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Training of QSAR models

Dataset used for prediction

The ChemProt-3.0 dataset was used for generating QSAR models with the goal of
creating accurate models capable of predicting interaction between novel chemical
entities and proteins. The following activity types were used for training the models:
ICs0, ECs0, Potency, ACso, pICso, Log K;, pKj, pECso, Kg, Ki. The activity types not already
converted were converted to -log10 values before used for prediction. If more than one
value were present for a given chemical-protein pair the mean was used for model
development. Proteins with less than 20 chemical interactions were excluded from the

study. In total QSAR models for 2140 proteins were developed.

Generation of ensemble QSAR models

QSAR models were generated using a “one framework fits them all” approach to
systematically perform QSAR models for all proteins included in ChemProt. To
accommodate differences in the training datasets, a “wisdom of the crowd” framework
using generic fingerprints and variable thresholds for classifying binders versus non-
binder were adopted. QSAR models using classifiers were preferred over regression
models, as classification tends to be more flexible and successful in prediction. To
include a regression like scoring scheme the data was split in positives and negatives
using 3 different -log10 values values; 4, 5 and 6, equivalent to 100 uM, 10 uM and 1 uM
binding affinity. Classification models were trained on datasets split by each of the 3
thresholds.

The Naive Bayes classifier was employed to relate chemical features (see below) to the
measured activity class (positive or negative). It was found that, on a dataset of hERG
binders/non binders (see below), that the Naive Bayes classifier performed better or
equal to other tested learning methods (i.e. Support Vector Machine (SVM) -Gaussian

kernel, SVM -linear Kernel and Logistic Regression (LR) classifiers). Figure S1 outlines



the procedure used for training the QSAR models. One QSAR model will be trained for
each combination of classification algorithms and chemical descriptor. In total 15
different QSAR models will be produced (5 descriptors types * 1 algorithms * 3 cutoffs
for splitting data) for each protein in the dataset. The performance of each model was
estimated in a 5-fold cross-validation scheme as outline in Figure S1, and used for
weighting the prediction of each model when calculating the “wisdom of the crowd”
score. Each dataset were balanced i.e. the same number of positive and negative
(binders/non-binders) compounds were included in each dataset, by sampling the
number of negative data points from the negative dataset corresponding to the number
of positive data points present in the dataset. If not enough negative data were available
random chemicals from ChemProt3.0 were included as negative data. Note that the final

models used for prediction are trained on all data available.
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Figure S1. Outline of describe method. First, a 5-fold cross-validation scheme applied on the training
data is used to determine the unbiased performance of each QSAR model. Next, all training data are used
to generate QSAR models used for prediction of potency of new chemicals. Each prediction score (for each
QSAR model) are weighted according to the model performance estimated in the 5-fold cross-validation

scheme.

All models were trained using the scikit-learn software packages with a python wrapper
(http://scikit-learn.org/stable/).



As the features space used to describe chemical structures is large compared to the
available data, a features selection algorithm was employed to select a subset of
features for model generation. A random forest approach, using the scikit-learn
ExtraTreesClassifier with 100 trees, provided a consistence selection of features in a 5-
fold cross-validation scheme on the hERG dataset. 100 trees were chosen to reduce
running time as 15*6=90 feature selections have to be completed for each protein.
Features were selected based on their average Gini-importance using the mean average
Gini-importance as cutoff. The features selection are applied only to the training dataset
in the cross-validation scheme, thus no bias is introduced towards descriptors general

applicable to the dataset are introduced.

Performance measure

The accuracy score was used as measure of model performance for each of the 15
models generated for each dataset of interest (Figure S1). It converges to the Jaccard
similarity score when the output is binary (classification) and gives the ratio between
correctly classified instances and, correct + non-correct classification (total number of
data points). Hence a complete random model will take the value of ACC = 0.5. As the
dataset used are totally balanced the accuracy gives a reasonable estimation of the
model performance and do not suffer from over-optimistic results biased against either

negative or positive instances, as when applied to non-balanced datasets.

