Zebrafish Collagen Type I: Molecular and Biochemical

Characterization of the Major Structural Protein in Bone and Skin

C. Gistelinck¹, R. Gioia², A. Gagliardi³, F. Tonelli², L. Marchese², L. Bianchi³, C. Landi³, L.

Bini³, A. Huysseune⁴, P. E. Witten⁴, A. Staes^{5,6}, K. Gevaert^{5,6}, N. De Rocker¹, B. Menten¹, F.

Malfait¹, S. Leikin⁷, S. Carra⁸, R. Tenni², A. Rossi², A. De Paepe¹, P. Coucke¹, A. Willaert^{1&}, A. Forlino^{2*&}

¹Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium;

²Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy;

³Functional Proteomics Lab., Department of Life Sciences, University of Siena, Siena, Italy;

⁴Biology Department, Ghent University, Ghent, Belgium;

⁵Department of Medical Protein Research, VIB, Ghent, Belgium;

⁶Department of Biochemistry, Ghent University, Ghent, Belgium;

⁷Eunice Kennedy Shriver National Institute of Child Health and Human Development, National

Institutes of Health, Bethesda, MD, USA

⁸Department of Biosciences, University of Milano, Milan, Italy;

[¶]These authors contributed equally to this work

§ These authors are shared last authors on this work.

* Corresponding Author

aforlino@unipv.it (AF)

Supplementary Methods MALDI TOF Mass Spectrometry Analysis

Coomassie bands and silver stained spots were manually excised from the gel. Coomassie bands were destained in 2.5 mM ammonium bicarbonate and 50% (v/v) acetonitrile, while silver stained spots were destained as previously described¹. Then, both bands and spots were dehydrated using acetonitrile. Before trypsin digestion, proteins resolved in 1D gels were reduced with 10 mM DTE in 25 mM ammonium bicarbonate, for 1 h at 56°C. Then, they were alkylated with 55 mM IAA in 25 mM ammonium bicarbonate, for 45 min at room temperature in the dark. After 10 min of incubation in 50 mM ammonium bicarbonate, protein bands were dehydrated in acetonitrile. Finally, bands and spots were rehydrated in trypsin solution (Sigma Aldrich, St. Louis, MO) and ingel protein digestion was performed by an overnight incubation at 37°C. From each band or spot, 1.25 µl of the recovered peptide mixture was prepared for MALDI-TOF MS by spotting them onto the MALDI target, allowed to dry, and then mixed to 0.75 µl of matrix solution (saturated solution of alpha-cyano-4-hydroxycinnamic acid in 50% (v/v) acetonitrile and 0.5% (v/v) trifluoroacetic acid). Spectra were analyzed by Flex Analysis software v.3.0 and calibrated using, as internal standard, the 842.509 and 2211.105 m/z peptides arising from trypsin auto-proteolysis. The resulting mass lists were filtered for contaminant removal: mass matrix-related ions, trypsin autolysis and keratin peaks. Then, peptide mass fingerprinting searching was carried out in the NCBInr database, limited to Danio rerio, by Mascot (Matrix Science Ltd., London, UK, http://www.matrixscience.com). Protein identification was achieved on the basis of corresponding experimental and theoretical peptide fingerprinting patterns with a Δ mass less than 100 ppm and the number of accepted missed cleavage sites set to one. Alkylation of cysteine by carbamidomethylation was assumed as fixed modification, while oxidation of methionine and oxidation of proline were considered as possible modifications. The criteria used to accept identifications included the extent of sequence coverage, number of matched peptides, and probabilistic score.

SRM Analysis

Selected Reaction Monitoring (SRM) analysis

First, LC-MS/MS analysis was done using a LTQ-Orbitrap Velos mass spectrometer. Here, a peptide mixture was introduced into an LC-MS/MS system; the Ultimate 3000 RSLC nano (Dionex, Amsterdam, The Netherlands) in-line connected to an LTQ Orbitrap Velos (Thermo Fisher Scientific, Bremen, Germany). The sample mixture was first loaded on a trapping column (made in-house, 100 µm internal diameter (I.D.) x 20 mm, 5 µm beads C18 Reprosil-HD, Dr. Maisch, Ammerbuch-Entringen, Germany). After flushing from the trapping column, the peptides were loaded on a reverse-phase column (made in-house, 75 µm I.D. x 150 mm, 3 µm beads C18 Reprosil-HD, Dr. Maisch). Peptides were loaded with solvent A and separated with a linear gradient from 98% solvent A' (0.1% formic acid) and 2% solvent B' (0.1% formic acid and 80% acetonitrile) to 55% solvent B' at a flow rate of 300 nl/min followed by a wash reaching 100% solvent B'.

