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MATHEMATICAL DETAIL

We show how to derive part I in equation (1) in the paper. Recall that the goal is to compute

Pr(λj = 1 | sobs,m) = Pr(λj = 1 | sobs,HHm) ∝ p(sobs | λj = 1)︸ ︷︷ ︸
likelihood

Pr(λj = 1)︸ ︷︷ ︸
prior

=
∑

λ−j∈YL−1

p(sobs | λj = 1,λ−j)Pr(λj = 1,λ−j)

=
∑

λ−j∈YL−1

∏
i=1

p(sobsi | λj = 1,λ−j)︸ ︷︷ ︸
I

Pr(λj = 1,λ−j)︸ ︷︷ ︸
II

 .
(1)

Expanding the first term I of Equation (1) and augmenting the model with indicators zi ∈ {1, . . . , L} for
which {zi = j} is defined as the event that read i is generated from a DNA segment possessing haplotype
j, we have

I =
L∑

j′=1

p(sobsi | zi = j′, λj = 1,λ−j)Pr(zi = j′ | λj = 1,λ−j). (2)

Let eir be the error probability for the nucleotide called at base r on short read i. Typically eir is known
from upstream analysis (e.g., in the form of Phred quality score). Following the notion in Ji et al. [1], we
assume that the observed data sobsir follows a multinomial prior

Pr(sobsir = bir | zi = j′, λj = 1,λ−j) = (1− eir)I(air=hjr)
∏

bir 6=hjr

(eir
3

)I(air 6=hjr)
, (3)

where air ∈ {A,C,G, T} are observed genotype of SNV r on read i, and the index set {air 6= hjr}
has three elements referring to the three nucleotides that are different from hjr. We also assume that
Pr(sobsi = bi) =

∏
{r∈Ai} Pr(s

obs
ir = bir). That is, the joint prior of sobsi factors over the prior (3) for the

observed bases. Then (2) becomes

I =

L∑
j′=1

Pr(zi = j′ | λj = 1,λ−j)×
∏

r∈Aj′ (s
obs
i )

(1− eir)I(air=hj′r)
∏

air 6=hj′r

eir
3


 (4)
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Lastly, we define a prior for zi. Assume

Pr(zi = j′ | λj = 1,λ−j , qi) = c1i(λ)I(λj′ = 1) · 1∑L
j̃=1 λj̃

, (5)

where c1i(λ) is a normalizing constant. The indicator I(λj′ = 1) is needed since if the haplotype j′ is not
present in the sample, the probability that read i is from j′ should be zero.

Plugging into (2) we get the equation in the paper, i.e.,

I =

L∑
j′=1

[
I(λj′ = 1) · c1i(λ)

1∑L
j̃=1 λj̃

×

∑
bi∈{A,C,G,T}wi


∏

r∈Aj′ (s
obs
i ,smis

i =bi)

(1− eir)×
∏

r∈Dj′ (s
obs
i ,smis

i =bi)

eir
3


 .

Additional Computational Detail

The goal is to calculate the probability in equation (6) below. Algorithm 1 in the main paper speeds up
computation by taking advantage of the repeated items in the summation.

Pr(λj = 1 | sobs) ∝
∑

λ−j∈YL−1


N∏
i=1

Pr(sobsi | λj = 1,λ−j)︸ ︷︷ ︸
I

Pr(λj = 1,λ−j)︸ ︷︷ ︸
II︸ ︷︷ ︸

III

 (6)

We state Algorithm 1 again. Denote the set of indices for the event {λ1 = 1 | sobs} and {λ1 = 0 | sobs}
by Vj1 and Vj0, respectively.

Algorithm 1 Algorithm for computing Pr{λj = 1 | sobs} ∀j = 1, 2, . . . , L

Index all the configurations of λ from 0 to (2L − 1).
Enumerate Vj1 and Vj0 for all j = 1, 2, . . . , L.
Compute Pr(sobs | Cl) and Pr(Cl) for all l = 0, 1, . . . , 2L − 1.
for j = 1, 2, . . . , L do

P1(j)←
∑

l∈Vj1 Pr(s
obs | Cl) Pr(Cl).

