݁ௗଵ 0 00 ݁ௗଶ 00 0 ݁ௗଷ൩.  For MZ twins, the parameter 

substitutions are: ߠ௦ = ܽ௦ + ܿ௦ ߠ௧ = ݁௦ ߠ௨ଵଶ = ݁ଵଶ ߠ௨ଶଷ = ݁ଶଷ ߠ௨ଵଷ = ݁ଵଷ ߠ௩ଵ = ݁ௗଵ ߠ௩ଶ = ݁ଶௗ ߠ௩ଷ = ݁ଷௗ ߠ௪ଵଶ = ܽଵଶ + ܿଵଶ ߠ௪ଶଷ = ܽଶଷ + ܿଶଷ ߠ௪ଵଷ = ܽଵଷ + ܿଵଷ																																																																																																																																																																																										(13ܦ) 
For DZ twins:  
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௦ߠ = ܿ௦ + 0.5ܽ௦ ߠ௧ = 0.5ܽ௦ + ݁௦ ߠ௨ଵଶ = ݁ଵଶ + 0.5ܽଵଶ ߠ௨ଶଷ = ݁ଶଷ + 0.5ܽଶଷ ߠ௨ଵଷ = ݁ଵଷ + 0.5ܽଵଷ ߠ௩ଵ = ݁ௗଵ ߠ௩ଶ = ݁ௗଶ ߠ௩ଷ = ݁ௗଷ ߠ௪ଵଶ = ܿଵଶ + 0.5ܽଵଶ ߠ௪ଶଷ = ܿଶଷ + 0.5ܽଶଷ ߠ௪ଵଷ = ܿଵଷ + 0.5ܽଵଷ																																																																																																																																																																																				(14ܦ) 
 
Merely evaluating the PMF (which we do not present explicitly) for a single observation can be computationally demanding; the 
limiting factor is the minimum of y.  For example, suppose all six elements were equal to 8.  Then, marginalizing out the latent 
variables would entail computing a sum over 9ଵହ—in excess of 100 trillion—terms. 
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Appendix E.  On Dispersion Parameters and Twin Modeling 
 
This Appendix uses the same notation as in the “Monophenotype Twin Modeling” section of the 
main text.  Let us assume that latent variables ܺ଴, ଵܺ, and ܺଶ are Lagrangian Poisson.  Suppose 
that for MZ twins:  ܧ(ܺ଴) = 2.5 var(ܺ଴) = )ܧ 5 ଵܺ) = (ଶܺ)ܧ = 2.5 var( ଵܺ) = var(ܺଶ) = 5 
Then, ܺ଴, ଵܺ, and 	ܺଶ are	LGP(1.77, 0.293).  Therefore, ଵܻ and ଶܻ are marginally LGP(3.53, 0.293), with expectation 5 and variance 10. 
 
Now, suppose that for DZ twins, ܧ(ܺ଴) = 2.5 var(ܺ଴) = )ܧ 2.5 ଵܺ) = (ଶܺ)ܧ = 2.5 var( ଵܺ) = var(ܺଶ) = 7.5 
Then, ଵܻ and ଶܻ have expectation 5 and variance 10 for DZ twins, just as they do for MZ twins.  
But, ܺ଴	~	LGP(2.5, 0) ଵܺ, ܺଶ	~	LGP(1.44, 0.423) 
and since ଵܺ and ܺଶ do not have the same value for parameter ߣ as ܺ଴, ଵܻ and ଶܻ are not LGP.  
Even though the phenotypic distribution has the same mean and variance for both MZ and DZ 
twins, it is not the same for both zygosity groups.  This can be clearly seen by computing, say, 
the third central moment for the two zygosity groups.  Per Consul & Famoye (2006), the third 
central moment of a LGP distribution is ߤଷ = 1)ߠ + 1)(ߣ2 −  ହି(ߣ
For MZ twins, this would be  ߤଷ = 3.53(1 + 2 ∙ 0.293)(1 − 0.293)ିହ = 31.7 
For DZ twins, because ܺ଴, ଵܺ, and ܺଶ are independent, the third central moment of (say) ଵܻ 
would be the sum of the third central moments of ܺ଴ and ଵܺ: ߤଷ = 2.5(1 + 2 ∙ 0)(1 − 0)ିହ + 1.44(1 + 2 ∙ 0.423)(1 − 0.423)ିହ = 44.1 
 
To help ensure that the phenotypic distribution be the same for both zygosity groups, we require 
that parameter ߣ have the same value for latent variables ܺ଴, ଵܺ, and ܺଶ, for both MZ and DZ 
twins.  This has the additional advantage that the resulting marginals of ଵܻ and ଶܻ are themselves 
LGP.  When ( ଵܻ, ଶܻ) is instead modeled as bivariate negative binomial, we impose the analogous 
restriction on the latent variables’ dispersion parameters ऀ, and the marginals of ଵܻ and ଶܻ are 
then negative binomial. 
 