The mass spectrometer was operated in data-dependent mode, automatically switching between MS and MS/MS acquisition for the ten most abundant peaks in a given MS spectrum. In the LTQ-Orbitrap Velos, full scan MS spectra were acquired in the Orbitrap at a target value of 1E6 with a resolution of 60,000. The ten most intense ions were then isolated for fragmentation in the linear ion trap, with a dynamic exclusion of 30 s. Peptides were fragmented after filling the ion trap at a target value of 1E4 ion counts. From the MS/MS data in each LC run, Mascot Generic Files (MGFs, peak lists) were created using the Distiller software (version 2.4.3.3, Matrix Science, www.matrixscience.com/Distiller). These MGFs were then searched using the Mascot search engine (Matrix Science, www.matrixscience.com) in the Mascot Daemon interface (version 2.4, Matrix Science). Spectra were searched against the NCBI database of *zebrafish* proteins. Variable modifications were set to pyro-glutamate formation of N-terminal glutamine, acetylation of the protein N-terminus and methionine oxidation. The mass tolerance on precursor ions was set to ± 10 ppm (with Mascot's C13 option set to 1), and on fragment ions to ± 0.5 Da. The peptide charge was set to 1+,2+,3+ and the instrument setting was put on ESI-TRAP. Enzyme was set to trypsin, allowing for one missed cleavage, and cleavage was also allowed when arginine or lysine were followed by proline. Only peptides that were ranked one and scored above the threshold score, set at 99% confidence, were withheld. All further data management was done with ms_lims².

The nano-LC system was configured with a trapping column (100 µm I.D. x 20 mm, 5 µm beads, C18 Reprosil-HD, Dr. Maisch) and an analytical column (75 µm I.D. x 150 mm, 3 µm beads, C18 Reprosil-HD, Dr. Maisch). Transitions for each peptide were optimized for their collision energy (CE). The 5 most intense transitions were chosen to detect the peptides. In order to approximate the concentration of the peptide in the sample, one sample was run without spike-in of the synthetic peptides. The intensities of the light peptides in the sample were used as an indication for the amount of synthetic peptide that needed to be spiked in. Spike-in concentrations can be found in Supplementary Table S9 Table. For all samples a total volume of 20 µl of synthetic peptides was added, so a final volume of 40 µl was present for analysis. From each sample, 1 µl was injected using a µl pickup method. Injection occurred at 10 µl/min in loading solvent A. After loading, the trapping column was flushed for 3 min in order to pre-concentrate the peptides while removing buffer components, before it was put in-line with the analytical column. Compounds were eluted at 300 nl/min with an acetonitrile gradient of 28 min from 4% to 55% of solvent B'. The column was washed with 90% of solvent B' for 5 min and equilibrated with solvent A' for 14 min before analysis of the next sample. The voltage on the needle in the nano-ESI source was set at 1,300 V and the capillary temperature at 275°C. A dwell time of 41 ms for each transition was applied. Transitions measured for the different peptides are listed in Supplementary Table S9. Peak areas and ratios between the heavy peptide and its light counterpart were calculated with Skyline (v2.6.1.7171, MacCoss Lab Software, University of Washington)³.

In situ hybridization

For each WISH experiment 2 different probes were used per gene and approximately 20 embryos of the same age were stained per probe. Staining was homogenous for different embryos within one group and expression patterns for different probes detecting the same gene where highly comparable. For each gene 4 representative embryos for one of the probes were selected for embedding and sectioning. Sections of all 4 embryos per gene were assessed to determine the average signal intensity (listed in Table 2), which was comparable at the same site in each embryo hybridized for the same gene. For each gene a slide representative for the mean signal intensity at a certain site was selected for illustration in Figure 4b.

¹ Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S. & Mische, S. M. Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. *Electrophoresis* **20**, 601-605, (1999).

² Helsens, K. *et al.* ms_lims, a simple yet powerful open source laboratory information management system for MS-driven proteomics. *Proteomics* **10**, 1261-1264, (2010).

³ MacLean, B. *et al.* Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. *Bioinformatics* **26**, 966-968, (2010).

