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Supplemental Experimental Procedures 
1. Biospecimens 
Authors: Jay Bowen, Kristen M. Leraas, Tara M. Lichtenberg 

Correspondence and questions should be directed to: Jay Bowen 

(jay.Bowen@nationwidechildrens.org) 

Biospecimens were collected from patients diagnosed with low grade gliomas (LGG) and 

glioblastoma multiforme (GBM) undergoing surgical resection. 

The case list freeze included 1122 cases comprising 516 LGG and 606 GBM. Samples were from 

the following 32 tissue source sites: Asterand (n=2); Case Western (n=188); Cedars Sinai (n=34); 

CHI-Penrose Colorado (n=2); Christiana Healthcare (n=12); Cureline (n=26); Dept of Neurosurgery 

at University of Heidelberg (n=48); Duke University (n=90); Emory University (n=44); Fondazione-

Besta (QH) (n=38); Greenville Health System (n=1); Hartford (n=2); Henry Ford Hospital (n=243); 

Huntsman Cancer Institute (n=8); International Genomics Consortium (n=2); John Wayne Cancer 

Center (n=2); Johns Hopkins (n=7); Mayo Clinic (n=39); MD Anderson Cancer Center (n=101); 

Memorial Sloan Kettering Cancer Center (n=15); Northwestern University (n=2); St. Joseph AZ 

(n=30); Swedish Neurosciences (n=6); The University of New South Wales (n=19); Thomas 

Jefferson University (n=44); Toronto Western Hospital (n=14); University of California San Francisco 

(n=50); University of Florida (n=30); University of Kansas (n=1); University of Miami (n=3); University 

of North Carolina (n=2); University of Sao Paulo (n=17). 

Samples were acquired and processed according to previous descriptions (Brennan et al., 2013; 

TCGA_Network, 2015). 

A detailed list of clinical and molecular data elements is included in Table S1 and reflects the clinical 

data package frozen on 05/01/2015. Clinical data elements comprise histology, grade, gender, age 

at diagnosis/surgery, treatments, vital status, overall and progression-free survival. Clinical data 

available at the BCR was manually curated. Where possible, additional de-identified follow-up data 

were requested from TSSs through BCR and manually added into the clinical data freeze package. 

Overall survival was defined as the time from surgical diagnosis until death. Cases that were still 

alive at the time of this study have overall survival time censored at the time of last follow-up. 

Survival curves were estimated and plotted using the Kaplan-Meier method. Log-rank tests were 

used to compare curves between groups. Single-predictor and multiple-predictor models were fit 

using Cox regression under the proportional hazards assumption. Hazard ratios and 95% 

confidence intervals are reported. Nested models were compared using the likelihood ratio test 

(LRT). Harrell’s concordance index (C-index) was used to assess and report model performance 
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(Harrell et al., 1982). These analyses were conducted in R (v 3.1.2) using the survival package 

(Therneau, 2014; Therneau and Grambsch, 2000). 

      

2. DNA sequencing 
Authors: Floris Barthel, Bradley Murray, Siyuan Zheng, Roel Verhaak 

Correspondence and questions should be directed to: Roel Verhaak 

(rverhaak@mdanderson.org)   

2.1 DNA sequencing data production 
Whole exome, whole genome and targeted validation and TERT promoter sequencing (including 

low-pass sequencing) was performed as previously described (Brennan et al., 2013; Cancer 

Genome Atlas Research, 2015; Verhaak et al., 2010).  

 
Platform Center Disease Exome capture kit Read length Paired samples 
Illumina HiSeq BI GBM Agilent Sure-Sel  

Human All Exon v2  
44Mb kit 

2 x 76 bp 307 

Illumina HiSeq BI LGG Agilent Sure-Sel  
Human All Exon v2  
44Mb kit 

2 x 76 bp 513 

Union     820 
Whole exome sequencing 
 
Platform Center Disease Libraries Read length Paired samples 
Illumina HiSeq  BI GBM 2-59 2 x 101 bp 38 
Illumina HiSeq BI LGG 3-11 2 x 101 bp 20 
Illumina HiSeq WUGSC GBM 16-167 100 bp 13 
Illumina HiSeq HMS-RK LGG 1 2 x 51 bp 52 
Union     123 
Whole genome sequencing (including low-pass) 
 
2.2 Identification of somatic mutations 
The Broad Institute’s Firehose cancer genome analysis pipeline used BAM files for tumor and 

matched normal samples to perform quality control, local realignment coverage calculations and 

others on whole exome sequencing (Table 1) as described (Imielinski et al., 2012). For the 

identification of somatic single nucleotide variations we used a multicenter approach integrating the 

output of three different somatic mutation algorithms:  MuTect (Cibulskis et al., 2013), RADIA 

(Radenbaugh et al., 2014) and Varscan (Koboldt et al., 2012). MAF files from each mutation calling 

algorithm were integrated in a unique MAF file considering those mutations that were called at least 
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by two of the three considered methods. The integrated MAF contains 28637 somatic mutation 

called by all the methods, 5559 called by MuTect and VarScan, 7971 called by MuTect and RADIA 

and 730 called by VarScan and RADIA. Similarly, for the detection of somatic insertions and 

deletions we intersected the calls produced by Indelocator and Varscan algorithms obtaining 1956 

high confidence indels. 

2.3 Identification of IDH mutations 
In order to expand the annotation of IDH status in our cohort, previously reported (Cancer Genome 

Atlas Research, 2008) mutation calls on Sanger sequenced DNA and exome sequencing of whole 

genome amplified DNA were used. Sanger sequencing and whole exome sequencing of whole 

genome amplified DNA was performed as previously described (Brennan et al., 2013; Cancer 

Genome Atlas Research, 2008; Verhaak et al., 2010). Except for bona fide IDH1/2 mutations, no 

other mutations were called on these platforms.  

Platform Center Aliquot Disease Paired samples 
ABI WUGSC DNA GBM 158 
Illumina  BI WGA GBM 163 
Union*    174 
Additional data used to determine IDH mutation status. 
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2.4 Identification of TERT promoter mutations 
Targeted sequencing at the TERT promoter region (Chr5:1295150-1295300) was performed on a 

subset of 287 cases as previously described (Cancer Genome Atlas Research, 2015). Additionally, 

we evaluated whole genome sequencing (including low-pass) for the presence of somatic variants 

using GATK pileup. We required a minimum coverage of at least 6 bp and a minimum variant allele 

faction of 15% for detection of TERT promoter mutations. A total of 328 cases had sufficient 

coverage to detect a mutation and 162 cases showed a somatic mutation at one of three sites. 