Predicting the potency of novel chemicals - “Wisdom of the crowd framework”
The scores were weighted based on model performance relative to the performance of a
dummy model always outputting the average of training activity scores. As the dataset

was balanced the model performance of the dummy model is always ACC = 0.5:

wm=ACCm-ACCdum=ACCm-0.5

The overall score was then calculated by weighting the predicted scores by the cross-

validated performance as described in equation 2:
score=w1 *S1+w2 *S2+...+wm*Smwl+w2+..+wm

where wy, is the cross-validated performance (see Figure S1) and Sy, is the predicted

score (0 or 1) for each model:

Chemical Descriptors
As the chemical space are multi-dimensional and infinitely large, directly using chemical
structures to build predictive models are not feasible. Instead descriptors are used that

describe different features of the molecules, thereby transforming the structure into



features space. Multiple types of descriptors exist describing different molecular
features. Here, the focus is on topological fingerprints (Daylight like fingerprints)[1] and

Morgan fingerprints (also called circular fingerprints) [2].

Topological fingerprint will be called “daylight”. Morgan fingerprint will be called ECFP
and FCFP for the atom and feature based version respectively to emphasize that the
fingerprints utilize atom invariants connectivity information similar to those used for
the well known ECFP family of fingerprints and feature-based invariants, similar to

those used for the FCFP fingerprints.

It was chosen not to include pharmacophore fingerprints and 1D and 2D
physical/chemical descriptors to keep the number of generated models at a reasonable
level. Furthermore, the feature based Morgan fingerprint included is somewhat related
to the 2D pharmacophore features as these describe the pharmacophore features
around each atom in the chemical. All fingerprints were calculated using RDkit
(www.rdkit.org) implemented in python. Figure S2 gives and overview of the chemical

descriptors used in the presented work.
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Figure S2. Chemical descriptors. In total 5 different chemical descriptors are used to generate QSAR

models.

Prediction of the hERG-binders
To evaluate different settings such as the choice of prediction algorithm, number of bits
in fingerprints and the added values of an ensemble approach, the hERG dataset obtains

from [3] was used. A 5-fold cross-validation scheme was considered to estimate the



performance by splitting the dataset randomly into 5 different partitions and iteratively
using 4 partitions for training and 1 for evaluation until all data points have been
evaluated once (not to be confused with the cross-validation performed when training
the ensemble models). The described ensemble approach was applied to each training
partition i.e. training and evaluation dataset are kept totally separated during the
training and evaluation. Thus no bias towards descriptors, classifier algorithms or
training datapoints has been introduced, hence allowing selection of the best settings

(classifier and number of bits) based on the cross-validated performance.

The IC50 (uM units) values used in the study were multiplied by -1 to reverse the scale
and the cutoff -100, -10 and -1 uM were considered as the low, medium and high binder
threshold respectively, except for single models - here -40 uM were used in agreement
with the original study. Chemicals with an IC50 value below 40 uM were considered
binders whereas chemicals with an affinity value above were considered non-binders.
Some of the included performance measures require a binary classification, thus
predicted value above 0.6 was regarded as binders for calculation of these performance

measures.

Several different combinations of fingerprints types and lengths (number of bits) were
tested as described in table S2. Using only a single fingerprint type reduces the
performance of the model, however the FCFP and daylight fingerprints using 2048 bits
still show reasonable performances. The length of the fingerprints (512, 1024 or 2048
bit) seems to influence performance slightly, whereas using a single fingerprint type
consistently reduces the performance. However, inclusion of models trained using
different classification algorithms (separately), boost performance (to a minor degree)
with the non-linear algorithms performing the best (setting 16-19 in Table S2). Thus,
choosing a single algorithm might be sufficient as long as it enables higher order
correlations. Comparing the single models (setting 20-39) to the ensemble reveals that
using an ensemble approach significantly enhanced prediction power. All ensemble
models have improved prediction statistics compared to models only containing a
single classification model (one single descriptor, one threshold and one classifier
algorithm), even though the threshold used for splitting the training dataset into

binders/non-binders for single models are the same used for the evaluation.