	Homo sapiens			Mus musculus			Danio rerio		
Gene name	Ensembl ID	Mb from <i>COL1A1</i>	Gene name	Ensembl ID	Mb from <i>Col1a1</i>	Gene name	Ensembl ID	Mb from <i>col1a1a</i>	Mb from <i>col1a1b</i>
B4GALNT2	ENSG00000167080	-1,05	B4galnt2	ENSMUSG0000013418	0,93	b4galnt2.1	ENSDARG00000094579	-0,15	
CNCT2*	ENSC00000167082	0.08	Cnat	ENSMUSC0000029911	0.00	gngt2a	ENSDARG00000010680	-0,13	
GNG12 ·	EIIS00000107085	-0,98	Gngi2	ENSW0300000038811	0,90	gngt2b	ENSDARG0000089997		0,17
ABI3*	ENSC0000108708	0.07	16:3	ENSMUSG0000018381	0.80	abi3	ENSDARG0000060072	10,02	
ADIJ	ENS00000108798	-0,97	ADIS	ENSWI050000018581	0,89	abi3	ENSDARG0000063283		2,59
PHOSPHO1	ENSG00000173868	-0,96	Phospho1	ENSMUSG0000050860	0,89	phospho1	ENSDARG0000008403	-8,10	
ZNF652	ENSG00000198740	-0,89	Zfp652	ENSMUSG0000075595	0,78	znf652	ENSDARG0000062302	-8,13	
PHB	ENSG00000167085	-0,78	Phb	ENSMUSG0000038845	0,73	phb	ENSDARG00000057414	-8,17	
NCED*	ENSC0000064200	0.60	Nofe	ENSMUSCOOOOOOO120	0.63	ngfr	ENSDARG00000088708	-3,47	
NOFK	EIIS0000004300	-0,09	ngjr	ENSW030000000120	0,03	ngfrb	ENSDARG0000032984		7,24
NXPH3	ENSG00000182575	-0,61	Nxph3	ENSMUSG0000046719	0,57	nxph3	ENSDARG00000070694	-3,22	
SPOP	ENSG00000121067	-0,58	Spop	ENSMUSG00000057522	0,48	spop	ENSDARG00000038215	-2,96	
SLC35B1	ENSG00000121073	-0,48	Slc35b1	ENSMUSG0000020873	0,45	slc35b1	ENSDARG0000038213	-2,46	
EAM117A*	ENSC0000121104	0.47	Fam 117a		0.40	fam117a	ENSDARG00000078640	-2,44	
FAMIII/A	EINS00000121104	-0,47	ram11/a	ENSI/10500000058895	0,40	fam117a	ENSDARG00000079252		7,14
KAT7*	ENSC00000136504	0.30	Kat7	ENSMUSG0000038000	0.34	kat7	ENSDARG00000031770		2,98
KAI	ENS00000150504	-0,39	Kui/	ENSI/10500000058909	0,54	kat7	ENSDARG0000070371	9,51	
TAC4	ENSG00000176358	-0,34	Tac4	ENSMUSG0000020872	0,33	/	/	/	/
	ENSC00000108813	0.21	Dlr4	ENSMUSG0000020871	0.20	dlx4a	ENSDARG00000011956	11,24	
DLA4	ENS00000108815	-0,21	$Di\lambda 4$	ENSWI0500000020871	0,20	dlx4b	ENSDARG00000071560		2,37
DLX3	ENSG0000064195	-0,19	Dlx3	ENSMUSG0000001510	0,18	dlx3b	ENSDARG00000014626		2,39
ITCA2*	ENSC0000005884	0.12	Itaa 2	ENSMUSC0000001507	0.11	itga3a	ENSDARG00000037917	11,42	
II GAJ '	EIIS00000003884	-0,15	ngas	ENSI/050000001507	0,11	itga3b	ENSDARG00000012824		2,44
PDK2	ENSG0000005882	-0,09	Pdk2	ENSMUSG0000038967	0,09	pdk2	ENSDARG0000020876		26,42
SAMD14	ENSG00000167100	-0,07	Samd14	ENSMUSG0000047181	0,07	samd14	ENSDARG00000090966		5,17
	ENSC0000108810	0.05	Dnn 1r0h	ENSMI 18C0000028076	0.05	ppp1r9b2	ENSDARG00000076431		6,76
ΓΓΓΊΚΥΟ*	E11200000108819	-0,03	грртчо	EU9MO9000000393/0	0,05	ppp1r9b	ENSDARG00000079366	0,03	
SGCA	ENSG00000108823	-0,02	Sgca	ENSMUSG0000001508	0,03	sgca	ENSDARG00000074156		-0,02
COLIA1	ENSG00000108821	0,00	Col1a1	ENSMUSG0000001506	0,00	col1a1a	ENSDARG00000012405	0,00	

