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Figure S1: fRIP-Seq optimization

We tested the efficiency and integrity of HNRNPU and RNA recovery respectively over a range
of the two immunoprecipitation conditions, formaldehyde concentration (cross-linking), and
sonication (shearing). (A) Higher amounts of HNRNPU were recovered in native (0%) and
lower formaldehyde concentrations (0.1%) in both lysate and immunoprecipitation reactions
than with 0.5% formaldehyde. (B) Longer sonication times mitigated higher formaldehyde
concentrations and increased yield, as quantified using densitometry to calculate relative and
total yield. (C) Total RNA recovery was less efficient with increasing formaldehyde
concentration. (D) Longer sonication resulted in smaller sized polyA selected RNA at 0.1%
formaldehyde. (E) Total RNA recovery associated with HNRNPU compared to total RNA
recovery associated with the 19G negative control.
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Figure S2: The effect of transcript localization on reassociation and fRIP-

Seq enrichment

(A) Scatter plot of abundance (FPKM) generated by RNA-Seq from nuclear lysate (x-axis)
versus whole cell lysate (y-axis) in K562 cells. Several canonical nuclear-localized transcripts
are highlighted in red. (B) Density (y-axis) plots of HNRNPU log2 fold enrichment over input for
nuclear (blue), neutral (green), and cytoplasmic (red) transcripts under native RIP (left) versus
fRIP 0.1% formaldehyde crosslinking conditions (right). Under native conditions we observed
higher enrichment of cytoplasmically-localized transcripts than under cross-linked conditions,
suggesting that the fRIP conditions reduce re-association and post-lysis mixing. (C) Heat map
and hierarchical clustering of log2 fold fRIP enrichment over whole cell input for the 1300
genes enriched in the nucleus with a p-value of < 0.01. Depletion of these transcripts from
fRIP-Seq for cytosolic proteins is evident for IMP1 and PABP. Likewise, fRIP-Seq of the
predominantly nuclear HNRNPH reveals enrichment for these transcripts as a whole. However,
most proteins and CAPs we surveyed with fRIP-Seq do not enrich or deplete for transcripts as
a function of their localization, suggesting that the nuclear localization of CAPs is not the
primary contributing factor to the transcripts we observed as being enriched or depleted.
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Figure S3: Validation of fRIP-Seq antibodies by western blot.

For antibodies not previously validated by ENCODE, we performed “mini” fRIP experiments using
1/10 volume of lysate and antibody. We separated using SDS-PAGE and western blotted for the
target fRIP protein. We ran each mini fRIP alongside 10 micrograms of whole cell lysate. In each
panel, we noted the expected size alongside the specific band(s), as well as bands running at the
expected size for IgG heavy and light chains. Some of the antibodies for larger molecular weight
proteins recognize multiple large isoforms and/or smaller degradation product bands. For several
proteins, we tested multiple antibodies and note the final antibody used in red text. SETD2 is an
example of a rejected antibody that did not recognize a distinct band at the expected size and
recognized thousands of other bands.
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Figure S4: ADAR preferentially binds to Alu elements and adjacent

regions.

We plotted examples of ADAR association with Alu repeats captured with fRIP-Seq. For each
gene, we display input RNA-Seq coverage above ADAR fRIP-Seq coverage. Annotation tracks
for RepeatMasker SINE elements (Alu instances are in red) and GENCODE transcript models
are below the coverage tracks. ADAR binds Alu elements in (A) NICN1 and (B) RAD23A. (C)
Genome-wide, genes containing Alu elements have greater fRIP/input fold changes than
genes without them, shown here as the empirical cumulative distribution functions of each
class. (D) Genes containing more Alu elements have greater fold changes, shown as the 25th,
50th, and 75th percentile of the fRIP/input fold change distribution for each Alu count.
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Figure S5: fRIP-Seq broadly agrees with CLIP-Seq.

We compared Cuffdiff differential expression test statistics for CLIP-Seq bound genes to all
unbound genes. For CTCF, HNRNPH1, IMP1 and two versions of HUR, CLIP-Seq bound
RNAs had significantly greater difference statistics than unbound RNAs (p-values < 1e-37),
shown as the empirical cumulative distribution functions of the statistic for each set. This

enrichment was apparent despite all CLIP-Seq experiments having been performed in different
cell types (HEK293 for IMP1, HUR, and HNRNPH1; HeLa for HNRNPU; U20S for CTCF).

9



Mann-Whitney U test Z-scores and p-values are specified in the upper left corners. The
difference was insignificant for HNRNPU, for which only 227 targeted genes could be
discerned from the CLIP-Seq data, of which only 138 were expressed in our K562 cells. Venn
diagrams compare and contrast the CLIP-Seq bound RNAs with significantly bound RNAs
identified by fRIP-Seq. The bottom row depicts analogous Venn diagram comparisons for
CLIP-Seq performed on the same protein in different projects (labeled by manuscript first
author), demonstrating that the fRIP/CLIP overlaps are within the bounds of CLIP/CLIP

overlaps.
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Figure S6: fRIP-Seq

targeted transcripts are affected by protein
depletion.