 

Nucleotide change Site Paired samples 
A161C Chr5:1295161 2 
C228T Chr5:1295228 121* 
C250T Chr5:1295250 39* 
*One case showed mutations in both C250T and C228T 
 

2.5 Mutation significant analysis 
Significantly mutated genes were identified using the MutSigCV algorithm. Analyses were conducted 

on the entire sample set (n=820) accept a single hypermutator phenotype (TCGA-DU-6392). Intronic 

mutations were excluded. A mutation blacklist was applied for remove potential technical artifacts 

(Lawrence et al., 2013b). Genes with a q-value less than 0.1 were considered significant. 

 

2.6 Telomere quantification  
Quantification of telomere length was performed using the TelSeq tool (Ding et al., 2014). This tool 

counts the number of reads containing any (range 0 to k) amount of telomeric repeats (nk), or 

TTAGGG, and then computes the estimated telomere length in bp l further based on the average 

chromosome length in bp c and the total coverage s. 

1) 𝑙 = 𝑐 × 𝑛𝑘
𝑠

 

The authors recommend a k of 7 based on their experimentally validated results. Given that TelSeq 

was not designed for cancer, it does not take into account tumor ploidy and purity. We have 

therefore modified the TelSeq computation to consider tumor purity p and ploidy 𝜏: 

2) 𝑛𝑘
𝑠

= 𝑙𝑡×𝜏×𝑝+𝑙𝑛×(1−𝑝)
𝜏×𝑐×𝑝+𝑐 ×(1−𝑝)

 

Because p and 𝜏 are given by the ABSOLUTE analysis (Carter et al., 2012), solving 𝑙𝑡 is 

straightforward, whereas 𝑙𝑛 can be calculated using 1) above. 

The average chromosome length c is calculated as follows: 

3) 𝑐 = 46 𝐺⁄  
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Here G is the total genome length and 46 is the expected number of chromosomes. Because GC 

content is a potential confounding factor, G was set to the genome length in bp with GC content 

between 48% and 52%. The average coverage s is adjusted in a similar fashion. 

 

2.7 Whole genome mutation calling 
MuTect (Cibulskis et al., 2013) was used to call somatic mutations on 89 matched primary tumor-

normal pairs. We required a minimum coverage of 14 in the tumor sample and 8 in the normal 

sample. Variants known to dbSNP v132 and unknown to COSMIC v54 were filtered resulting in 

714,305 variants. Using these samples we used overlapping RNA-seq expression data to form an 

integrated dataset of 67 pairs (29 GBM, 38 LGG).  In order to identify potential promoter sites we 

used the GENCODE v19 transcript annotation (n= 196,520 transcripts) and used a subset of 24,001 

transcripts that have an exact UniProt database match and has been curated according to known 

clinically relevant protein changes (Ramos et al., 2015). We then reduced the transcripts down to 

one transcript per gene (n=17,722 transcripts). For each remaining transcript we then took a region 

spanning from 2,000 bp upstream of the transcription start site and 200 bp into the coding region. 

We then determined overlapping mutations for each region using the Bioconductor package 

"GenomicRanges" (Lawrence et al., 2013a). We removed regions with hits from less than 7 unique 

samples, removed regions which were upstream of genes lacking RNA-seq counts or counts that 

were lacking any variability, removed regions in which the variants had a median of read count of 1 

or more alternate reads in the matching normal. This filtering resulted in 141 mutations across 12 

putative promoter regions (Table S2E). For each of the remaining gene promoter regions we then 

performed a t-test and a mann-whitney-U test comparing the log2 normalized gene expression 

counts in mutant cases to wild type cases. When we subsequently filtered out promoter regions with 

a Benjamini-Hochberg adjusted gene expression correlation Q-value < 0.05 only three promoter 

regions remained including TERT, TRIM28 and CACNG6. 

 

3. DNA copy number analyisis 
Authors: Bradley Murray, Floris Barthel, Roel Verhaak 

Correspondence and questions should be directed to: Roel Verhaak 

(rverhaak@mdanderson.org)   

3.1 Preprocessing and peak calling 
Tumor and normal samples were profiled on Affymetrix SNP6.0 GeneChip arrays and subsequently 

processed into genome segmentation files (McCarroll et al., 2008). The tool GISTIC 2.0 was then 

used to identify significantly reoccurring focal and broad copy number changes (Mermel et al., 
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2011). Events with a Q-value < 0.10 were considered significant. In order to identify low-frequent 

subtype specific events, we ran GISTIC both across the entire cohort (n=1084) and smaller subsets 

within DNA methylation clusters (n=6 groups), RNA expression clusters (n=4 groups) and IDH-codel 

subtypes (n=3 groups). For each statistically significant peak, GISTIC 2.0 indicates a narrow focal 

peak and a wider surrounding peak. We intersected all overlapping focal peaks across all GISTIC 

run and identified 57 disjoint amplified regions and 105 deleted regions. Using this method, while 

drastically limiting the number of genes compared to using the wide peak boundaries, we were still 

about to find 80% of genes that were considered as potential tumor drivers in previous studies. 

Genes previously suggested as tumor drivers not found using this method include IRS2 gain, 

LSAMP loss and KDR/KIT gain (the neighboring oncogene PDGFRA however was still found). In 

order to further narrow down the list of genes per peak and to identify potential tumor drivers, we 

sought to correlate copy number change to gene expression and prioritized genes in which we found 

significant mutations. Using this method, we were able find evidence for several new tumor drivers 

including GIGYF2 loss, ERRFI1 loss, ARID2 loss and FGFR2 gain. For the complete list of peaks, 

genes and their mutation and expression correlates see Table S2B. 

 

3.2 Functional Copy Number (CN) analysis 
Authors: Pietro Zoppoli, Antonio Iavarone 

Correspondence and questions should be directed to: Pietro Zoppoli 

(zoppoli@icg.cpmc.columbia.edu) 

In order to define the functional copy number (fCN) genes we calculated the spearman’s correlation 

between the copy number and the expression of each gene in the dataset. We selected all the 

genes with p-value <0.05 and cor >0.5. 

In order to highlight the different behavior between the four expression groups, we selected only the 

differentially expressed (abs (FC>1.5)) and aberrated (abs (ΔCN>0.5)) fCN genes obtaining a list of 

57 genes (the fCN signature). 

 

3.3 Mutations with Common Focal Alterations (MutComFocal) 
Authors: Raul Rabadan, Jiguang Wang, Antonio Iavarone 

Correspondence and questions should be directed to: Antonio Iavarone 

(ai2102@cumc.columbia) 

By considering both copy number and somatic mutation data of LGG/GBM samples, we applied the 

algorithm of MutComFocal (Trifonov et al., 2013). Particularly, focality score and recurrence score 

were calculated based on samples with at least 10 and at most 1,000 copy number segments. The 
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focality score assigns equal weight to all genes participating in a genomic alteration inversely 

proportional to the size of that alteration, while recurrence score assigns equal weight to all genes 

altered in a sample inversely proportional to the total number of gene altered in the sample (Frattini 

et al., 2013; Trifonov et al., 2013).  

