# SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation

[Keywords: acetylation; CBP; histone modification; SMARCAD1; H2A]

Running Head:

SMARCAD1 and CBP Activate Transcription

Masamichi Doiguchi<sup>1, 8</sup>, Takeya Nakagawa<sup>1, 8</sup>, Yuko Imamura<sup>1</sup>, Mitsuhiro Yoneda<sup>1</sup>, Miki Higashi<sup>1</sup>, Kazuishi Kubota<sup>2</sup>, Satoshi Yamashita<sup>3</sup>, Hiroshi Asahara<sup>3</sup>, Midori Iida<sup>4</sup>, Satoshi Fujii<sup>4</sup>, Tsuyoshi Ikura<sup>5</sup>, Ziying Liu<sup>6</sup>, Tulip Nandu<sup>6</sup>, W. Lee Kraus<sup>6</sup>, Hitoshi Ueda<sup>7</sup>, Takashi Ito<sup>1, 9</sup>

<sup>1</sup>Nagasaki University School of Medicine, Nagasaki 852-8523, Japan.

<sup>2</sup>Daiichi Sankyo RD Novare CO., LTD., Tokyo 134-8630, JAPAN

<sup>3</sup>Tokyo Medical and Dental University, Tokyo 113-8510, Japan

<sup>4</sup> Kyushu Institute of Technology, Fukuoka820-8502, Japan

<sup>5</sup>Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan.

<sup>6</sup>UT Southwestern Medical Center, Dallas, TX, 75390, USA

<sup>7</sup>Okayama University, Okayama 700-8530, Japan.

<sup>8</sup>These authors contributed equally to this work..

<sup>9</sup>Corresponding author.

E-mail: tito@nagasaki-u.ac.jp, Tel: 81-95-819-7037, Fax: 81-95-819-7040

# Supplementary Table 1, Ito

| Name             | sequence                  | score    | Mr (expt)        |
|------------------|---------------------------|----------|------------------|
| nej              | TALLPTLEK                 | 29       | 984.60           |
|                  | LGFDIDDGSALADHK           | 17       | 1572.77          |
| Topoisomerase II | ISNYNPR                   | 49       | 862.44           |
|                  | AYDVAASSK                 | 26       | 910.46           |
|                  | LSELESSR                  | 8        | 945.54           |
|                  | ITFSPDLAK                 | 29       | 990.56           |
|                  | AEEQGINLK                 | 49       | 1000.54          |
|                  | IVHEVANER                 | 24       | 1065.59          |
|                  | DFNGTDYTR                 | 44       | 1087.48          |
|                  | EYFQDMDR                  | 16       | 1102.46          |
|                  | NTDDDSGPPIK               | 41       | 1157.52          |
|                  | WEVACCPSDR                | 31       | 1278.53          |
|                  | ENVLEPLSNGTEK             | 16       | 1428.72          |
| POLO             | VPSYLR                    | 26       | 733.40           |
|                  | LLSYFK                    | 12       | 769.42           |
|                  | STDIPDR                   | 36       | 802.38           |
|                  | IGDFGLATR                 | 55       | 948.50           |
|                  | SITEFECR                  | 23       | 1040.44          |
|                  | TAQEITIHR                 | 22       | 1067.55          |
|                  | MSAITYMDQEK               | 13       | 1315.53          |
|                  | IGSNDTIEDSMHR             | 21       | 1473.60          |
|                  | AGANNVNIESDQISR           | 29       | 1586.70          |
|                  | AGANNVNIESDQISR           | (9)      | 1586.72          |
| belle            | NNVALAR                   | 36       | 756.43           |
|                  | VGLENIR                   | 20       | 799.47           |
|                  | YDKPTPVQK                 | 14       | 1074.59          |
|                  | FLVLDEADR                 | 46       | 1076.55          |
|                  | ELATQIFEEAK               | 25       | 1277.65          |
|                  | QSGDYGYGSGGGGR            | 33       | 1316.54          |
|                  | ELATQIFEEAKK              | 8        | 1405.74          |
|                  | WKEGGGSNVDYTK             | 20       | 1439.65          |
|                  | GGGGGSGSNLNEQTAEDGOAQQQQP | 39       | 2698.16          |
| SMARCAD1         |                           | 20       | 776 12           |
| SMARCADI         |                           | 50<br>71 | 1014 56          |
|                  |                           | /1       | 1014.30          |
|                  |                           | 9        | 1138.38          |
|                  |                           | 20       | 1230.60          |
| Cale III         |                           | <u> </u> | 1282.09          |
| GCK III          |                           | 41       | 801.44<br>040.50 |
|                  |                           | 10       | 949.50           |
|                  | AANVLLSEQGDVK             | 18       | 1342.71          |