Descriptors Methods Cutoffs Roc PCC MCC Sens Spec SCC

2 daylight b1024
daylight b2048 NaiveBayes

ECFP_b1024 _r2 SVMlinear -100

ECFP_b1024_r3 LogisticRegressio  -10 0.849 0.602 0.481 0.634 0.841 0.607
FCFP_b1024_r2 n -1

FCFP_b1024_r3 SVMGuassian

ECFP_b2048_r2




Descriptors Methods Cutoffs Roc PCC MCC Sens Spec SCC
ECFP_b2048_r3
FCFP_b2048_r2
FCFP_b2048_r3
3 daylight_b1024 NaiveBayes
daylight_b2048 SVMlinear -100
LogisticRegressio  -10 0.820 0.560 0.486 0.723 0.778 0.546
n -1
SVMGuassian
4 ECFP_b1024_r2
ECFP_b1024_r3 NaiveBayes
FCFP_b1024_r2 .
FCFP_b1024 r3 SVMlinear —~-100
ECFP_b2048_r2 EoglstlcRegressw 10 0.844 0.586 0.497 0.660 0.835 0.606
ECFP_b2048_r3 .
FCFP_b2048 12 SVMGuassian
FCFP_b2048_r3
5 daylight_b512 NaiveBayes
ECFP_b512_r2 SVMlinear -100
ECFP_b512_r3 LogisticRegressio  -10 0.841 0.582 0.509 0.681 0.830 0.594
FCFP_b512_r2 n -1
FCFP_b512_r3 SVMGuassian
6 daylight b1024 NaiveBayes
ECFP_b1024_r2 SVMlinear -100
ECFP_b1024_r3 LogisticRegressio  -10 0.845 0.593 0.484 0.660 0.824 0.600
FCFP_b1024_r2 n -1
FCFP_b1024 r3 SVMGuassian
7 daylight b2048 NaiveBayes
ECFP_b2048_r2 SVMlinear -100
ECFP_b2048_r3 LogisticRegressio  -10 0.850 0.596 0.485 0.649 0.832 0.611
FCFP_b2048_r2 n -1
FCFP_b2048_r3 SVMGuassian
8 daylight b2048 NaiveBayes
SVMlinear -100
LogisticRegressio  -10 0.826 0.572 0.486 0.723 0.778 0.562
n -1
SVMGuassian
9 ECFP_b2048_r2 NaiveBayes
SVMlinear -100
LogisticRegressio  -10 0.802 0.523 0.480 0.644 0.832 0.545
n -1
SVMGuassian
10 ECFP_b2048_r3 NaiveBayes
SVMlinear -100
LogisticRegressio  -10 0.813 0.559 0.444 0.618 0.822 0.569
n -1
SVMGuassian
11 FCFP_b2048_r2 NaiveBayes
SVMlinear -100
LogisticRegressio  -10 0.837 0.570 0.470 0.691 0.789 0.601
n -1
SVMGuassian
12 FCFP_b2048_r3 NaiveBayes
SVMlinear -100
LogisticRegressio  -10 0.824 0.532 0.458 0.670 0.795 0.581
n -1
SVMGuassian
13 daylight b2048 NaiveBayes
ECFP_b2048_r2 SVMlinear
ECFP_b2048_r3 LogisticRegressio  -100 0.833 0.630 0.496 0.743 0.770 0.602
FCFP_b2048_r2 n
FCFP_b2048_r3 SVMGuassian
14 daylight_b2048 NaiveBayes
ECFP_b2048_r2 SVMlinear
ECFP_b2048_r3 LogisticRegressio  -10 0.837 0.563 0.489 0.681 0.814 0.588
FCFP_b2048_r2 n
FCFP_b2048_r3 SVMGuassian
15 daylight b2048 NaiveBayes
ECFP_b2048_r2 SVMlinear
ECFP_b2048 13 LogisticRegressio -1 0.820 0.512 0.488 0.634 0.846 0.561