 

4. mRNA Expression 
Authors: Michele Ceccarelli, Stefano M. Pagnotta, Antonio Iavarone 

Correspondence and questions should be directed to: Michele Ceccarelli 

(ceccarelli@unisannio.it)     

4.1 Data preparation and gene selection 
RNA-seq raw counts of 667 cases (513 LLG and 154 GBM) were downloaded, normalized and 

filtered using the Bioconductor package TCGAbiolinks (Colaprico et al., 2015, 

https://bioconductor.org/packages/TCGAbiolinks/) using TCGAquey(), TCGAdownload() and 

TCGAprepare() for both tumor types (“LGG” and “GBM”, level 3, and platform 

"IlluminaHiSeq_RNASeqV2"). The union of the two matrices was then normalized using within-lane 

normalization to adjust for GC-content effect on read counts and upper-quantile between-lane 

normalization for distributional differences between lanes applying the 

TCGAanalyze_Normalization() function encompassing EDASeq protocol. Gene selected for 

clustering were chosen by applying two filters, the first was aimed a reducing the batch effect 

between the two tumor cohorts. We computed differentially expressed genes with 

TCGAanalyze_DEA() (implementing the EdgeR protocol (Robinson et al., 2010)), and filtered out 

genes differentially expressed between the two sets (α = 10-10), obtaining 10,389 genes. We then 

applied variability filters that select genes having a sufficiently high variation (100%) between the 

mean of top 5% and the mean of the bottom 5% values and having these means respectively above 

and below the overall median value of the data matrix. The filtering steps resulted in 2,275 genes 

that were used for the consensus clustering. ConsensusClusterPlus Bioconductor package was 

used to perform the clustering with hierarchical clustering as inner method and 1000 resampling 

steps (epsilon=0.8). Number of cluster (n = 4) was used as local maxima of the Calinsky-Harabasz 

curve. Within cluster analysis was done generating differentially expressed genes between GBM 

and LGG cohorts (log fold change greater and 1.0 and FDR less than 0.05), lists were then analyzes 

using DAVID functional annotation tool (Huang et al., 2009) and ClueGO (Bindea et al., 2009). 
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4.2 Classification of Affymetrix samples 
Once the four RNA-seq cluster were obtained, we reclassified 378 GBM samples for which no RNA-

seq data were available using their Affymetrix profiles. We used the 151 GBM samples (20 in LGr1, 

4 in LGr2, 10 in LGr3 and 117 in LGr4) having both the Affymetrix and RNA-seq profiles as training 

set of a kNN classifier (k = 3) to assign LGr cluster memberships to the remaining 378 Affymetrix 

samples. The feature set of the classifier was based on a signature of 327 probesets obtained by 

selecting up-regulated and down-regulated genes for the training samples in each cluster. 

 

4.3 Tumor Map and Pathway Activity Analysis 
Authors: Yulia Newton, Olena Morozova, Sofie Salama 

Correspondence and questions should be directed to: Sofie Salama (ssalama@soe.ucsc.edu) 

4.3.1 Combining multi-platform multi-tumor datasets 
We utilized the ComBat batch effect removal method (Johnson et al., 2007) in order to combine 

mRNA expression data from the GBM RNA-seq (n=154), GBM Agilent (n=525), LGG RNA-seq 

(n=513), and LGG Agilent (n=27) datasets. We chose to use data generated using Agilent 

microarray platform over those generated using Affymetrix because such data were available for 

both tumor types, while Affymetrix data were only available for GBM samples. We combined the 4 

datasets and ran ComBat. We flagged 4 batches, one for each dataset, to be removed by the 

ComBat method. One hundred and forty nine GBM samples were analyzed using both Agilent and 

RNA-seq platforms. Twenty seven LGG samples were analyzed using both Agilent and RNA-seq 

platforms. We utilized these matched samples as biological covariates in the ComBat method. Upon 

completion of the data transformation, we removed all redundant samples analyzed using the 

Agilent platform whenever the sample was also analyzed using RNA-seq. This combined mRNA 

expression dataset (n=1043) was used for Tumor Map analysis.  

 

4.3.2. Tumor Map method (manuscript in preparation) 
Tumor Map is a dimensionality reduction and visualization method for high dimensional genomic 

data. It allows viewing and browsing relationships between high dimensional heterogeneous 

genomic samples in a two-dimensional map, in a manner much like exploring geo maps in Google 

Maps web application. 

Prior to the analysis, technical and batch effects in the gene expression data were mitigated as a 

preprocessing step and as described above. We computed sample-by-sample pair-wise similarities. 

From RNA expression data, we selected 6002 genes whose expression was the most variable 

based on the variance distribution curve. The 1301 most important methylation probes were 

selected by manual curation of the probe list as described in the DNA methylation analysis section. 
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We used Spearman rank correlation (Spearman, 1904) on these continuous variable data (mRNA 

and methylation). To build maps based on a single data type, for each sample the closest 

neighborhood of 10 samples is selected. The Tumor Map method represents these local 

neighborhoods as a graph. The edge weight in this graph is proportional to the magnitude of the 

similarity metric. Then spring-embedded graph layout (Golbeck and Mutton, 2005) algorithm is 

applied to the constructed graph. The spring-embedded layout algorithm treats edges as springs 

and allows the springs to oscillate for a fixed amount of time with the energy inversely proportional to 

the edge weights. Under these conditions, springs with large weights do not oscillate much, causing 

those vertices to stay together. However, springs with small weights oscillate more and end up 

farther away from each other. The method then projects the positions of all the vertices in the 

resulting graph layout onto a two-dimensional grid. Each cell in the grid allows only one vertex to be 

placed into it. If multiple vertices contest for the same grid cell, a random vertex selection is made 

and placed into the cell; and the other competing vertices are placed into the nearest empty cell, 

snapping around the original cell in a spiral-like manner. Thus, dense clumps of samples are 

separated so that they can be viewed at approximately the same scale as the distances that 

separate them. After computing pairwise sample similarities in the gene expression and DNA 

methylation space separately, the two similarity spaces are combined after standardizing each 

space was standardized. 

 

4.3.3 Multi-platform maps using Bivariate Standardization similarity space 
Transformation (BST)  
We computed sample pairwise similarities for each data type separately, producing a square 

samples-by-samples similarity matrix. For each of the similarity matrices, we perform bivariate 

standardization by transforming each value to be an arithmetic mean of the z-scores of this value 

within both the row and the column empirical distributions. This method is an adaptation of the 

approach by Faith et. al (2007). Once each of the similarity matrices is transformed into a z-score 

space, we combine each available z-scores (from N platforms) for each pair of samples by taking a 

weighted average of the z-scores, where the weights indicate the importance of each of the N 

platforms being combined. When genomic data for a given platform is not available for at least one 

of the samples from the pair, a pairwise similarity for this pair will not be available for this platform. 