						col1a1b	ENSDARG00000035809		0,00
TMEM92	ENSG00000167105	0,09	Tmem92	ENSMUSG0000075610	-0,16	/	/	/	/
XYLT2	ENSG00000015532	0,16	Xylt2	ENSMUSG0000020868	-0,27	xylt2	ENSDARG00000059557	37,07	
MRPL27	ENSG00000108826	0,18	Mrpl27	ENSMUSG0000024414	-0,28	mrpl27	ENSDARG0000032985		19,35
EME1	ENSG00000154920	0,19	Emel	ENSMUSG0000039055	-0,29	eme1	ENSDARG00000076913		19,34
LRRC59	ENSG00000108829	0,19	Lrrc59	ENSMUSG0000020869	-0,31	lrrc59	ENSDARG00000071426		29,78
ACSF2	ENSG00000167107	0,24	Acsf2	ENSMUSG0000076435	-0,38	acsf2	ENSDARG0000061201		24,38
CHAD	ENSG00000136457	0,28	Chad	ENSMUSG0000039084	-0,37	chad	ENSDARG00000045071		24,40
RSAD1	ENSG00000136444	0,30	Rsad1	ENSMUSG0000039096	-0,40	rsad1	ENSDARG00000077698	24,08	
MYCBPAP	ENSG00000136449	0,33	Mycbpap	ENSMUSG0000039110	-0,43	mycbpap	ENSDARG00000069194	1:57700573-57748929	
EPN3	ENSG00000049283	0,35	Epn3	ENSMUSG0000010080	-0,45	epn3	ENSDARG00000078953	23,98	
SPATA20	ENSG0000006282	0,36	Spata20	ENSMUSG0000020867	-0,46	spata20	ENSDARG00000013880		25,47
CACNAIG	ENSG0000006283	0,38	Cacnalg	ENSMUSG0000020866	-0,53	cacnalg	ENSDARG00000089913		25,59
ABCC3	ENSG00000108846	0,45	Abcc3	ENSMUSG0000020865	-0,59	abcc3	ENSDARG00000077243		-2,79
ANKRD40	ENSG00000154945	0,51	Ankrd40	ENSMUSG0000020864	-0,61	ankrd40	ENSDARG00000076490	-5,72	
LUC7L3	ENSG00000108848	0,54	Luc7l3	ENSMUSG0000020863	-0,65	luc7l3	ENSDARG00000014366	36,16	
WEIVEND*	ENSC00000172714	0.65	Webberg	ENEMIISC0000044177	0.70	wfikkn2a	ENSDARG00000013460	-5,69	
WFIKKIV2	ENS00000173714	0,05	wjikkn2	ENSIVIUS000000441/7	-0,70	wfikkn2	ENSDARG00000059139		-2,69
TOP1*	ENSC00000141222	0.69	Tabl	ENSMUSC0000027572	-0,72	tob1a	ENSDARG00000032619	-5,60	
TOBI	EINS00000141252	0,08	1001	EINSIMUSC00000037373		tob1b	ENSDARG00000021372		-2,64
SPAG9*	ENSG0000008294	0,78	Spag9	ENSMUSG0000020859	-0,94	cabz1073118. 1	ENSDARG00000078142		-2,57
		-				spag9a	ENSDARG00000074531	-5,48	
NME1	ENSG00000239672	0,97	Nmel	ENSMUSG0000037601	-0,98	nmo2h 2	ENSD & P.G00000076802	10.40813	241 40861384
NME2	ENSG00000011052	0,97	Gm20390	ENSMUSG0000091228	-0,99	nme20.2	EIISDAR00000070892	241-47001304	

*genes flanking *COL1A1* that have orthologs located in both zebrafish chromosome 3 and chromosome 12

Supplementary Table S2. List of genes flanking human COL1A2

	Homo sapiens			Mus musculus			Danio rerio	
Gene Name	Ensembl ID	Mb from <i>COL1A2</i>	Gene name	Ensembl ID	Mb from <i>Col1a2</i>	Gene name	Ensembl ID	Mb from col1a2
						cabz01010098.1	ENSDARG0000086145	-41,47
AKAP9 #	ENSG00000127914	-2,45	Akap9	ENSMUSG0000040407	5:3928054-4080209	akap9	ENSDARG00000079610	-41,41
						cabz01010103.1	ENSDARG00000077668	-41,45
<i>CYP51A1</i> #	ENSG0000001630	-2,28	Cyp51	ENSMUSG0000001467	5:4081145-4104746	cyp51	ENSDARG00000042641	-41,37
LRRD1	ENSG00000240720	-2,28	Lrrd1	ENSMUSG0000040367	5:3845173-3866596	ascl1b	ENSDARG0000009702	7:51153042-51174183
KRIT1 #	ENSG0000001631	-2,20	Krit1	ENSMUSG0000000600	5:3803165-3844515	krit1	ENSDARG00000036115	5,96
ANKIB1 #	ENSG0000001629	-2,15	Ankib1	ENSMUSG0000040351	5:3690000-3803109	ankib1a	ENSDARG00000060768	3,47
GATAD1 #	ENSG00000157259	-1,95	Gatad1	ENSMUSG0000007415	5:3632932-3647934	gatad1	ENSDARG00000027612	3,53
ERVW-1	ENSG00000242950	-1,93	/	/	/	/	/	/
PEX1 #	ENSG00000127980	-1,91	Pex1	ENSMUSG0000005907	5:3596066-3637232	pexl	ENSDARG00000076647	-6,73
RBM48 #	ENSG00000127993	-1,87	Rbm48	ENSMUSG0000040302	5:3583978-3596585	rbm48	ENSDARG00000033754	-0,81
FAM133B #	ENSG00000234545	-1,83	Fam133b	ENSMUSG0000058503	5:3543844-3569810	fam133b	ENSDARG00000013863	-0,65
CDK6 #	ENSG00000105810	-1,79	Cdk6	ENSMUSG0000040274	5:3343893-3523218	cdk6	ENSDARG00000070228	-0,73
SAMD9	ENSG00000205413	-1,30	/	/	/	com d01	ENSD & P.C.0000005065	1:40549425-40570211
SAMD9L	ENSG00000177409	-1,26	Samd9l	ENSMUSG0000047735	-1,13	Salliu91	ENSDAR00000095005	
HEPACAM2 #	ENSG00000188175	-1,21	Hepacam2	ENSMUSG0000044156	-1,05	hepacam2	ENSDARG00000061365	-0,63
CCDC132 #	ENSC0000004766	1 16	Cadal22	ENISMUSC0000001276	1.01	ccdc132	ENSDARG00000096912	-0,60
CCDC132 #	ENS0000004700	-1,10	Ceae132	ENSW030000001370	-1,01	ccdc132	ENSDARG0000002880	-0,60
CALCR #	ENSG0000004948	-0,97	Calcr	ENSMUSG0000023964	-0,82	calcr	ENSDARG00000028845	-0,27
GNGT1 #	ENSG00000127928	-0,80	Gngtl	ENSMUSG0000029663	-0,51	gngtl	ENSDARG00000035798	-0,13
TFPI2 #	ENSG00000105825	-0,51	Tfpi2	ENSMUSG0000029664	-0,54	tfpi2	ENSDARG00000061351	-0,14
GNG11 #	ENSG00000127920	-0,47	Gng11	ENSMUSG0000032766	-0,50	gngt1	ENSDARG00000035798	-0,13
BET1 #	ENSG00000105829	-0,43	Bet1	ENSMUSG0000032757	-0,43	bet1	ENSDARG00000034885	-0,08
COL1A2	ENSG00000164692	0,00	Col1a2	ENSMUSG0000029661	0,00	col1a2	ENSDARG00000020007	0,00
CASD1 #	ENSG00000127995	0,11	Casd1	ENSMUSG0000015189	0,10	casd1	ENSDARG00000023900	0,02
SGCE #	ENSG00000127990	0,19	Sgce	ENSMUSG0000004631	0,17	sgce	ENSDARG00000012138	0,06
PEG10	ENSG00000242265	0,26	Peg10	ENSMUSG0000092035	0,24	/	/	/
PPP1R9A #	ENSG00000158528	0,51	Ppp1r9a	ENSMUSG0000032827	0,40	ppp1r9a	ENSDARG00000061304	0,09
PONI	ENSG0000005421	0,90	Pon1	ENSMUSG0000002588	0,66	pon1	ENSDARG00000032496	16:26885893-26895558

