Supplementary Information

Amyloid- β Peptides in interaction with raft-mime model membranes: a neutron reflectivity insight.

Valeria Rondelli, Paola Brocca, Simona Motta, Massimo Messa†, Laura Colombo†, Mario

Salmona[†], Giovanna Fragneto[‡], Laura Cantu'*, Elena Del Favero

Dept. of Medical Biotechnologies and Traslational Medicine, University of Milano, LITA, Via F.lli Cervi, 93. 20090 Segrate (Milano), Italy.

[†]Dept. of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156 Milan, Italy.

‡InstitutLaue-Langevin, 71 avenue des Martyrs, BP 156, 38000 Grenoble Cedex, France

Corresponding author:

Laura Cantu'

laura.cantu@unimi.it

Table S1: Theoretical SLD values of the individual chemical species

Compound	SLD ^a	Compound	SLD ^a		Compound	SLD ^a
H ₂ O	-0.56	DSPC d-chains	7.91	-	Cholesterol	0.22
D_2O	6.35	DSPC d-heads	4.87		Αβ1-42	1.50
Si	2.07	GM1 chains	-0.41		Αβ1-6	1.75
SiO ₂	3.41	GM1 heads	2.23		4-Match Water	4

^a SLD values (10⁻⁶Å⁻²) for lipids have been calculated from Refs s1, s2 and s3, and for A β peptides from Ref. s4 and assuming a density of 1.5 g/cm³

Figure S1. Neutron reflectivity spectrum (left panel) and contrast profile (right panel) of membrane A after the interaction with A β 1-42 structured-oligomers in H₂O at T = 22°C. In the *left panel* dots are the experimental points. In black the best fit, giving the minimum χ^2 , is reported, together with the curves, in grey, obtained by varying the fitting parameters within the errors. Errors on the fitting parameters, reported in the footnotes of Tables 1, 2 and 3 in the manuscript, have been estimated by varying each parameter until the quality of the fit was no more acceptable. On the *right panel* the contrast profile coming by the best fit is reported in black, together with the contrast profiles corresponding to the grey curves of left panel, thus representing a sort of error band to the best contrast profile.

Figure S2. Secondary structure analysis of A β 1-6. 100 μ M A β 1-6 peptide in 50 mM phosphate buffer containing 150 mM NaCl, pH 7.4, were analyzed at zero time and after 72-hours incubation. CD analysis showed that A β 1-6 did not form β -sheet secondary structure, suggesting a no aggregation propensity and a high stability in solution

References

- (s1) Nagle, J. F.; Wiener, M. C. Relations for Lipid Bilayers. *Biophysical Journal* 1989, 55, 309–313.
- (s2) Greenwood, A. I.; Tristram-Nagle, S.; Nagle, J. F. Partial Molecular Volumes of Lipids and Cholesterol. *Chemistry and physics of lipids* 2006, *143*, 1–10.

- M. Boretta, L. Cantu, M. Corti, E. D. F. Cubic Phases of Gangliosides in Water: Possible
 Role of the Conformational Bistability of the Headgroup. *Physica* 1997, 236, 162–176.
- (s4) <u>http://it.sw3c.com/chemical/properties/cas-107761-42-2.html</u>