Our method allows such omissions, as it will only combine similarity z-scores from those platforms 

that are available for any pair of samples. The resulting BST matrix is a square samples-by-samples 

matrix that contains a union of samples in all the platforms.  
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4.3.4 Extracting significantly active pathways 
We used mRNA expression for samples available through RNA-seq platform only and the CNV data 

to transform the data into inferred pathway activity levels using PARADIGM (Vaske et al., 2010). We 

then considered a number of dichotomies, such as LGm1 GBM vs. LGG (see Table S5). Some of 

the dichotomies we considered have significantly different numbers of samples in each class (see 

Table S5). In order to make statistically strong inferences about pathway activities we only 

considered those dichotomies in which both classes are well represented by their members and the 

variance within the classes is much smaller than the variance between the classes. In other words, 

we selected those dichotomies where sample scatter is small within the classes and classes are 

separable in the pathway space. Based on the PARADIGM IPLs (Inferred Pathway Levels) we 

computed pair-wise Spearman rank correlation for each pair of samples. We then computed within-

class and between-class variance of the correlations, first for the first class and then for the second 

class. We then computed the F-statistic for each of the classes in the dichotomy and the p-value 

based on the F-distribution. We aggregated the p-value for the dichotomy by computing the mean p-

value. We selected those dichotomies that had an aggregated p-value of <= 0.05. Table S5 shows 

final dichotomies analyzed for the differential pathway activities. For each dichotomy selected, we 

computed differential activity levels using the linear models for microarrays and RNA-seq data 

(LIMMA) method (Smyth, 2005). We then applied Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al., 2005) to the HUGO members of the full differential vector. We extracted only 

those pathways that had FDR-adjusted q-value of <= 0.1. At the same time, we extracted 

statistically significant differentials (multiple hypothesis adjusted p-value <= 0.05). We ran 

PATHMARK (Cancer Genome Atlas Research, 2013) on the statistically significant differential 

activities obtained from LIMMA to extract connected components of the global PARADIGM 

regulatory network. An additional filter of 3 standard deviations was applied to the PATHMARK 

method. This means only those activities that fall outside 3 standard deviations of the empirical 

distribution of the statistically significant differentials pass through the filter. A network connection is 

extracted if both vertices connected by that connection pass the filter.  For each pathway gene set 

that passed the GSEA q-value of 0.1 we computed the overlap of the pathway genes and those that 

survived the PATHMARK filter as well as the over-representation hypergeometric p-value. We then 

extracted those pathways that passed with the p-value of <= 0.05. Figure S5E shows an overview of 

the process for extracting significantly active pathway from the glioma data. Figures S5C-D show 

pathway views of the significant IPLs from Table S5 in which IPLs representing families, complexes, 

phopho-events and redundant complexes were removed for better visualization.  
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4.4 Combining GBM Agilent G4502A mRNA data with LGG Illumina Hi-Seq 
RNA-seq data 
Authors: Shiyun Ling, Rehan Akbani 

Correspondence and questions should be directed to: Rehan Akbani 

(rakbani@mdanderson.org) 

Approximately 15,700 genes were common between the two platforms and a total of 185 pairs of 

GBM and LGG sample replicates were run on both platforms. Initial tests by combining the GBM 

and LGG replicates and clustering them showed two clusters based entirely on platform differences 

and the replicates didn’t merge with each other. To remove the platform effect, we developed a 

novel algorithm that randomly divided the 185 replicate pairs into training, testing and validation 

sets. The training set was used to train an Empirical Bayes (Johnson et al., 2007) based model, 

which was then applied to the testing set. The testing set was used to figure out which genes didn’t 

merge well by using a t-test to find the genes with the most differences between the platforms. The 

process was repeated 1000 times by using a bootstrapping approach for the training set. The top 

3000 genes that were consistently found to be the most variable in the testing set were removed 

from the data set. The resulting model was then applied to the validation set, after removing those 

3000 genes, to evaluate the algorithm. The evaluations showed that all 43 of the replicate pairs in 

the validation set clustered in matched pairs. The median of Pearson’s correlations between the 

matched pairs was 0.23 before adjustment and 0.93 after adjustment, indicating very successful 

merging. We then applied the model to the full GBM and LGG dataset to perform overall merging, 

and then removed duplicates by randomly keeping one sample from the pairs. The final dataset had 

1032 samples and 12,717 genes.   

 

4.5 RNA Fusion analysis 
Authors: Olena Morozova, Floris Barthel, Sofie Salama, Roel Verhaak 

Correspondence and questions should be directed to: Roel Verhaak 
(rverhaak@mdanderson.org)  

4.5.1 Fusion transcript detection using PRADA 
Transcript fusions were detected in 665 samples using the Pipeline for RNA-seq Data Analysis 

(PRADA) fusion detection tool (Torres-Garcia et al., 2014). We classified fusions to one of four tiers 

based on the number of junction spanning reads and discordant read pairs, gene partner 

uniqueness, gene homology, whether the fusion preserves the open reading frame, transcript allele 

fraction and DNA breakpoints in SNP6 array data, as previously described (Yoshihara et al., 2014). 

Briefly, tier one fusions are the highest confidence fusions and tier four fusions are the lowest 
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confidence ones. For the purpose of this analysis we chose to include tiers one and two. A summary 

of included fusions can be found in Table S2C.  

 

4.5.2 Fusion transcript detection using deFuse 
RNA-seq reads were analyzed using deFuse package version 0.6.0 (McPherson et al., 2011). 

Fusions involving receptor tyrosine kinase genes were manually reviewed using blat analysis (Kent, 

2002) of the breakpoint sequence in the UCSC Genome Browser (Kent et al., 2002). Candidate 

fusions were filtered based on the following deFuse parameters: 

• Splitr_count > = 5 (5 or more split reads supporting the fusion) 

• Span_count > = 10 (10 or more spanning reads supporting the fusion) 

• Read_through ~ “N” (fusion is not a readthrough) 

• Adjacent ~ “N” (fusion does not involve adjacent genes) 

• Altsplice ~ “N” (fusion cannot be explained by alternative splicing) 

• Min_map_count = 1 (at least one spanning read supporting the fusion is uniquely mapped) 

• ORF ~ “Y” (fusion preserves the open reading frame) 

deFuse and PRADA fusion predictions were combined to generate a list of 204 events identified by 

both methods (Table S2C). 