FCFP_b2048_r2

n




Descriptors Methods Cutoffs Roc PCC MCC Sens Spec SCC

FCFP_b2048_r3 SVMGuassian
16 daylight b2048

ECFP_b2048_r2 NaiveBaves -100

ECFP_b2048_r3 Y -10 0843 0574 0513  0.634 0.865 0.608

FCFP_b2048_r2 1

FCFP_b2048_r3
17 daylight b2048

ECFP_b2048_r2 -100

ECFP_b2048_r3 SVMlinear -10 0838 0568 0500  0.670 0.830 0.595

FCFP_b2048_r2 1

FCFP_b2048_r3
18 daylight_b2048

ECFP_b2048_r2 LogisticR . -100

ECFP_b2048_r3 OgISHICRegressio 419 0.838 0592 0468  0.660 0.811 0.606

FCFP_b2048_r2 n 1

FCFP_b2048_r3
19 daylight b2048

ECFP_b2048_r2 -100

ECFP_b2048_r3 SVMGuassian -10 0.845 0604 0498  0.702 0.805 0.619

FCFP_b2048_r2 1

FCFP_b2048_r3
20  daylight b2048 NaiveBayes -40 0687 0398 0355 0717 0.657 0.364
21 daylight b2048 SVMlinear 40 0685 0431 0352 0733 0.638 0414
22 daylight b2048 Eog‘St‘CRegreSS‘o -40 0713 0472 0404  0.770 0.657 0.472
23 daylight b2048 SVMGuassian -40 0743 0519 0460  0.796 0.689 0518
24  ECFP_b2048.r2 NaiveBayes -40 0727 0452 0445  0.670 0.784 0.463
25  ECFP_b2048_r2 SVMlinear -40 0706 0439 0392  0.723 0.689 0431
26  ECFP.b2048.r2 ﬁog‘St‘CRegress‘o -40 0.674 0356 0330  0.707 0.641 0.353
27  ECFP_b2048.r2 SVMGuassian 40 0750 0555 0475 _ 0.780 0.719 0.541
28  ECFP_b2048_r3 NaiveBayes -40 0752 0502 0494  0.707 0.797 0.503
29  ECFP_b2048.r3 SVMlinear -40 0703 0431 0388 0712 0.695 0.425
30 ECFP.b2048.r3 I];Og‘S“CRegreSS‘O -40 0.720 0440 0419  0.749 0.692 0.457
31 ECFP.b2048.r3 SVMGuassian 40 0728 0501 0434 _ 0.764 0.692 0.492
32  FCFP_b2048.r2 NaiveBayes -40 0770 0514 0518  0.775 0.765 0.526
33 FCFP_b2048.r2 SVMlinear 40 0744 0492 0462 0812 0.676 0.509
34 FCFP.b2048.r2 E"g‘S““RegreSS‘o -40 0737 0477 0449  0.806 0.668 0.480
35  FCFP_b2048.r2 SVMGuassian -40 0737 0483 0450  0.791 0.684 0.494
36  FCFP_b2048.r3 NaiveBayes -40 0753 0505  0.487  0.743 0.762 0.510
37  FCFP_b2048.r3 SVMlinear -40 0720 0445 0419  0.749 0.692 0433
38  FCFP.b2048.r3 ﬁog‘St‘CRegress‘o -40 0721 0422 0421  0.759 0.684 0.436
39  FCFP.b2048.r3 SVMGuassian 40 0744 0522 0462 0801 0.686 0518
40  daylight b1024

ECFP_b1024 12 -100

ECFP_b1024 r3 NaiveBayes -10 0.827 0562 0488  0.649 0.835 0.579

FCFP_b1024_r2
FCFP_b1024 _r3

-1

Table S2. Cross-validated performance on the hERG binders. “daylight” denominates the topological

fingerprint implemented in RDKit (essentially the same as daylight fps) and “_bXXXX"” the number of bits

used in the fingerprint. ECFP and FCFP is the Morgan circular atom and feature based fingerprints, the

“_ bXXXX” the number of bits used and “rX” the radius used in the circular fingerprint. Note that the

performance values reported here are from the external cross-validation and not the cross-validation

performed when training the ensemble of predictors described in Figure S1.

Comparison to the Similarity Ensemble Approach




The other prediction method implemented in ChemProt3.0 is the similarity ensemble
approach (SEA) [4]. To compare the “new” QSAR implementation a dataset of 179
proteins of particular interest when investigating off-target effects were compiled (see
Table S2). 143 of these had sufficient data available in ChemProt3.0 to train QSAR
models and were used as the basis for comparing performance of the QSAR models to
the SEA implementation. The dataset for the 143 proteins were spitted in 5-partition
and a 5-fold cross-validation scheme were used to assess performances by using 4
partitions for training using the ensemble approach explained above and 1 partition for

validation at a time. The partitions were spitted randomly.