P0(j)←
∑

l∈Vj0 Pr(s
obs | Cl) Pr(Cl).

Pr(λj = 1 | sobs)← P1(j)
P1(j)+P0(j)

.
end for

Calculation of Pr(sobs | Cl) for all l = 0, 1, . . . , 2L − 1 in Algorithm 1 is carried out in two parts. In
the first part Pr(sobsi | λj = 1,λ−j) is calculated for all i = 1, 2, . . . , N (as shown by I in Equation (6))
and in the second part we calculate the prior term Pr(λj = 1,λ−j) as shown in II in Equation (6).

With the use of appropriate data structure in C++, we can find out the DNA sequences of the
haplotype, hj = {hjr : j = 1, 2, . . . , L; r = 1, 2, . . . , R} by a linear (O(n)) scan through all of the data.
After that, for all the data {siobs : i = 1, 2, . . . , N} and all the haplotypes hj , we create a matrix D
that stores a triplet {wi, ai,j , di,j} in each cell (i, j). Recall that, wi is the number of missing bases in
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the i-th read. ai,j and di,j denote the number of agreeing and disagreeing bases of sobsi with hj . From
equation (5), let

Tij′ = Pr(zi = j′ | λj = 1,λ−j) = c1i(λ)I(λj′ = 1) · 1∑K
j̃=1 λj̃

(7)

where c1i(λ) is a normalizing constant. Denoting Eij′ by

Eij′ =
∑

bi∈{A,C,G,T}wi


∏

r∈Aj′ (s
obs
i ,smis

i =bi)

(1− eir)×
∏

r∈Dj′ (s
obs
i ,smis

i =bi)

eir
3

 . (8)

we have from Equations (6), (7), (8)

I =
L∑

j′=1

[
Tij′ × Eij′

]
(9)

Note that this calculation is for one particular configuration of λ.
We denote eir to be the error probability for the base called at locus r on short read i. Currently,

for all i = 1, 2, . . . , N and for all r = 1, 2, . . . , R, eir is taken as e. So after generating the matrix D, the
error matrix E (given in Equation 8) is very easy to compute from D if we use a single e. Each term of
Tij′ and Eij′ is straightforward to calculate depending on si

obs, wi, hj′ and the particular configuration
of λ. Equation (9) can be easily calculated by first doing a Hadamard matrix multiplication of T by E
and then summing the elements from each row i of the resultant matrix F .

Algorithm 2 Algorithm for computing Pr(sobsi | Cl) ∀l = 0, 1, . . . , 2L − 1

Calculate each term Tij′ to form the matrix T .
Calculate each term Eij′ to form the matrix E.
Do a Hadamard matrix multiplication of T by E i.e F ← T ◦ E.
Pr(si

obs | Cl)←
∑L

j=1 F (i, j).

The hcf FILE FORMAT

Each line in the hcf file contains information about one particular LHV segment. Below is a line in an
hcf file from analysis of real-world data.

##CHROM POS REF NumSig HAP Call All HAP DataForSample = NA12878

chr1 4369613, 4369623 GA 3 GA(1.000), AA(1.000), GG(0.985) GA(1.000; 0.000), AA(1.000; 0.000), GG(0.985; 0.005), AG(0.000; 0.254)

nSNP = 2;nTot = 90;nACGT = 75;nBlank = 15;nDisc = 0;nM0 = 41;nM1 = 34;nM2 = 15;nClus = 3;

Same as vcf, an hcf file is a tab-delimited text file. After the initial header fields, each line in the hcf
file represents a local haplotype (might not be a variant) and has seven column fields, which are explained
next.