PON3	ENSG00000105852	0,97	Pon3	ENSMUSG0000029759	0,72	zgc:174637	ENSDARG00000040290	16:26896251-26907913
PON2	ENSG00000105854	1,01	Pon2	ENSMUSG0000032667	0,76	pon2	ENSDARG00000016856	16:26909176-26912212
ASB4 #	ENSG0000005981	1,08	Asb4	ENSMUSG0000042607	0,88	asb4	ENSDARG00000034988	0,19
PDK4 #	ENSG0000004799	1,19	Pdk4	ENSMUSG0000019577	0,98	pdk4	ENSDARG00000054848	0,21
DYNC111	ENSG00000158560	1,38	Dync1i1	ENSMUSG0000029757	1,22	dync1i1	ENSDARG0000060948	16:27556254-27577115
SLC25A13 #	ENSG0000004864	1,73	Slc25a13	ENSMUSG0000015112	1,54	slc25a13	ENSDARG00000070172	0,31
SHFM1	ENSG00000127922	2,09	/	/	/	/	/	/
DLX6 #	ENSG0000006377	2,61	Dlx6	ENSMUSG0000029754	2,36	dlx6a	ENSDARG00000042291	0,45
DLX5 #	ENSG00000105880	2,63	Dlx5	ENSMUSG0000029755	2,37	dlx5a	ENSDARG00000042296	0,50
ACN9 #	ENSG00000196636	2,72	Acn9	ENSMUSG0000042505	2,45	acn9	ENSDARG00000036092	-15,93
TAC1 #	ENSG0000006128	3,34	Tacl	ENSMUSG0000061762	3,05	tac1	ENSDARG00000014490	-15,81
ASNS #	ENSG0000070669	3,46	Asns	ENSMUSG0000029752	3,17	asns	ENSDARG00000016375	-15,80
OCM2	ENSG0000135175	3 50	Ocm	ENSMUSG0000029618	5:144019804-	pvalb8	ENSDARG0000037790	3:61763106-61771637
OCM2	ENS00000155175	5,57	00m	ENSINES60000029018	144026670	pvalb9	ENSDARG00000071601	12:18763656-18766066
LMTK2	ENSG00000164715	3,71	Lmtk2	ENSMUSG0000038970	5:144100436- 144188204	lmtk2	ENSDARG00000076324	3:61830081-61897661
BHLHA15	ENSG00000180535	3,82	Bhlha15	ENSMUSG0000052271	5:144190286- 144194441	bhlha15	ENSDARG00000045166	12:18822354-18824381

genes flanking *COL1A2* that are located in the same chromosome of zebrafish *col1a2* (chromosome 19)

Supplementary Table S3. Content of GG+GGG and GPP repeats in human, murine and

	GG + GGG	GPP
<i>H. sapiens</i> α1(I)	3	41
<i>H. sapiens</i> α2(I)	3	26
<i>M. musculus</i> α1(I)	3	41
<i>M. musculus</i> α2(I)	4	21
D. rerio α1(I)	5	31
D. rerio α2(I)	6	19
D. rerio α3(I)	12	26

zebrafish type I collagen α chains.