 

4.6 Identification of Transcriptional Regulatory Factors underlying IDH wild 
type and IDH mutant phenotypes in Glioma 
Authors: Ganiraji Manyam, Arvind Rao, Ganesh Rao 

Correspondence and questions should be directed to: Ganesh Rao (grao@mdanderson.org)  

Batch-corrected expression data from Agilent Microarray and Illumina Hiseq RNA-seq platforms 

using MBatch was used for differential expression and transcription factor analysis. Linear 

regression was used to find the genes that are differentially expressed between IDH wild type and 

IDH-mutant groups after adjusting for the effect of expression platform (RNA-seq or microarray) in 

the model. The p-values are adjusted for multiple testing using the Bonferroni method. Genes with 

adjusted p-value less than 0.01 are considered significant. 

Transcription Factor (TFs) Analysis was performed using the Match Algorithm of Biobase 

(TRANSFAC) system to identify TFs enriched in promoters of genes differentially expressed 

between IDH wild type and mutant groups. This algorithm compares the number of TF binding sites 

found in a query sequence set against a background set and identifies factors whose frequencies 

are enriched in the query compared to the background. Genes significantly upregulated in the IDH 
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mutant group are considered as the background for TF analysis of genes upregulated in IDH wild 

type group and vice-versa. The TFs enriched with p-value less than 0.05 are considered significant.  

Differential expression analysis was used to assess the expression differences of the enriched TFs 

themselves between the two groups (IDHmut vs wt). The transcription factors with Bonferroni-

adjusted p-value less than 0.05 are defined as significant candidates (Excel file). 

Ingenuity Pathway Analysis (IPA) was used to generate downstream networks for the top ranking 

transcription factors. Rank of the transcription factor is defined based on fold change between the 

two groups and the number of transcription factor binding sites in the promoter region of the target 

genes. Twelve transcription factor families were found to have log fold change of >1 between the 

IDH mut and IDHwt groups. The ones with the highest number of target genes are NKX2-5, PAX8, 

ETV7, CEBPD, ETV4, ELF4, and NFE2L3. Several of these TFs have been shown to be important 

for carcinogenesis. For example, Pax8 has been shown to be minimally expressed in LGG and 

normal brain but highly expressed in glioblastoma (Hung et al., 2014) and plays a role in telomerase 

regulation (Chen et al., 2008). Similarly, enrichment of the pro-proliferative TF ETV4 in 1p/19q 

codeleted gliomas has been demonstrated (Gleize et al., 2015).  

 

5. DNA methylation profiling  
Authors: Thais S. Sabedot, Tathiane M. Malta, Simon G. Coetzee, Peter W. Laird, Houtan 

Noushmehr 

Correspondence and questions should be directed to: Houtan Noushmehr (houtan@usp.br) 

5.1 Preprocessing and clustering 
For data acquisition, we used the the Bioconductor package TCGAbiolinks (Colaprico et al., 2015, 

https://bioconductor.org/packages/TCGAbiolinks/). First, TGCAquery() was used to search the 

samples of “GBM”  and “LGG” tumors in TCGA repository using the following parameters: data level 

= 3, platform type = “HumanMethylation450” and “HumanMethylation27”, version 12 for LGG and 

version 5 GBM samples. Second, TCGAdownload() was used to download the data; and, finally, 

TCGAprepare() was used to read the data into a dataframe. A total of 932 TCGA glioma samples 

assessed for DNA methylation, including 516 LGG and 416 GBM samples, profiled using 2 different 

Illumina platforms, were included. During the initial phase of the TCGA project, 287 GBM samples 

(batches 1 to 9) were profiled using the Illumina HumanMethylation 27 platform (HM27), which 

interrogates 27,578 CpG probes. As a new platform became available, the TCGA LGG (batches 1 to 

16) and 129 GBM (batches 1 to 12) samples were transitioning into the larger more comprehensive 

Illumina platform known as the HumanMethylation450 (HM450), which interrogates 485,421 CpG 

sites. The DNA methylation score for each locus is presented as a beta (β) value (β = (M/(M+U)) in 
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which M and U indicate the mean methylated and unmethylated signal intensities for each locus, 

respectively. β-values range from zero to one, with scores of zero indicating no DNA methylation 

and scores of one indicating complete DNA methylation. A detection p-value also accompanies each 

data point and compares the signal intensity difference between the analytical probes and a set of 

negative control probes on the array. Any data point with a corresponding p-value greater than 0.01 

is deemed not to be statistically significantly different from background and is thus masked as “NA” 

in TCGA level 3 data packages. The data levels and the files contained in each data level package 

are present on the TCGA Data Portal website (http://tcga-data.nci.nih.gov/tcga/). Please note that as 

continuing updates of genomic databases and data archive revisions frequently become available, 

the data packages on TCGA Data Portal are updated accordingly.  Data of the two platforms 

(HM450 and HM27) were merged as previously described (Brennan et al., 2013) and we ended with 

25,978 probes that match both 27k and 450k platforms, as illustrated in the following Venn diagram. 

Duplicated samples and secondary tumors were excluded. The 932 sample IDs used for DNA 

methylation analysis are listed in Table S1. 

 
5.2 Unsupervised clustering analysis of DNA methylation data 
Methods to capture tumor-specific DNA methylation probes were used as recently described 

(Cancer Genome Atlas Research, 2014b) and is provided here as reference, with slight 

modifications to the total numbers. We used the Level 3 DNA methylation data contained in the 

packages listed above for analyses. We first removed probes which had any “NA”-masked data 

points and probes that were designed for sequences on X and Y chromosomes. We selected CpG 

sites that are located in high CpG density regions (top 25% of the sites with the highest 

observed/expected CpG ratio around their 3kb regions spanning from 1,500 bp upstream to 1,500 
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bp downstream of the transcription start sites) and CpGs associated with CpG islands extracted 

from the UCSC Genome Browser (http://genome.ucsc.edu). To capture cancer-specific DNA 

hypermethylation events, we further eliminated sites that were methylated (mean β-value ≥0.3) in 

histologically non-tumor brain tissues (Guintivano et al., 2013). This selection method reduced the 

initial 25,978 probes to 1,300 glioma-specific CpG probes, which corresponded to 6.5% of the full 

available data. However, a clustering analysis can be strongly confounded by the purity of tumor 

samples. To alleviate the potential influence of variable levels of tumor purity in our sample set on 

our clustering result, we dichotomized the data using a β-value of >0.3 as a threshold for positive 

DNA methylation. We then performed unsupervised hierarchical clustering on 1,300 CpG sites with 

this threshold that are methylated in at least 10% of the tumors using a binary distance metric for 

clustering and Ward’s method for linkage. The cluster assignments were generated by cutting the 

resulting dendrogram. The probes are arranged based on the order of unsupervised hierarchical 

clustering of the dichotomous data using a binary distance metric and Ward’s linkage method. We 

identified six groups (LGm1-LGm6) shown in Figure 2A generated based on the original β-values to 

visualize 1,300 CpG sites used in the clustering. 