Chromosome name (CHROM), SNV positions on the chromosome (POS), nucleotides at those posi-
tions in the reference genome (REF), number of significant haplotypes (NumSig), called haplotypes (HAP-
Call), all the possible haplotypes (All-HAP) and data for the sample (DataForSample=sample-name). In
the “Hap-Call” field, we include the posterior probability of each haplotype variant that is considered sta-
tistically significant. The “All-HAP” field contains the posterior probability and corresponding posterior
false discovery rate (FDR) for each possible haplotype. Haplotype variants in the “Hap-Call” field are
generated from those in “All-HAP” by using an FDR threshold of 0.01. In the last field, a few basic statis-
tics about the input data are given, that include total number of SNPs (nSNP), total number of reads
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(nTot), number of reads having at least one entry in one of the SNP position (nACGT), number of blank
reads (nBlank), number of discrepant reads (nDisc), number of reads with no missing entries, missing
entries in one position or two positions or three positions (nM0, nM1, nM2, nM3, respectively) and num-
ber of clusters directly observed from the data (nClus). Note that, number of unique read groups of data
that has no missing SNP defines the number of clusters. For more details refer to the Quick Manual doc-
ument (http://compgenome.org/lochap/code_release/QuickManual-LocHap-release-v1.0.pdf) of
LocHap software.
Summary of data for a sample: At the end of each hcf file a summary stating the total number
of SNVs in the vcf, number of segments with zero significant haplotypes, one significant haplotype, two
significant haplotypes and so on, are given. Below is an example.

# Analyzed 6378548 Variants in Trio.VCF

# Number of Segments with 0 significant haplotypes = 66654

# Number of Blocks with 1 significant haplotypes = 11514

# Number of Blocks with 2 significant haplotypes = 217458

# Number of Blocks with 3 significant haplotypes = 18233

# Number of Blocks with 4 significant haplotypes = 1205

# Number of Blocks with 5 significant haplotypes = 43

# Number of Blocks with 6 significant haplotypes = 2

# Number of Blocks with 7 significant haplotypes = 0

# Number of Blocks with 8 significant haplotypes = 0

# Number of Blocks with more than 3 Variants = 192985 (Not analyzed)

ANALYSIS DETAIL

Universal setup

We analyzed the vcf file containing all the variant calls to identify segments with multiple proximal SNVs.
Using APIs of SAMTools, we developed a computer program to extract nucleotides of read bases that
were aligned with the SNVs using indexed bam files. For all the Illumina data, reads with an alignment
quality score less than 30 were discarded. In addition, if a base had a Phred quality score less than 30,
the called DNA sequence was ignored and a missing base M was recorded. Thus, we only kept short
reads with high quality alignment and bases with high quality calling scores.

HNC data Exome sequencing data of 30 pairs of tumor and matched normal samples (total 60 sam-
ples) from patients with head and neck cancer [2] were downloaded from the Sequence Read Archive
(SRA) (http://www.ncbi.nlm.nih.gov/sra). We extracted fast-q sequences from the SRA files and
used BWA [3] to map short reads to the HG19 human reference genome [4]. Next, we used SAMTools [5]
on each sample to generate a bam and a bai file, removing polymerase chain reaction (PCR) duplicates.
We then used the realigner-target-creator and indel-realigner modules of GATK version 2.1.9 to refine
alignments near all indels [6]. Finally, we called SNPs for all 60 samples with the UnifiedGenotyper
module of GATK (version 2.1.9) using a minimum base quality threshold of 30 (“-mbq 30”). GATK caps
the quality score of a base at its mapping quality and hence this also forces GATK to ignore any reads
mapped with an alignment quality less than 30. All 60 samples were analyzed together in a single run of
the UnifiedGenotyper and a single vcf file was generated containing all the variants across all the samples.
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CEU-TRIO data The TRIO dataset was generated by whole-genome sequencing. A similar pre-
processing scheme was taken to generate the bam/bai files and a single vcf file.