Supplementary Table S4. Mass spectrometry analysis of pepsin soluble collagen extracted from 48 hpf embryos and separated by 1D electrophoresis.

			N	lascot searc	ot search resultsNo. of atched eptidesSequence coverage (%)37/733824/7324
Band ID	Protein description	NCBI ID	Score	No. of matched peptides	Sequence coverage (%)
Α	Collagen, type I, alpha 1	gi 38649122	140	37/73	38
	Collagen alpha-1(II) chain isoform X2	gi 528487168	65	24/73	24
В	Collagen, type I, alpha 1	gi 38649122	163	25/43	24
	Collagen, type I, alpha 3	gi 42542708	117	24/43	23
С	Collagen alpha-2(I) chain precursor	gi 48762667	189	30/37	32

SDS INGLU	SDS I HOL of conagen extracted if on adult dissues								
	Reducing conditions*	Non reducing conditions							
Skin ASC	1.89 ± 0.20	2.18 ± 0.31							
Skin PSC	2.09 ± 0.44	2.00 ± 0.29							
Scales ASC	1.79 ± 0.45	2.21 ± 0.47							
Scales PSC	2.24 ± 0.26	2.03 ± 0.19							
Bone ASC	2.26 ± 0.27	2.10 ± 0.21							
Bone PSC	2.09 ± 0.43	2.16 ± 0.40							

Supplementary Table S5. α 1- α 3 / α 2 ratio based on densitometric analysis performed on 1D SDS-PAGE of collagen extracted from adult tissues

* In presence of 0.1 mM DTT

Supplementary Table S6. Mass spectrometry analysis of adult pepsin soluble collagen separated by 1D electrophoresis.

				Mascot search	results					
Band ID	Protein description	NCBI ID	Score	No. of matched peptides	Sequence coverage (%)					
Bone										
D	Col1a1 protein	gi 171846460	87	41/85	36					
	Collagen alpha-2(I) chain precursor	gi 48762667	84	34/85	39					
	Collagen, type I, alpha 3	gi 42542708	60	33/85	30					
Е	Colla1 protein	gi 171846460	160	42/62	36					
	Collagen, type I, alpha 3	gi 42542708	79	30/63	27					
F	Collagen alpha-2(I) chain precursor	gi 48762667	150	19/20	29					
Skin										
D	Colla1 protein	gi 171846460	107	41/87	39					
	Collagen alpha-2(I) chain precursor	gi 42542708	90	33/87	33					
	Collagen, type I, alpha 3	gi 42542708	78	36/87	32					
Е	Collal protein	gi 171846460	126	36/53	34					
	Collagen, type I, alpha 3	gi 42542708	103	31/53	30					
F	Collagen alpha-2(I) chain precursor	gi 48762667	157	19/20	29					
		Scales								
D	Collal protein	gi 171846460	86	42/97	38					
	Collagen alpha-2(I) chain precursor	gi 42542708	126	42/97	44					
	Collagen, type I, alpha 3	gi 42542708	82	39/97	34					
Е	Collal protein	gi 171846460	131	40/66	36					
	Collagen, type I, alpha 3	gi 42542708	120	37/66	38					
F	Collagen alpha-2(I) chain precursor	gi 48762667	144	19/21	28					

Supplementary Table S7. Mass spectrometry analysis of adult pepsin soluble collagen from scales separated by 2D electrophoresis.