We downloaded and analyzed publicly available
RNA-Seq measuring gene expression after
depletion of five of our proteins. In the left column
of plots, we classified all genes as significantly
bound or unbound by fRIP-Seq and plotted the
empirical cumulative distribution function of log2
knockdown/control fold changes for each set.
Mann-Whitney U tests confirmed that the
abundance of bound genes was significantly
altered for each protein. In the right column, we
plotted fold changes between the two experiments
for all genes. Spearman correlations indicate a
significant relationship between the two in every
case.
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Figure S7: fRIP-Seq coverage displays light positional biases.

Though fRIP-Seq does not provide binding site resolution, read coverage for some experiments
trended towards one end of the transcript. We computed alignment coverage in 100 uniformly-sized
bins for each gene for both the fRIP-Seq and input sequencing for every protein. After normalizing bin
coverages to sum to one, we plotted the values in (B,C) and the difference between fRIP and input as
a heat map (A). Reflecting known biology, PABP binds 3’ transcript ends. DNMT1 and SUZ12 tended
towards 5’ ends.
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Figure S8: Nuclear fRIP-Seq matches whole cell fRIP-Seq.

(A) We computed the proportion of a genes’ FPKM assigned to exon isoforms versus unspliced pre-
RNA isoforms (Methods) in whole cell input and nuclear fraction input. As expected, transcripts in the
nuclear fraction tended to be slightly less spliced. However, the nuclear fraction still contained
primarily spliced transcripts, suggesting that fRIP-mapped interactions with mature spliced transcripts
regularly occur in the nucleus. (B) fRIP-Seq log2 fold changes for DNMT1 in a nuclear fraction versus
whole cell match well, suggesting that whole cell interactions are primarily nuclear. (C) Further
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supporting their concordance, whole cell (black font) and nuclear (red font with asterisk) DNMT1 fRIP-
Seq replicates cluster together relative to all other fRIPs performed in a hierarchical clustering of log2
fold changes for the ~25,000 genes present in at least one condition.
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Figure S9: The cohesin subunit STAG2 specifically binds a small cohort

of transcripts encoding centrosome-localized proteins.

(A) Heat map of log2 fRIP/input for transcripts significantly enriched in STAG2 fRIP-Seq experiments.
The variable fold changes of the other proteins for these genes precludes the possibility of a protocol
bias towards the set. Subcellcular localizations obtained from the COMPARTMENTS database
(Binder et al. 2014) indicate that STAG2-bound transcripts encode for proteins that localize to
centrosomes, centrioles, spindles, and membrane bound organelles, in line with known functional
roles of STAG2. (B) STAG2 enrichment does not appear to be driven by STAG2 protein nuclear
localization. In a scatter plot of gene abundance (FPKM) generated by RNA-Seq from nuclear lysate
(x-axis) versus whole cell lysate (y-axis) in K562 cells, STAG2-enriched transcripts (in red) lack a bias

towards one or the other.
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Figure S10: IncRNA association with CAPs is more specific than CAP

association with mRNAs.

Both mRNAs and IncRNAs associate with CAPs, but INcRNAs associate with fewer CAPs on
average. We plotted the distributions of maximal CAP specificity scores calculated for an abundance-
matched set of mMRNAs (blue) and IncRNAs (red). The specificity distribution for IncRNAs was higher
than for mRNAs using the Wilcoxon rank sum test (p-value < 9.3e-193).
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Figure S11: DNMT1 binds a GC-rich motif in IncRNAs.

(A) We discovered an 8 nt GC-rich motif that had high mutual information with the DNMT1 fRIP/input
differential expression statistic for IncRNAs. (B) For example, the motif occurs multiple times in a
IncRNA antisense of the mRNA NCBP2, overlapping the CpG island of its promoter. (C) Empirical
cumulative distribution functions of the DNMT1 fRIP/input differential expression statistic, separated
by IncRNAs with and without the motif, demonstrate its strong effect. (D) The 25th, 50th, and 75th
quantiles of the statistic distribution for transcripts with the specified numbers of motifs indicate that
presence/absence is sufficient to explain the motif’s effect. (E) As exemplified by the motif instances
in NCBP2-AS2, coverage of the motif is enriched at the 5’ ends of transcripts. We normalized motif
coverage counts by the number of transcripts.
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Figure S12: UUUUAAAA is a polarizing, conserved, 3’ motif.