For both, the ensemble QSAR model and SEA outputs float values spearman correlation
coefficient (SCC) was used to compare performances. SCC is a parameter free coefficient
(essential the PCC of ranked-values), which ensure a reasonable comparison even
though the two methods output is on different scales. A SCC = 1 reflects perfect ranked-
correlation between predicted and true values, 0 is random and -1 reflects an inverse

correlation. Table S2 list the performances for the 143 proteins for both the ensemble
QSAR predictive models and the SEA. Using a one-sided paired T-test and the null-
hypothesis that the SCCqsar == SCCsea and the alternative hypothesis that SCCqsar >
SCCska the null-hypothesis could be rejected with a p-value of: 2.2e-16.

Uniprot Chemicals Chemicals
e P ) tnene  With aff < SEA (MCC) SEA (SCC)
100 uM

000408 378 151 0.402451 0.50955 0.344713 0.43096
014920 1478 659 0.321934 0.29005 -0.115163 -0.02482
015111 740 586 0.339904 0.45846 0.045515 0.21119
043193 346 185 0.445334 0.53197 0.029565 0.16587
075469 401 183 0.134628 0.24651 0.486237 0.30118
076074 1743 1220 0.369423 0.63437 0.173358 0.38443
P00533 6586 2971 0.208118 0.38331 0.068014 0.06649
P00918 5018 3130 0.306994 0.46368 0.233406 0.28322
P02708 173 82 0.322966 0.62251 0.443893 0.39995
P03372 4297 1910 0.063377 0.22351 0.058304 0.16055
P04035 399 327 0.544005 0.70464 0.463210 0.68764
P04054 715 411 0.202269 0.49507 0.012021 0.20465
P04150 3274 1358 0.222967 0.23143 -0.068802 0.02704
P04626 2835 1599 0.108386 0.16946 -0.108666 0.02532
P06213 1621 1333 0.219724 0.36826 0.151912 0.26055
P06239 3195 1750 0.228244 0.44590 -0.015748 0.09585
P06241 1160 981 0.052337 0.33172 0.064492 0.25434
P06276 1971 1076 0.356766 0.54489 0.406799 0.48597
P06401 2293 1018 0.486285 0.46309 0.260734 0.10618
P07099 223 152 0.461661 0.58652 -0.091246 0.46050
P07550 3543 2648 -0.209885 0.17583 -0.226525 0.12659
P08172 2577 1561 0.292175 0.47802 0.165528 0.27537
P08173 1475 918 0.247376 0.44268 0.266942 0.30187
P08575 446 203 0.630478 0.57311 0.513371 0.56767
P08581 2932 1561 0.434303 0.51074 0.103754 0.22970
P08588 2200 1174 0.365329 0.50309 -0.030187 0.18570
P08908 4490 3067 0.022687 0.29823 -0.104358 0.14712