The approach described above to capture tumor-specific DNA methylation probes was used to 

select glioma-specific CpG probes and perform unsupervised clustering separated by IDH status. 

We identified 1,308 tumor specific CpG probes for IDH-mutant analysis and identified three IDH-

mutant-specific clusters (Figure S3A). Likewise, we identifed 914 tumor specific CpG probes for for 

IDH-wild type samples and identified three IDH-wildtype-specific clusters (Figure S4A).  

In order to classify the newly acquired TCGA samples (not included in the previous studies; LGG = 

227; GBM = 20) into the context of previously published DNA methylation clusters (Brennan et al., 

2013; TCGA_Network, 2015), we randomly selected a set of 80% of TCGA samples to train a 

random forest machine-learning. We then evaluated the performance on the remaining 20% of 

samples and got an accuracy of more than 88% on average. We then tested the new TCGA 

samples and classified them into the previously DNA methylation clusters. 

 

5.3 Supervised analysis of DNA methylation 
We used Wilcoxon test followed by multiple testing using the Benjamini and Hochberg (BH) method 

for false discovery rate estimation (Benjamini and Hochberg, 1995) to identify differentially DNA 

methylated probes between two groups of interest.  

The 131 probes presented in Figure 3A were defined comparing samples from IDHmut-K1 (n=53) to 

IDHmut-K2 (n=221), using the following criteria: FDR < 10e-15, absolute difference in mean 

methylation beta-value > 0.27. 
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The 90 probes presented in Figure 3H were identified comparing samples from G-CIMP-low (n=25) 

to G-CIMP-high (n=249), in order to identify probes defining the G-CIMP-low group, using the 

following criteria: FDR < 10e-13, difference in mean methylation beta-value > 0.3 and < -0.4. 

The 149 probes presented in Figure 3H were a combination of the 90 probes described above with 

73 probes identified from the comparison between non-codels (from LGm2, n=210) and codels (from 

LGm3, n=120), using the following criteria: FDR < 10e-30, absolute difference in mean methylation 

beta-value > 0.25, removing probes with NA values. All probeset lists are provided on the publication 

portal accompanying this publication (https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/). 

 

5.4 Identification of Epigenetically Regulated Genes 
To increase our statistical power, we decided to evaluate epigenetically regulated genes using the 

Pan-glioma subtypes, which allowed us to use the entire TCGA glioma cohort. We selected tumor 

samples that have both DNA methylation and RNA-sequencing based gene expression data to do 

this analysis, resulting in 636 samples (513 LGG and 123 GBM). We also randomly selected 110 

non-tumor TCGA samples from 11 different tissues (Table S4B), profiled using the same platforms. 

Each DNA methylation probe was mapped to the nearest UCSC gene, and after merging the DNA 

methylation and gene expression data, we retained a total of 19,530 pairs of DNA methylation and 

gene expression probes. We organized the tumor samples as either methylated (β >= 0.3) or 

unmethylated (β < 0.3) for each probe. We selected the pair of DNA methylation and gene 

expression probes for which the mean expression in the methylated group was lower than 1.28 

standard deviation (bottom 10%) of the mean expression in the unmethylated group, and in which 

>80% of the samples in the methylated group have expression levels lower than the mean 

expression in the unmethylated group. We labeled each tumor sample as epigenetically silenced for 

a specific probe/gene pair if: it belonged to the methylated group and the gene expression level was 

lower than the mean of the unmethylated group silenced (Cancer Genome Atlas Research, 2014a), 

resulting in 3,806 probes/genes identified as epigenetically regulated. A Fisher test was used to 

detect if these 3,806 pairs were enriched in a DNA methylation cluster. For each probe, tumor 

samples labeled as methylated and downregulated by cluster, while non-tumor samples labeled as 

unmethylated and upregulated, were counted and arranged into a contingency table for a Fisher 

test, using 50% as a cutoff. p-value was calculated for each probe/gene pair and then was adjusted 

for multiple testing using the BH method for false discovery rate estimation (Benjamini and 

Hochberg, 1995). This analysis identified 3 Epigenetically Regulated groups (EReg): EReg2 with 

233 genes enriched in LGm2 (resembling G-CIMP high), EReg3 with 15 genes enriched in LGm3 

(resembling Codels) and EReg4 with 14 genes enriched in LGm4 (resembling Classic-like) and 1 
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gene enriched in LGm5 (resembling Mesenchymal-like). Since LGm1 (enriched for G-CIMP-low) 

and LGm6 (comprising LGm6-GBM and PA-like) are heterogeneous clusters, we applied a different 

approach in order to identify epigenetically regulated genes for these groups. For EReg1, we 

compared the DNA methylation and gene expression levels for G-CIMP-low samples (n=25) with G-

CIMP-high samples (randomly selected 50 samples out of 249) and those probes/genes with 

Wilcoxon BH adjusted p-value less than 1e-10, methylation difference greater than 0,25 and RNA 

expression log Fold Change greater than 0,85 were selected, resulting in 15 epigenetically regulated 

genes enriched in G-CIMP-low. For EReg5, we compared the DNA methylation levels for LGm6 

samples (n=77) with a subset of randomly selected samples from the 855 remaining TCGA glioma 

samples (n=140) and those probes with Wilcoxon BH adjusted p-value less than 1e-21 and 

methylation difference greater than 0,33 were selected, resulting in 12 epigenetically regulated 

genes enriched in LGm6.  

To validate the EReg genes in order to confirm the existence of these signatures in an independent, 

non-TCGA data, we downloaded 4 different and publicly available datasets (Lambert et al., 2013; 

Mur et al., 2013; Sturm et al., 2012; Turcan et al., 2012), comprising 324 samples with distinct 

histology and clinical attributes. These samples included adult, pediatric gliomas of both low and 

high grade, reported with codel, IDH status and G-CIMP status. Our independent data set included a 

pool of 61 pilocytic astrocytomas defined as grade I gliomas (Lambert et al., 2013). In order to 

classify the additional non-TCGA gliomas into our LGm clusters, we selected a random set of 80% 

TCGA samples to train a random forest machine-learning model and evaluated the performance on 

the remaining 20%. Given the high specificity and sensitivity of our model (accuracy > 88% on 

average), we, then, tested the LGm cluster prediction model on the additional non-TCGA samples 

using the random forest method. Data were visualized using the same 45 pairs of CpG 

probes/genes that define the epigenetically regulated genes for IDH mutant samples (Figure 3F) and 

the same 27 pairs of CpG probes/genes that define the epigenetically regulated genes for IDH wild 

type samples (Figure 4D). Applying a similar ordering in the validation set and accounting for 

differences in sample size, we recapitulated the five EReg groups both for IDH mutant samples 

(Figure 3G) and IDH wild type samples (Figure 4E) in molecular level. 

