Additional File 4: Table S2. Real time qPCR analysis of genes selected for confirmation of microarray data. Candidate transcripts expression in HK (A) and liver (B) RNA isolated from rainbow trout fed a control diet (CTRL) or a diet enriched with 4 mg Se Kg⁻¹ (Sel-Plex), and injected with either PBS or poly(I:C). The expression of gene transcripts was quantified by qPCR and normalized against the geometric mean of three housekeeping genes (ef- 1α , drpII, hprt) from the same samples, and then used for statistical analysis. The transcript expression is reported as a fold change, calculated as the average expression level of stimulated samples divided by that of the controls. The results represent the mean \pm SEM from five pools of HK or liver RNA extracted from 3 individuals from 3 different tanks. The letters above the columns indicate values that are statistically significant vs the controls (p<0.05) in the group injected with poly(I:C), with different letters indicating significant differences between the two diet regimes. Asterisks indicate values that are statistically significant vs the control (p<0.05) in the group fed 4 mg Se Kg⁻¹ and injected with PBS. The primers used are listed in Table 2.

Α	IFNγ2		MX2		SOCS3		CATH1		TrxR3b		SelPa	
	Microarray	q PCR	Microarray	q PCR	Microarray	q PCR	Microarray	q PCR	Microarray	q PCR	Microarray	g PCR
	CUST_201_P1429021944		TC 149586		IM M 590		IM M 568		CUST_56_PI429042546		CUST_38_P I429042546	
Sel-Plex/Poly(I:C)	19.2	31.2±4.7°	28.6	42.4±12.8°	14.8	18.0±4.9	13.2	22.8±4.9	2.6	2.3±0.2ª	-2.5	-2.5±0.01ª
CTRL/Poly(I:C)	5.9	12±2.2 ^b	25.5	35.2±3.0°	11.7	32.6±6.8	7.6	11.9±4.9ª	2.2	3.3±0.1ª	-2.1	-2.1±0.01ª
Sel-Plex/PBS	-1.2	-1.4±0.1	-1.0	0.7±0.1	1.5	1.4±0.3	-1.7	-1.2±0.1	1.1	1.23±0.1	1.0	1.2±0.1

	IFN1α		VIG-1		SAA		HAMP		IGFBP-1b		SelPb	
В	Microarray	q PCR	Microarray	q PCR	Microarray	q PCR	Microarray	q PCR	Microarray	q PCR	Microarray	q PCR
	TC 138564		TC 1360 44		T C 17 1675		C UST_193_P I429021944		C UST_2_P 1429021970		CUST_39_P I429042546	
Sel-Plex/Poly(I:C)	2.6	3.0±0.3ª	31.7	84.3±6.1ª	82.1	178.9±44.7ª	13.8	8.8±1.0ª	-9.1	-33.3±0.01ª	-2.0	-2.9±0.03ª
CTRL/Poly(I:C)	2.3	2.6±0.1ª	33.5	83.4±4.5°	37.6	109.6±33.5°	7.0	33.2±7.1 ^b	-9.4	-25±0.01°	-2.1	-2.2±0.06°
Sel-Plex/PBS	1.1	1.1±0.1	1.3	1.4±0.4	-1.7	-1.92±0.1	2.0	3.3±1.3	1.6	-2.1±0.3*	1.1	1.2±0.1