P08912 1430 892 0.256736 0.44981 0.177523 0.30587




Chemicals

Uniprot Chemicals

e o atacer  With aff < SEA (MCC) SEA (SCC)
100 uM
P08913 1294 751 0.242146 0.36677 0.107570 0.19707
P09917 2601 1099 0.401746 0.52336 0.406465 0.48313
P10275 3035 1392 0.198764 0.21697 0.030498 0.05820
P10827 574 282 0.110227 0.40767 0.291984 0.41157
P10828 6206 4347 0.123454 0.24354 0.038989 0.09952
P11229 3014 1802 0.289656 0.48636 0.180651 0.32294
P11362 2147 1276 0.502790 0.55929 -0.051391 0.06563
P13945 2051 943 0.356619 0.36245 0.113241 0.10493
P14416 6410 3965 0.251122 0.38451 0.130472 0.12944
P15121 947 348 0.446534 0.47176 0.289074 0.49439
P16050 5585 5332 -0.008573 0.05529 -0.034847 -0.04507
P16499 183 134 0.749976 0.72387 -0.056255 0.61923
P17252 1516 1032 0.256953 0.50621 0.063484 0.28475
P18031 3551 1557 0.227949 0.47487 0.335162 0.46771
P18089 864 452 0.328513 0.42126 0.092870 0.14488
P18505 392 318 0.563026 0.64087 0.521634 0.40597
P18825 969 532 0.084991 0.25204 0.092869 0.09428
P20309 2653 1853 0.360480 0.54712 0.260827 0.30244
P21397 1730 839 0.366523 0.58194 0.260285 0.30957
P21452 1305 875 0.246526 0.42711 0.214622 0.36293
P21554 4940 2876 0.329321 0.45572 0.147328 0.20142
P21728 1842 1357 0.088460 0.10742 0.064882 0.00330
P21731 1740 1081 0.341662 0.51589 0.390391 0.35465
P21802 306 189 0.222717 0.40674 0.144841 0.29963
P21964 28 20 0.918937 0.89737 0.825000 0.86275
P22303 4355 2044 0.265054 0.40367 0.298574 0.35173
P22460 723 417 0.544674 0.69627 0.321845 0.57291
P23219 2668 989 0.359692 0.45535 0.147578 0.31174
P24385 1027 820 0.436124 0.72183 0.156489 0.36897
P24530 1590 558 0.404737 0.41847 0.177662 0.22722
P24557 1582 1074 0.089215 0.27134 0.073330 0.20824
P25021 636 274 0.469123 0.47821 -0.204846 -0.26305
P25025 766 511 0.400073 0.61709 0.454360 0.54208
P25100 1794 1185 0.241764 0.41983 0.159083 0.31395
P25101 1935 879 0.330927 0.41738 0.222528 0.24149
P25103 3413 2102 0.296388 0.43976 0.177474 0.18279
P25105 1237 934 0.477019 0.60049 0.296159 0.31329
P25929 1583 1030 0.187363 0.48556 0.165193 0.38825
P27338 2023 1118 0.254571 0.40981 0.224359 0.18113
P27361 245 176 0.249885 0.45123 0.251427 0.46807
P28222 1499 847 0.335536 0.44544 -0.022992 0.03809
P28223 3680 2300 0.343386 0.46190 0.261365 0.38010
P28335 3674 2275 0.299806 0.43336 0.165062 0.30390
P28482 14750 14178 0.020024 0.06095 -0.025029 -0.01795
P29274 5283 3632 0.223482 0.37312 0.108488 0.02782
P29275 2963 1711 0.354750 0.45160 0.064439 -0.03379
P29371 745 451 0.474674 0.65848 -0.053988 0.27722
P29474 1220 567 0.148588 0.15770 0.353697 0.42580
P29475 1365 722 0.416119 0.54403 0.359333 0.51998
P30411 965 539 0.426062 0.46409 0.165504 0.26372
P30518 845 404 0.579142 0.53601 -0.005806 0.06917
P30542 4538 3120 0.243275 0.39789 0.132323 0.05837
P30556 2524 1958 0.251064 0.54028 0.327653 0.38584
P30988 68 66 0.252714 0.57826 -0.030303 -0.46397
P32238 1151 687 0.409047 0.54382 0.369426 0.49541
P32239 2212 1235 0.302717 0.41464 0.050701 0.10753
P32245 3679 2051 0.047348 0.26047 -0.177301 0.02098
P32246 927 379 0.532506 0.53562 0.122358 0.28447
P33032 924 423 0.054168 0.15490 0.110814 -0.05439
P33765 4561 2739 0.185105 0.29956 0.119639 0.22110
P34969 1466 961 0.305742 0.41693 0.027804 0.11401
P34972 5105 2738 0.253248 0.40855 0.210059 0.22529