]	Mascot searc	ch results
Spot	Protoin description	NCDLID		No. of	Common
number	Protein description	NCBI ID	Score	matched	Sequence
				peptides	coverage (%)
1	Collagen alpha-2(I) chain precursor	gi 48762667	69	20/46	25
	Collagen, type I, alpha 3	gi 42542708	68	21/46	21
	Collal protein	gi 171846460	67	21/46	21
2	Collagen, type I, alpha 3	gi 42542708	75	25/62	25
	Collal protein	gi 171846460	74	24/62	28
	Collagen alpha-2(I) chain precursor	gi 48762667	66	22/62	23
3	Col1a1 protein	gi 171846460	102	20/31	22
	Collagen, type I, alpha 3	gi 42542708	96	19/31	19
4	Col1a1 protein	gi 171846460	88	18/28	23
	Collagen, type I, alpha 3	gi 42542708	88	17/28	22
5	Collagen, type I, alpha 3	gi 42542708	116	22/35	28
	Col1a1 protein	gi 171846460	93	22/35	26
6	Collagen, type I, alpha 3	gi 42542708	114	23/35	22
	Col1a1 protein	gi 171846460	102	22/35	27
7	Col1a1 protein	gi 171846460	161	39/64	35
	Collagen, type I, alpha 3	gi 42542708	121	34/64	33
8	Col1a1 protein	gi 171846460	98	22/34	22
	Collagen, type I, alpha 3	gi 42542708	94	20/34	22
9	Col1a1 protein	gi 171846460	111	33/53	30
	Collagen, type I, alpha 3	gi 42542708	89	27/53	27
10	Collagen alpha-2(I) chain precursor	gi 48762667	97	26/59	31
	Collal protein	gi 171846460	74	28/59	30
	Collagen, type I, alpha 3	gi 42542708	71	26/59	27
11	Procollagen type I alpha 2 chain	gi 15209312	117	16/21	18
12	Collagen alpha-2(I) chain precursor	gi 48762667	133	34/65	34
	Collagen, type I, alpha 3	gi 42542708	89	29/65	29
13	Collagen alpha-2(I) chain precursor	gi 48762667	81	35/85	35
	Collagen, type I, alpha 3	gi 42542708	76	34/85	31
14	Collagen alpha-2(I) chain precursor	gi 48762667	152	39/72	42
	Collagen, type I, alpha 3	gi 42542708	80	30/72	29
15	Collagen alpha-2(I) chain precursor	gi 48762667	157	44/83	42
	Collagen, type I, alpha 3	gi 42542708	81	35/83	31
	Collal protein	gi 171846460	62	32/83	31
16	Collagen alpha-2(I) chain precursor	gi 48762667	139	43/84	43
	Colla1 protein	gi 171846460	77	35/84	32
	Collagen, type I, alpha 3	gi 42542708	73	33/84	30
17	Collagen alpha-2(I) chain precursor	g1 48762667	147	45/88	45
	Collal protein	gi 171846460	74	36/88	31
18	Collagen alpha-2(1) chain precursor	g1 48762667	114	26/47	35
	Collal protein	gi 171846460	59	21/47	24
19	Collagen alpha-2(1) chain precursor	g1 48762667	103	23/41	29
• •	Collal protein	gi 171846460	63	20/41	20
20	Collagen alpha-2(I) chain precursor	g1 48762667	124	28/49	27
	Collal protein	g1 171846460	63	20/49	22

21	Collagen alpha-2(I) chain precursor	gi 48762667	153	31/51	37
22	Collagen, type I, alpha 3	gi 42542708	159	38/67	38
	Col1a1 protein	gi 171846460	158	41/67	40
23	Collal protein	gi 171846460	158	56/94	47
	Collagen, type I, alpha 3	gi 42542708	129	51/94	38
24	Col1a1 protein	gi 171846460	176	59/97	48
	Collagen, type I, alpha 3	gi 42542708	121	50/97	39
25	Col1a1 protein	gi 171846460	175	57/97	48
	Collagen, type I, alpha 3	gi 42542708	116	45/97	39
26	Col1a1 protein	gi 171846460	181	41/57	37
	Collagen, type I, alpha 3	gi 42542708	86	27/57	27
27	Collagen alpha-2(I) chain precursor	gi 48762667	242	38/46	41
28	Collagen alpha-2(I) chain precursor	gi 48762667	285	56/73	48
29	Collagen alpha-2(I) chain precursor	gi 48762667	247	51/71	43
30	Collagen alpha-2(I) chain precursor	gi 48762667	259	33/35	34
31	Collagen alpha-2(I) chain precursor	gi 48762667	249	34/40	38

Supplementary Table S8. Theoretic and experimental values obtained from aminoacid analysis of zebrafish $\alpha 1, \alpha 2$ and $\alpha 3$ chains of type I collagen and type I collagen extracted from skin, bone and scales, respectively.

	Т	'heoretic	Values			Expe	erimental V	alues
	MW	α1(I)	α2(I)	α3(I)		Skin	Bone	Scales
Asp	133,103	25	25	29	Asp + Asn*	45 ± 2	42 ± 1	46 ± 1
Glu	147,130	53	39	48	Glu + Gln*	73 ± 2	73 ± 3	76 ± 2
His	155,157	2	5	3	His	2	2 ± 1	2
Cys	162,109	0	0	0	Cys	0	0	0
Lys	146,190	35	31	32	Lys	14 ± 2	16 ±2	16 ±1
Arg	174,204	53	55	54	Arg	54	54	54
Нур	131,131	100	84	101	Нур	112 ± 11	114 ± 22	110 ± 9
Ser	105,093	31	41	43	Ser	24 ± 2	21 ± 3	27 ± 2
Thr	119,120	27	21	22	Thr	24 ± 2	29 ± 3	30 ± 1
Tyr	181,191	0	2	0	Tyr	2 ± 1	2	2 ± 1
Hyl					Hyl	4 ± 2	5 ± 1	5 ± 1
Gly	75,067	346	347	352	Gly	346 ± 10	344 ± 9	338 ± 5
Asn	132,119	15	28	17				
Gln	146,146	22	23	18				
Ala	89,094	138	113	118	Ala	126 ± 2	129 ± 2	126 ± 2
Phe	165,192	13	9	11	Phe	13 ± 1	12 ±1	13 ±1
Ile	131,175	12	14	8	Ile	13 ± 1	12 ± 1	13 ± 2
Leu	131,175	13	30	22	Leu	23 ±1	22 ± 2	24 ± 2
Met	149,208	14	12	15	Met	9 ± 1	6 ± 1	4 ± 1
Pro	115,132	103	112	108	Pro	113 ± 20	117 ± 16	111 ± 11
Val	117,148	15	26	16	Val	20 ± 1	17 ± 1	21 ± 1
		1017	1017	1017		1017	1017	1017