Validation CGI data CGI sequencing platform employs high-density DNA nanoarrays that are popu-
lated with DNA nanoballs (DNBs) and base identification is performed using a non-sequential, unchained
read technology, known as combinatorial probe-anchor ligation (cPAL). CGI sequencing technology, in-
cluding the general library construction process and ligation-based assay approach, the the methodology
and performance of the platform are described in [7]. More information on read mapping, variation calling,
read data format can be found in (http://www.completegenomics.com/documents/DataFileFormats_
Standard_Pipeline_2.5.pdf). The data corresponding to a single genome is organized into three main
directories -

• ASM – Assembly of the complete genome: variations called, coverage, and annotations.

• LIB – DNB structure for the library used in the sequencing assay.

• MAP – Reads, quality scores, and alignments to the reference genome.

The variation (var) file (http://www.completegenomics.com/documents/DataFileFormats_Standard_
Pipeline_2.5.pdf) contains records for each position in the reference genome, describing whether the
corresponding position was called in the CGI data, and if so, whether it is called as reference (its se-
quence is same as the reference genome) or variant. This is done independently for each of the two
diploid alleles of the sequenced genome. The master variations file (masterVarBeta) is a simple, in-
tegrated report of the variant calls and annotation information produced by the CGI assembly pro-
cess. The file format is derived heavily from the variations file format. The LocHap pipeline requires
bam and vcf files as inputs. We generated corresponding bam and vcf files from CGI data using open
source tool CGATools (http://cgatools.sourceforge.net/docs/1.8.0/cgatools-user-guide.pdf
and http://cgatools.sourceforge.net) and SAMTools [5].

Model Checking

We performed some basic model checking using graphical plots to examine the model estimates against
observed data. For example, for the HNC data, we present

the box plots in Fig. S1 which compares the number of inferred LHs against the number of unique
read-groups mapped to all SNVs, each read-group refers to a set of reads possessing a unique genotype
and mapping to all the SNVs in the segment without missing bases. For example, in Fig. 1 of the
main article, the number of unique read-groups is three for both examples. Intuitively, there should be
concordance between the two numbers. For example, if the number of unique read-groups is higher, there
should be more inferred LHs since unique read-groups directly support the presence of the corresponding
haplotypes. We see this concordance in the box-plots.

Copy number variation (CNV) analysis

Double hits of a structure mutation such as CNV and sequence mutation could falsely be explained by
somatic mosaicism even if cells are homogeneous in a sample (Fig. S2). For example, a copy number gain
coupled with a somatic mutation on the additional copy could lead to greater than 2 local haplotypes with
short-read-based next-generation sequencing. Therefore, we further examine CNVs on LHV segments
generated by LocHap. We used XHMM [8–10] for the HNC data and CNVnator [11, 12] for CEU TRIO
data for CNV analysis. In both examples shown in the paper, we did not find enrichment of CNVs in the
regions where LHVs were present, suggesting that the haplotype variants were not associated with copy
number variants. In the HNC data, we essentially found no (< 0.01%) CNVs in any of the LHVs.
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Additional simulation result for testing Sensitivity and Specificity

Simulation setup: We have used two different settings for the additional simulation study. In the first
setting, we took a segment containing two SNVs, which had three different haplotypes. So it was a local
haplotype variant (LHV) segment. In the second setting, we took a segment containing two SNVs, which
had two different haplotypes. Therefore it was not a local haplotype variant (LHV) segment. We ran
100 simulations for each LHV segment. In each simulation, we generated a random number (between 160
and 180) of short reads that mapped to at least one SNV.

After that we used LocHap to call the number of haplotypes with their corresponding genotypes based
on the observed short reads. In the first setting, we defined “sensitivity” as the ratio between the number
of simulations where we successfully called three significant haplotypes with the correct genotypes and
the total number of simulations and in the second setting, we defined “specificity” as the ratio between
the number of simulations where we successfully called two significant haplotypes with correct genotypes
and the total number of simulations.
Sensitivity Results: Simulated short reads were generated from three true haplotypes with proportions
0.5, 0.25 and 0.25. We assumed at each SNV, one could observe up to two different alleles. With
probability (1− eb) we generated a genotype on the short read that is same as the true genotype of either
allele and a different genotype with probability eb. That is, eb is the error probability for each SNV of
the short read.