At the urging of an anonymous referee, we have considered a possible case where the strict 
equality of dispersion parameters might be relaxed.  This case is easier to present using PGFs 
instead of PMFs, so we will use the bivariate negative binomial distribution here, since its PGF is 
simpler than that of the LGP.  Specifically, the common term ܺ଴ would have dispersion 
parameter ऀ଴, for both MZ and DZ twins, and the unique terms, ଵܺ and ܺଶ, would have 
dispersion parameter ऀଵ, again for both MZ and DZ twins. 
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Suppose that for MZ twins, ܺ଴	~	NB(ߥெ଴, ऀ଴) ଵܺ, ܺଶ	~	NB(ߥெଵ, ऀଵ) 
and for DZ twins, ܺ଴	~	NB(ߥ஽଴, ऀ଴) ଵܺ, ܺଶ	~	NB(ߥ஽ଵ, ऀଵ) 
Then, the marginal phenotypic distribution would not be negative binomial, but that of a 
convolution of independent negative-binomial RVs having different dispersion parameters.  For 
MZ twins, the marginal PGF (i.e., for ଵܻ and ଶܻ) would be ܩ௒ಾ(ݖ) = ൬ ऀ଴1 − ँ଴ݖ൰ఔಾబ ∙ ൬ ऀଵ1 − ँଵݖ൰ఔಾభ

 

and for DZ twins, ܩ௒ವ(ݖ) = ൬ ऀ଴1 − ँ଴ݖ൰ఔವబ ∙ ൬ ऀଵ1 − ँଵݖ൰ఔವభ 

If we set the two PGFs equal to one another, then with a bit of algebraic manipulation it can be 
shown that, under the given conditions, the phenotypic distribution will be equal for MZ and DZ 
twins, provided that the constraint ൬ ऀ଴1 − ँ଴ݖ൰ఔಾబିఔವబ ∙ ൬ ऀଵ1 − ँଵݖ൰ఔಾభିఔವభ = 1 

is satisfied. 
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Appendix F:  The Bivariate log(y+1)-Normal Distribution 
 
Suppose ଵܺ	~	ࣨ(ߤଵ, ,ଶߤ)ࣨ	~	ଵଶ), ܺଶߪ  ଶଶ), and that ଵܺ and ܺଶ are jointly bivariate normal, withߪ
correlation ߩ.  Define ଵܻ = exp( ଵܺ) − 1, and therefore ଵܺ = log	( ଵܻ + 1) ଶܻ = exp(ܺଶ) − 1, and therefore, ܺଶ = log	( ଶܻ + 1) 
We will call the joint distribution of ଵܻ and ଶܻ bivariate log(y+1)-normal.  The Jacobian of the 
substitution of ଵܻ and ଶܻ for ଵܺ and ܺଶ is  

)ܬ ଵܻ, ଶܻ) = ተተ߲ݔଵ߲ݕଵ ଵݕଶ߲ݔଶ߲ݕଵ߲ݔ߲ ଶተተݕଶ߲ݔ߲ = ተተ ଵݕ1 + 1 0
0 ଶݕ1 + 1ተተ = ଵݕ)1 + ଶݕ)(1 +  (1ܨ)																																																																																																																			(1

The PDF of the bivariate log(y+1)-normal is then 

,ଵݕ)܇݂ (ଶݕ = ଵݕ)ߨ12 + ଶݕ)(1 + ଶඥ1ߪଵߪ(1 − ଶߩ ∙ exp ൬ 2ሾ1ܦ− −  (2ܨ)																																ଶሿ൰ߩ
for (ݕଵ, (ଶݕ ∈ (−1,∞)ଶ, where ܦ = ቆlog(ݕଵ + 1) − ଵߪଵߤ ቇଶ − ߩ2 ቆlog(ݕଵ + 1) − ଵߪଵߤ ቇ ቆlog(ݕଶ + 1) − ଶߪଶߤ ቇ

+ ቆlog(ݕଶ + 1) − ଶߪଶߤ ቇଶ 

 
The marginal distribution of, say, ଵܻ has p.d.f 

௒݂ଵ(ݕଵ) = ଵݕ)1 + ߨଵ√2ߪ(1 ∙ expቆ−ሾlog(ݕଵ + 1) − ଵଶߪଵሿଶ2ߤ ቇ																																															(3ܨ) 
for ݕଵ ∈ (−1,∞). 
 
The parameters ߤଵ and ߤଶ are the log-scale means, ߪଵଶ and ߪଶଶ are the log-scale variances, and the 
log-scale covariance equals ߪߩଵߪଶ. 
 
The joint distribution of exp( ଵܺ) and exp(ܺଶ) is an ordinary bivariate lognormal distribution.  
Therefore, the joint distribution of ଵܻ and ଶܻ is an ordinary bivariate lognormal distribution 
shifted downwardly by 1. As the reader is likely aware, shifting a distribution will 
correspondingly shift its means, but will not change its variances and covariances.  From the 
moments of the ordinary bivariate lognormal distribution (Forbes et al., 2011; Balakrishnan & 
Lai, 2009), we have the following:  ܧ( ଵܻ) = exp(ߤଵ + (ଵଶߪ0.5 − )ܧ 1 ଶܻ) = exp(ߤଶ + (ଶଶߪ0.5 − 1 var( ଵܻ) = exp(2ߤଵ + (ଵଶߪ ሾexp(ߪଵଶ) − 1ሿ var( ଶܻ) = exp(2ߤଶ + (ଶଶߪ ሾexp(ߪଶଶ) − 1ሿ cov( ଵܻ, ଶܻ) = exp(0.5ߪଵଶ + ଶଶߪ0.5 + ଵߤ + (ଶߤ ሾexp(ߪߩଵߪଶ) − 1ሿ																																			(4ܨ) 
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We have confirmed the identities in (F4) by (rather laboriously) deriving ܧ( ଵܻଶ), ܧ( ଶܻଶ), and ܧ( ଵܻ ଶܻ) from the univariate and bivariate PDFs, though in the interest of brevity we do not 
reproduce the derivation here. 
 