Chemicals

Uniprot Chemicals

e o atacer  With aff < SEA (MCC) SEA (SCC)
100 uM
P35228 1442 627 0.058933 0.09462 0.311075 0.33049
P35348 2207 1585 0.146633 0.36896 0.045436 0.13576
P35354 4199 1412 0.371908 0.41271 0.236921 0.22501
P35367 1807 1185 0.398152 0.56299 0.144463 0.28502
P35368 1998 1352 0.259582 0.44336 0.013839 0.20686
P35372 5842 3664 0.083636 0.30849 0.046352 0.19291
P35408 608 269 0.155132 0.30774 0.229855 0.25671
P35462 3776 2445 0.266060 0.41319 0.205926 0.26541
P37231 6072 2731 0.231398 0.39802 0.196543 0.29719
P37288 1144 766 0.419669 0.60248 0.104096 0.34641
P41143 5198 3272 0.108138 0.32721 0.149444 0.27068
P41145 5129 2909 0.290397 0.44092 0.267565 0.31076
P41146 1689 953 0.315774 0.43619 0.171341 0.26996
P41595 1787 1062 0.519684 0.54552 0.256756 0.35715
P41597 2093 914 0.466944 0.38929 0.133443 0.17903
P41968 1204 513 -0.020704 0.09257 0.030656 -0.05593
P43116 388 215 0.351130 0.47270 0.206393 0.16583
P43403 385 173 0.272454 0.63681 -0.001962 0.16855
P43681 1146 735 0.310845 0.43393 0.191214 0.19464
P46098 1013 729 0.228653 0.50812 0.065614 0.23347
P46663 912 554 0.484398 0.56007 0.218681 0.17882
P47898 612 516 0.078604 0.52912 -0.156730 0.29840
P47901 900 696 -0.088173 0.45766 -0.288398 -0.09535
P48039 1106 678 0.366601 0.45354 0.053589 0.12016
P49146 1044 740 0.040628 0.41250 -0.101508 0.21191
P50052 987 796 0.259462 0.45610 0.155775 0.05307
P50406 2873 1766 0.215509 0.36292 0.036120 0.03927
P50416 24 18 0.531085 0.63684 0.531085 0.32708
P51679 469 194 0.479826 0.43999 0.089631 0.33168
P51681 2857 1490 0.376459 0.45977 0.071800 0.09679
P51955 1109 961 0.178774 0.25443 0.099588 0.15846
P54646 166 123 0.413034 0.26751 0.279528 0.29725
P83111 84 24 0.419573 0.42666 0.133888 0.09205
Q02763 938 422 0.319639 0.43962 0.192030 0.34124
Q08209 63 48 0.625000 0.84545 0.199506 0.77218
Q12809 8181 4618 0.132471 0.25025 0.097760 0.12055
Q13557 907 806 0.175817 0.26655 0.154404 0.23731
Q13639 531 300 0.315139 0.46681 -0.046590 0.08110
Q13936 210 182 0.029951 0.54607 0.154091 0.45260
Q14432 1554 900 0.257560 0.44158 0.213886 0.21794
Q14524 514 284 0.568815 0.62064 0.524820 0.54123
Q16539 4970 2176 0.170355 0.29343 0.076182 0.11701
Q8IwW41 641 568 0.097564 0.10988 0.185319 0.17787
Q8NER1 2503 1372 0.399808 0.49937 0.238143 0.36299
Q92731 3327 1280 0.363634 0.38105 0.295168 0.39229
Q92847 1660 825 0.509777 0.56865 0.323313 0.46232
Q96EB6 452 129 0.112290 0.31815 0.507464 0.46742
Q96PF2 519 510 -0.031213 -0.04255 -0.002228 -0.07087
Q96RR4 115 73 -0.160339 0.02679 -0.134806 0.21833
Q9BZL6 814 751 0.153985 0.18084 0.105034 0.18078
Q9H2X6 755 695 0.141024 0.35707 0.152371 0.32470
Q9Y233 923 603 0.528370 0.70836 0.076559 0.30252
Q9Y5N1 3474 2806 0.189611 0.39185 0.166854 0.24938
All 2090 1268 0.288056 0.42782 0.151965 0.24415

Table S2. Cross-validated performance of the selected off-target dataset. SCC is the spearman
correlation coefficient; MCC is the Matthews correlation coefficient. MCC values were calculated by using

a 100 uM threshold for true binders, 0.6 for QSAR models and 10-2 for the SEA model.
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