The same random forest machine learning model approach was used for the IDH-mutant samples 

(using the 1,308 IDH-mutant tumor specific CpG probes) and for the IDH-wildtype samples (using 

the 914 IDH-wildtype tumor specific CpG probes), separately. We then tested the models in the IDH-

mutant and IDH-wildtype samples from the validation set (Lambert et al., 2013; Mur et al., 2013; 

Sturm et al., 2012; Turcan et al., 2012) (Figure S4B). 
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5.5 Classification of new glioma samples based on DNA methylation glioma 
subtypes  
New glioma samples can be classified into one of our glioma subtypes using our CpG probe 

methylation signatures provided on the publication portal accompanying this publication 

(https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/). 
 

First, all glioma samples should be divided by their known IDH status, separated into either IDH-

mutant and IDH-wildtype.  IDH-mutant is defined as those samples harboring any type of known 

IDH1 or IDH2 mutation as described recently (TCGA_Network, 2015).  IDH-wildtype refers to those 

samples with an intact IDH1 or IDH2. Samples as either IDH-mutant or IDH-wildtype are then further 

classified accordingly: 

IDH-mutant: 
In order to define newly diagnosed glioma samples into one of the 3 glioma subtypes within IDH-

mutants, we recommend applying Random Forest in a two-step process.  1) using the 1,308 tumor 

specific CpG probes which defines the IDHmut specific clusters (Fig S3A) and 2) using the 163 CpG 

probes which defines each TCGA IDH-mutant glioma subtype (Fig S3C).  

1. If the sample was classified as IDHmut-K1 or IDHmut-K2 using the 1,308 tumor specific CpG 

probes for IDH-mutant and as G-CIMP-low using the 163 CpG probes defined by a 

supervised analysis across IDH-mutant subgroups, we classify the sample as G-CIMP-low; 

2. If the sample was classified as IDHmut-K1 or IDHmut-K2 using the 1,308 tumor specific CpG 

probes for IDH-mutant and as G-CIMP-high using the 163 CpG probes defined by a 

supervised analysis across IDH-mutant subgroups, we classify the sample as G-CIMP-high; 

3. If the sample was classified as IDHmut-K3 using the 1,308 tumor specific CpG probes for 

IDH-mutant, we classify the sample as Codel. 
 

IDH-wildtype: 
Likewise, IDH-wildtype can be classified using a single random forest machine-learning model 

applied with a signature defined by the 914 tumor specific CpG probes for IDH-wildtype (Figures 

S4A-B).  Samples following into IDHwt-K3 (aka LGm6), we recommend subdividing this group 

based on grade, resulting in either LGm6-GBM and PA-like (LGG). 

 

5.6 Patient centric table (DNA methylation) 
To generate DNA methylation calls for each sample per gene per overlapping platforms (HM27, 

HM450), we began by first collapsing multiple CpGs to one representative gene. Using the 
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associated gene expression data (organized as one gene - one expression value per sample), we 

merged the samples and CpG probes with gene expression data for each platform. We next 

calculated the spearman correlation (ρ) across all samples for all CpG probes for each gene to one 

gene expression value. For multiple CpGs for each annotated gene promoter, we selected one CpG 

probe with the lowest correlation rho value to the associated gene expression profile to capture the 

most biologically representative event (epigenetic silencing). This effectively reduced the number of 

CpG probes from N:1 to 1:1. Our data set was then reduced down to 636 samples x 19,486 

CpG:Gene. 

Next, we assigned discrete categories based on the spearman correlation rho value according to the 

following criteria: 

1. Strongly negatively correlated (SNC) when ρ value is less than 0.5; 

2. Weakly negatively correlated (WNC) when ρ value is between 0.5 and 0.25; 

3. No negative correlation (NNC) when ρ value is greater than 0.25. 

Next, we assigned samples to either the 10th (T10 or N10) or 90th (T90 or N90) percentile based on 

the observed beta-value across tumor samples (T) and normal samples (N). For the normal 

samples, we used 110 non-tumor TCGA samples from 11 different tissues previously described. We 

assigned labels for each gene per platform per tissue type (tumor and normal) according to the 

following rules: 

1. If percentile 90 < 0.25, we assign it as CUN or CUT (constitutively unmethylated in normal or 

tumor); 

2. If percentile 10 > 0.75, we assign it as CMN or CMT (constitutively methylated in normal or 

tumor); 

3. If percentile 10 > 0.25 and percentile 90 < 0.75, we assign it as IMN or IMT (intermediate 

methylated in normal or tumor); 

4. If it doesn’t fall in any of the above categories, it is assign VMN or VMT (variably methylated in 

normal or tumor). 

Next we assigned a ‘call’ and a confidence ‘score’ for each possible combinations (48) [3 (SNC, 

WNC, NNC) x 4 (CUN, CMN, VMN, IMN) x 4 (CUT, CMT, VMT, IMT)]. We created the following 

relationship for each call and score based on our interpretation of the most informative epigenetic 

event (e.g. promoter DNA hypermethylation and low expression). Users should understand that the 

selection and criteria performed were done to the best of our knowledge at the time. We felt most 

confident with calling epigenetically silenced events and this is reflected in the confidence score. 

The methylation calls are as follows: 

MG: Methylation gain compared to normal 
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ML: Methylation loss compared to normal 

MT: Methylated in tumor 

UT: Unmethylated in tumor 

ES: Epigenetically silenced 

UC: Unable to make call 

Methylation class confidence scores vary from 0 (no call) to 4 (high confidence). Patient centric table 

can be accessed at https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/.  

 

5.7 Homer de novo motif searches 
De novo Motif discovery was performed using HOMER (script v4.4 (8-25-2014)), an algorithm 

previously described (Heinz et al., 2010). Briefly, differentially methylated probes were classified 

according to genomic location into CpG island, CpG shores, and open seas as follow: CpG islands 

were defined based on UCSC annotation and as per the criteria previously described (Gardiner-

Garden and Frommer, 1987; Takai and Jones, 2002). Coverage of CpG island regions was further 

enhanced by including the 2 kb regions flanking CpG island, referred to here as CpG shores. CpGs 

isolated in the genome were defined as open seas. Probes mapped to each region were used to 

performed de novo motif analysis using HOMER (HOMER perl script ‘findMotifsGenome.pl’). To 

increase sensitivity of the method, up to two mismatches were allowed in each oligonucleotide 

sequence and distributions of CpG content in ‘target’ and ‘background’ sequences were selectively 

weighted to equalize the distributions of CpG content in both sets. Raw outputs from HOMER can 

be found at https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/ .  