Recall that in the posterior inference first the inferred haplotypes were sorted according to the de-
creasing order of posterior probabilities and then the FDR threshold was used to select the reported
haplotypes. Here we used two different values of FDR thresholds 0.01 and 0.001. With different setting
of eb we tabulated the results in Table S10. Sensitivity is worse with higher error rates eb and gets better
with a less stringent FDR threshold.
Specificity Results: We assumed now the segment has only two true haplotypes, with proportions 0.5
and 0.5. Here also, with different setting of eb we report the following results in Table S11. Specificity is
worse with higher error rates eb and gets better with a more stringent FDR threshold.

Filters

LocHap includes optional post-processing filters. Despite the proposed principled and rigorous statistical
inference, noise and artifacts from NGS data can still affect the quality of the estimated LHVs. We
introduce an additional filtering method to remove dubious LHVs in the hcf files. We devise three types
of multi-staged filtering schemes. First we introduce some abbreviations.

• nHaplo is the number of inferred haplotypes within an LHV segment.

• nClus is the number of unique read-groups observed directly from the short read data within an
LHV segment. For example, in Fig. 1 of the main article nClus is 3 for both examples.

• min-SNV-dist is the shortest distance allowed between two successive SNVs within one segment.
This will be used to remove SNVs that are too close to each other, due to potential bias caused by
artifacts reported in Pickrell et al. [13].

• short-RL is the short-read length from NGS data.

Three different types of filters are proposed according to their stringency levels - type I, type II,
type III. Among all three filter types, type I is the most conservative and type III is the least. Here, a
conservative filter would remove more estimated LHVs in an hcf file. The filters remove LHV segments
from the hcf files based on the following criteria. Metaphorically, we consider the filtering a process of
revealing a portrait of an elephant. Without knowing which animal is on the portrait, Type I filter only
reveals the tail of the animal, Type II filter reveals legs and tail, and Type III reveals the whole elephant.
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• Common to all three types is a Fisher’s exact test for testing the strand bias [14, 15]. An LHV
segment is removed if the if short reads show strand bias based on a significance level of 0.05. Also,
we require that at least one read is mapped to each strand.

• Type I (tail): { nHaplo > 2 and nClus > 2 and min-SNP-dist = short-RL }

• Type II (leg): { nHaplo > 2 and min-SNP-dist = short-RL }

• Type III (elephant): { nHaplo > 2 and min-SNP-dist = short-RL / 2 }

In addition, the following filtering steps are applied to all three types of filters based on discussion in the
literature [15–17]. These filters aim at removing short reads, not segments, that have poor quality.

• If on either end of a pair-end read, an Indel is called along with an SNV, the read is removed.
Typically co-occurrence of different mutations on the same end of a read is caused by artifact and
noise in base calling.

• Any SNVs are removed if they reside on a region within 10% of the read length from the end of
any short read.
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Figure S1: Model Checking. Boxplots of numbers of inferred haplotypes (vertical axis) for different
numbers of unique read-groups (horizontal axis)

8



A

C

Original Cell

CN= 2!
Heterozygous

Double-hits
A

C

Mutated Cell

No mosaicism !

T

CN gain !
+ !

Point mutation A to T

Figure S2: Illustration of a hypothetical event of “Double-hits”. A copy number gain occurs and on the
new copy, a point mutation replaces an “A” with a ‘T”. When all three copies are sequenced, potentially
three different alleles bearing “A”, “T” and “C” could be observed. Without accounting for copy number
gains, somatic mosaicism could be falsely inferred.
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Tabulated Posterior Probabilities for Simulated Data

Sequences Frequency

AA 9
A – 23
GA 8
GG 7
G – 4
– A 42
– G 19

Table S1: A simulation data set for the calibration of eir. Short reads with only two bases are generated
and their sequences and frequencies are shown.