*due to acidic hydrolysis

Supplementary Table S9. Selective Reaction Monitoring (SRM) synthetic peptides

Protein	Synthetic Peptide Sequence	precurso r m/z	fragment m/z	Collision energy (eV)	amount of heavy peptide spiked (fmol)
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	714.355	232.14	29	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	714.355	544.284	27	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	714.355	748.374	29	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	714.355	849.421	27	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	714.355	977.48	28	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	714.355	1.074.533	29	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	717.362	232.14	29	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	717.362	544.284	27	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	717.362	748.374	29	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	717.362	849.421	27	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	717.362	977.48	28	8.333
Type I collagen alpha 1	GAAGPPGATGFP[+16.0]GAAGR	717.362	1.080.546	29	8.333
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	544.76	400.23	24	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	544.76	528.289	24	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	544.76	643.316	22	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	544.76	714.353	23	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	544.76	884.422	16	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	547.767	406.244	24	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	547.767	534.303	24	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	547.767	649.33	22	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	547.767	720.367	23	50
Type I collagen alpha 1	GFP[+16.0]GADGAAGPR	547.767	890.436	16	50
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.066.528	417.22	40	100
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.066.528	982.506	40	100
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.066.528	1.152.612	40	100
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.066.528	1.320.702	40	100

Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.066.528	1.377.723	40	100
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.071.532	427.229	40	100
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.071.532	992.515	40	100
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.071.532	1162.62	40	100
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.071.532	1330.71	40	100
Type I collagen alpha 1	GNPGAEGATGPAGIP[+16.0]GPQGIGGQR	1.071.532	1.387.732	40	100
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	914.945	147.113	35	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	914.945	204.134	35	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	914.945	372.224	35	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	914.945	623.351	34	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	914.945	906.468	35	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	918.952	155.127	35	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	918.952	212.148	35	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	918.952	380.238	35	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	918.952	631.365	34	41.666
Type I collagen alpha 1	VGPPGP[+16.0]SGNSGP[+16.0]P[+16.0]GPPGPAGK	918.952	914.482	35	41.666
Type I collagen alpha 3	GFGGLAGPSGEPGK	615.809	204.134	26	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	615.809	301.187	26	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	615.809	671.336	19	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	615.809	728.357	19	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	615.809	799.394	19	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	619.318	204.134	26	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	619.318	301.187	26	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	619.318	671.336	19	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	619.318	728.357	19	0.5
Type I collagen alpha 3	GFGGLAGPSGEPGK	619.318	799.394	19	0.5
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	715.345	232.14	28	37.6
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	715.345	544.284	28	37.6
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	715.345	748.374	27	37.6
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	715.345	849.421	26	37.6
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	715.345	1.090.528	29	37.6
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	718.351	232.14	28	37.6

Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	718.351	544.284	28	37.6
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	718.351	748.374	27	37.6
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	718.351	849.421	26	37.6
Type I collagen alpha 3	GGAGPP[+16.0]GATGFP[+16.0]GAAGR	718.351	1.090.528	29	37.6
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.275.086	147.113	45	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.275.086	275.171	44	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.275.086	346.208	42	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.275.086	573.299	45	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.275.086	987.489	46	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.279.093	155.127	45	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.279.093	283.186	44	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.279.093	354.223	42	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.279.093	581.313	45	1000
Type I collagen alpha 3	GNDGNTGAAGP[+16.0]PGPTGPAGPP[+16.0]GFP[+16.0]GGAGAK	1.279.093	995.504	46	1000
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	887.442	204.134	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	887.442	388.219	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	887.442	445.241	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	887.442	894.468	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	887.442	1.038.521	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	891.449	212.148	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	891.449	396.233	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	891.449	453.255	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	891.449	902.482	35	3.57
Type I collagen alpha 3	VGP[+16.0]PGPSGASGPPGPTGP[+16.0]AGK	891.449	1.046.536	35	3.57

Peptides selected for spike-in are highlighted in yellow.

[+16.0] in the peptide sequence indicates the hydroxylation of the Proline residue

Supplementary Figure 1. Expression of collagen type I genes in early zebrafish development. Relative expression values were normalized to maximum expression values for each gene and depicted in the y-axis. Only low levels of maternal transcripts can be detected for the three collagen type I genes. An expression peak for all three genes is detected at 72-96 hpf.