(A) The RBPs responded strongly to the motif UUUUAAAA and slight variations of it,

shown as the Mann-Whitney U test Z-score comparing Cuffdiff differential expression statistics
for genes with and without the motif. Among the strongest effects were (B) IMP1’s preference
for and (C) CTCF’s avoidance of transcripts containing the motif, shown here as the 25th, 50th,
and 75th percentile of the fRIP/input statistic distributions for transcripts with 0-6 motif
occurrences. (D) The motif tended to occur towards the 3’ ends of transcripts, shown here as
the average coverage over transcripts, each divided individually into 50 equally sized bins. (E)
The distribution of PhyloP scores for motif occurrences in 3’ UTRs was shifted towards greater

scores relative to all 3’ UTR nucleotides.
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Figure S13: K-mers predict RNA binding preferences.

We fit a linear regression model, in which every 7-mer was assigned a coefficient that was optimized
to best predict a transcript’s fRIP/input fold change from its 7-mer counts vector. (A) Clustering all
proteins by these coefficient vectors displayed the relationships between their binding preferences.
(B) On the right, the R2 values (proportion of variance explained by the model) indicate the extent to
which a 7-mer based model can predict binding for each protein. The greatest accuracies were
achieved for ADAR, which focused on Alu 7-mers, and HNRNPH1, which focused on G-rich 7-mers.
To better visualize the most important 7-mers weighted by the model, we plotted the coefficients on a
2D surface with related 7-mers nearby. The placement of 7-mers on the 2D surface was computed by
a nonparametric dimension reduction approach called IsoMap on the co-occurrence vectors of the 7-
mers. In doing so, we can see the importance of (C) G-rich 7-mers to the HNRNPH1 model, (D) U-
rich 7-mers to the HUR model, and (E) 7-mers containing the polyadenylation signal AAUAAA for
PABP. Among CAPs with less studied sequencing composition preferences, we see AG-rich 7-mers,
but not AU-rich 7-mers for (F) CTCF and (G) SUZ12, (H) UGUAAAU and related 7-mers for WDR5.
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Figure S14: Transposable elements correlate with RNA binding.

(A) Mann-Whitney U test Z-scores comparing fRIP/input fold changes for transcripts with and without
specific transposable element (TE) families revealed many significant associations. Only the most
expressed transcript of every gene was considered. (B) Empirical cumulative distribution functions of
RNAs with and without Alu elements demonstrate the strong role of Alu in determining ADAR binding.
Below, the 25th, 50th, and 75th percentiles of the fRIP/input distribution indicate that binding
increases with two or more Alu’s, reflecting a known preference for ADAR to bind double-stranded Alu
sequences folded on themselves. (C) A DNMT1 preference for sense-strand ERVs was apparent for
all RNAs, but primarily limited to IncRNAs.
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Figure S15: Proteins with both fRIP and ChIP suggest a weak relationship.

Over all genes, we computed the Spearman correlation between fRIP-Seq/input and ChIP/input for all
shared proteins in the (A) promoter and (B) gene body. Because both fRIP-Seq/input and ChIP-Seq/
input correlate with FPKM, these correlations are FPKM-driven and challenging to interpret. Thus, we
also plotted a statistic measuring the difference in ChlP-Seq/input across FPKM levels between
bound and unbound RNAs (Methods) for the (C) promoter and (D) gene body. In both views, a
relationship between fRIP-Seq and ChlP-Seq is not apparent, suggesting that factors other than DNA

occupancy are more important to RNA binding.
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Figure S16: Chromatin marks correlate with gene abundance.
Over all genes, we computed the Spearman correlation between input FPKM and ChIP-Seg/input in
the (A) promoter and (B) gene body, revealing known correlations between chromatin marks and

gene abundance.
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Figure S17: fRIP versus chromatin mark correlations are FPKM-driven.

Over all genes, we computed the Spearman correlation between each fRIP-Seq/input and each ChlIP-
Seqg/input in the (A) promoter and (B) gene body. Because both fRIP-Seq/input and ChIP-Seq/input
correlate with FPKM, these correlations are FPKM-driven and challenging to interpret.
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Figure S18: Protein binding to RNA relates to local chromatin over the

gene body.

Because chromatin marks measured by RRBS (DNA methylation) or ChlP-Seq (histone modifications
and modifiers) correlate with gene abundance (Figure 6 - figure supplement 2), we plotted this
relationship separately for genes bound and unbound by each protein. (A) CTCF-bound RNAs have
more DNA methylation over the span of the gene body, shown as a scatter plot of every gene with a
generalized additive model regression. (B) CHD7-bound RNAs have less H3K79me2 in over the gene
body. (C) For each chromatin mark and protein, we computed the difference between the bound and
unbound regression lines and plotted as a heat map (Methods), revealing a clear difference in the
relationship of certain proteins to activating chromatin marks.