Sequence Post. Prob. FDR

GA 1.0000000 0.0000000
AC 0.9999428 0.0000286
GC 0.9997732 0.0000946
AA 0.0049901 0.2488235

Table S2: Simulation scenario 1. Shown are possible haplotype sequences with corresponding posterior
probabilities ξj and estimated posterior expected FDR.

Sequence Post. Prob. FDR

GG 0.5474743 0.4525257
AG 0.5425159 0.4550049
GA 0.5179061 0.4640346
AA 0.4887007 0.4758507

Table S3: Simulation scenario 2. Shown are possible haplotype sequences with corresponding posterior
probabilities ξj and estimated posterior expected FDR.

10



Sequence Post. Prob. FDR

AGA 0.9999828 0.0000171
AGC 0.9999828 0.0000171
GAC 0.9989948 0.0003464
AAC 0.0122725 0.2471917
GGC 0.0122725 0.3952988
GAA 0.0122641 0.4940383
AAA 0.0119430 0.5646124
GGA 0.0119430 0.6175430

Table S4: Simulation scenario 3. Shown are possible haplotype sequences with corresponding posterior
probabilities ξj and estimated posterior expected FDR.

Sequence Post. Prob. FDR

AAA 0.9470780 0.0529220
AAT 0.9470780 0.0529220
ACA 0.9470780 0.0529220
ACT 0.9470780 0.0529220
GAA 0.9470780 0.0529220
GAT 0.9470780 0.0529220
GCA 0.9470780 0.0529220
GCT 0.9470780 0.0529220

Table S5: Simulation scenario 4. Shown are possible haplotype sequences with corresponding posterior
probabilities ξj and estimated posterior expected FDR.

Sequence Post. Prob. FDR

AAA 0.9999999 0.0000000
AAT 0.9999999 0.0000000
ACA 0.9999999 0.0000000
ACT 0.9503068 0.0298116
GAA 0.9523648 0.0186603
GAT 0.9522508 0.0235084
GCA 0.9522508 0.0269714
GCT 0.9543334 0.0114166

Table S6: Simulation scenario 5. Shown are possible haplotype sequences with corresponding posterior
probabilities ξj and estimated posterior expected FDR.
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Sequence Post. Prob. FDR

GA 1.0000000 0.0000000
AC 1.0000000 0.0000000
GC 1.0000000 0.0000000
AA 0.0000020 0.2499994

Table S7: Simulation scenario 6. Shown are possible haplotype sequences with corresponding posterior
probabilities ξj and estimated posterior expected FDR.

Sequence Post. Prob. FDR

GG 1.0000000 0.0000000
GC 1.0000000 0.0000000
AG 1.0000000 0.0000000
AC 0.0000000 0.2499999

Table S8: Simulation scenario 7. Shown are possible haplotype sequences with corresponding posterior
probabilities ξj and estimated posterior expected FDR.

Sequence Post. Prob. FDR

TT 1.0000000 0.0000000
CG 1.0000000 0.0000000
CT 1.0000000 0.0000000
TG 0.0000000 0.2499999

Table S9: Simulation scenario 8. Shown are possible haplotype sequences with corresponding posterior
probabilities ξj and estimated posterior expected FDR.
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eb Sensitivity (with FDR=0.01) Sensitivity (with FDR=0.001)

0.01 1.00 1.00
0.05 0.87 0.86
0.10 0.57 0.55

Table S10: Sensitivity analysis for simulated data from a segment with two SNVs and three true haplo-
types in the sample.

eb Specificity (with FDR=0.01) Specificity (with FDR=0.001)

0.01 1.00 1.00
0.05 0.82 0.86
0.10 0.26 0.35

Table S11: Specificity analysis for simulated data from a segment with two SNVs and only two true
haplotypes in the sample.
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