 
6. Reverse phase protein array (RPPA)  
Authors:  Rehan Akbani, Zhenlin Ju, Yiling Lu, Gordon Mills 

Correspondence and questions should be directed to:  (rakbani@mdanderson.org) 

6.1 Data Processing  
Protein was extracted using RPPA lysis buffer (1% Triton X-100, 50 mmol/L Hepes (pH 7.4), 150 

mmol/L NaCl, 1.5 mmol/L MgCl2, 1 mmol/L EGTA, 100 mmol/L NaF, 10 mmol/L NaPPi, 10% 

glycerol, 1 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L Na3VO4, and aprotinin 10 ug/mL) from 

human tumors and RPPA was performed as described previously (Coombes, 2011; Hennessy et al., 

2007; Hu et al., 2007; Liang et al., 2007; Tibes et al., 2006). Lysis buffer was used to lyse frozen 

tumors by Precellys homogenization. Tumor lysates were adjusted to 1 µg/µL concentration as 

assessed by bicinchoninic acid assay (BCA) and boiled with 1% SDS. Tumor lysates were manually 

serial diluted in two-fold of 5 dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer 
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(Burlington, MA) printed 1,056 samples on nitrocellulose-coated slides (Grace Bio-Labs). Slides 

were probed with 196 validated primary antibodies (Cancer Genome Atlas Research, 2015) followed 

by corresponding secondary antibodies (Goat anti-Rabbit IgG, Goat anti-Mouse IgG or Rabbit anti-

Goat IgG). Signal was captured using a DakoCytomation-catalyzed system and DAB colorimetric 

reaction. Slides were scanned in a CanoScan 9000F. Spot intensities were analyzed and quantified 

using Array-Pro Analyzer (Media Cybernetics Washington DC) to generate spot signal intensities 

(Level 1 data). The software SuperCurveGUI (Coombes, 2011; Hu et al., 2007), available at 

http://bioinformatics.mdanderson.org/Software/supercurve/, was used to estimate the EC50 values 

of the proteins in each dilution series (in log2 scale). Briefly, a fitted curve ("supercurve") was plotted 

with the signal intensities on the Y-axis and the relative log2 concentration of each protein on the X-

axis using the non-parametric, monotone increasing B-spline model (Tibes et al., 2006). During the 

process, the raw spot intensity data were adjusted to correct spatial bias before model fitting. A QC 

metric (Coombes, 2011) was returned for each slide to help determine the quality of the slide: if the 

score is less than 0.8 on a 0-1 scale, the slide was dropped. In most cases, the staining was 

repeated to obtain a high quality score. If more than one slide was stained for an antibody, the slide 

with the highest QC score was used for analysis (Level 2 data). Protein measurements were 

corrected for loading as described (Coombes, 2011; Gonzalez-Angulo et al., 2011; Hu et al., 2007) 

using median centering across antibodies (level 3 data). In total, 196 antibodies and 473 samples 

were used. Final selection of antibodies was also driven by the availability of high quality antibodies 

that consistently pass a strict validation process as previously described (Hennessy et al., 2010). 

These antibodies are assessed for specificity, quantification and sensitivity (dynamic range) in their 

application for protein extracts from cultured cells or tumor tissue. Antibodies are labeled as 

validated and use with caution based on degree of validation by criteria previously described 

(Hennessy et al., 2010).  

Two RPPA arrays were quantitated and processed (including normalization and load controlling) as 

described previously, using MicroVigene (VigeneTech, Inc., Carlisle, MA) and the R package 

SuperCurve (version-1.3), available at http://bioinformatics.mdanderson.org/OOMPA (Hu et al., 

2007; Tibes et al., 2006). Raw data (level 1), SuperCurve nonparameteric model fitting on a single 

array (level 2), and loading corrected data (level 3) were deposited at the DCC. 

 

6.2 Data normalization 
We performed median centering across all the antibodies for each sample to correct for sample 

loading differences. Those differences arise because protein concentrations are not uniformly 

distributed per unit volume. That may be due to several factors, such as differences in protein 
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concentrations of large and small cells, differences in the amount of proteins per cell, or 

heterogeneity of the cells comprising the samples. By observing the expression levels across many 

different proteins in a sample, we can estimate differences in the total amount of protein in that 

sample vs. other samples. Subtracting the median protein expression level forces the median value 

to become zero, allowing us to compare protein expressions across samples. 

Surprisingly, processing similar sets of samples on different slides of the same antibody may result 

in datasets that have very different means and variances. Neely et al. (2009) processed clinically 

similar ALL samples in two batches and observed differences in their protein data distributions. 

There were additive and multiplicative effects in the data that could not be accounted by biological or 

sample loading differences. We observed similar effects when we compared the two batches of 

GBM and LGG tumor protein expression data. A new algorithm, replicates-based normalization 

(RBN), was therefore developed using replicate samples run across multiple batches to adjust the 

data for batch effects. The underlying hypothesis is that any observed variation between replicates 

in different batches is primarily due to linear batch effects plus a component due to random noise. 

Given a sufficiently large number of replicates, the random noise is expected to cancel out 

(mean=zero by definition). Remaining differences are treated as systematic batch effects. We can 

compute those effects for each antibody and subtract them out. Many samples were run in both 

batches. One batch was arbitrarily designated the “anchor” batch and was to remain unchanged. We 

then computed the means and standard deviations of the common samples in the anchor batch, as 

well as the other batch. The difference between the means of each antibody in the two batches and 

the ratio of the standard deviations provided an estimate of the systematic effects between the 

batches for that antibody (both location-wise and scale-wise). Each data point in the non-anchor 

batch was adjusted by subtracting the difference in means and multiplying by the inverse ratio of the 

standard deviations to cancel out those systematic differences. Our normalization procedure 

significantly reduced technical effects, thereby allowing us to merge the datasets from different 

batches. 

 

6.3 Clustering 
We used consensus clustering to cluster the samples in an unsupervised way, with Pearson 

correlation as the distance metric and Ward as the linkage algorithm. A total of 473 samples and 

196 antibodies were used in the analysis. Two clusters were observed that largely corresponded 

with tumor type (Figure S3E), however, there were a few notable exceptions. Whereas only one 

GBM sample clustered with the LGG samples, twenty-six LGG samples were found to cluster with 

the GBM samples. Seventeen of those twenty-six samples had no mutations in IDH1/2, similar to 
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the GBM samples. Furthermore, compared to the LGG-like cluster, the GBM-like cluster had 

elevated expression of IGFBP2, fibronectin, PAI1, HSP70, EGFR, phosphoEGFR, phosphoAKT, 

Cyclin B1, Caveolin, Collagen VI, Annexin1 and ASNS, whereas it had low expression of PKC 

(alpha, beta and delta), PTEN, BRAF, and phosphoP70S6K.  
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