qPCR primers

| RT-qPCR   | SMARCAD1  | Forward | TAAGAACCTGCCCAAGAAGC   |
|-----------|-----------|---------|------------------------|
|           |           | Reverse | TTCGCTGCTGCTGCACACCTC  |
|           | СВР       | Forward | TGTTGCTATCACGCGAAGAAC  |
|           |           | Reverse | TGAACGCGACATGAGCGCCAC  |
|           | ACT79B    | Forward | GCCTCCGGCCGTACCACCGG   |
|           |           | Reverse | CGGCCAGATCTAGACGAAGG   |
|           | kermit    | Forward | CAGCGCGTCATCAGCACAG    |
|           |           | Reverse | TGGGATTGGATAGTGTCCTCG  |
|           | baldspot  | Forward | CTGGACCTGGCTCTTCGTGC   |
|           |           | Reverse | CCGTATAGCTGAACCACGAG   |
|           | mbc       | Forward | CTCAGTCTAAGATGGGATGC   |
|           |           | Reverse | TCATGATGTTGATGCACTCG   |
|           | cib       | Forward | TAGTAGTCCGCTTCGCCAATC  |
|           |           | Reverse | ACTGGCTTTTCAGGTTCTCG   |
|           | Galpha73b | Forward | GTACTGCGACCACGTCACTAC  |
|           |           | Reverse | GCACAAAGTTGTCCAGGAAG   |
| ChIP-qPCR | kermit    | Forward | CTCAATAGGCCGATTGTCAGC  |
|           |           | Reverse | AATTCGGACCTCGCGCTGTAG  |
|           | baldspot  | Forward | TACCGGGATGGCAAAAGTACC  |
|           |           | Reverse | TTCTGCCCCAGCGACTCGG    |
|           | mbc       | Forward | CCCATTTGACATCAACGGTGTG |
|           |           | Reverse | CCGCTCTCGGAAAACAACCCG  |
|           | cib       | Forward | GCATGGTGTTTGTATCAGCTAG |
|           |           | Reverse | GGCACAGTCCATTTAGTGGAG  |
|           | Galpha73b | Forward | CCACTCGATGGAGCTCTCTC   |
|           |           | Reverse | CCTGCCGGAATACGTCTAAC   |



dH4 (1-20) TGRG<mark>K</mark>GG<mark>K</mark>GL GKGGAKRHRK











442(7%)

b

upstream

a

#### Annotation Cluster 1 (Enrichment Score: 4.91)

397 (7%)

| GO ID      | Term                          | Count | P Value | FDR  |
|------------|-------------------------------|-------|---------|------|
| GO:0032553 | ribonucleotide binding        | 232   | 5.6E-06 | 0.01 |
| GO:0032555 | purine ribonucleotide binding | 232   | 5.6E-06 | 0.01 |
| GO:0000166 | nucleotide binding            | 292   | 7.6E-06 | 0.00 |
| GO:0017076 | purine nucleotide binding     | 243   | 1.8E-05 | 0.01 |
| GO:0005524 | ATP binding                   | 185   | 1.6E-04 | 0.03 |
| GO:0032559 | adenyl ribonucleotide binding | 185   | 1.8E-04 | 0.03 |
| GO:0030554 | adenyl nucleotide binding     | 196   | 4.0E-04 | 0.05 |
| GO:0001883 | purine nucleoside binding     | 197   | 4.1E-04 | 0.04 |
| GO:0001882 | nucleoside binding            | 197   | 6.6E-04 | 0.06 |

| Category   | Term                                  | Count | PValue   | FDR  |
|------------|---------------------------------------|-------|----------|------|
| GO:0007010 | cytoskeleton organization             | 136   | 1.80E-09 | 0.00 |
| GO:0000226 | microtubule cytoskeleton organization | 89    | 6.30E-07 | 0.00 |
| GO:0007052 | mitotic spindle organization          | 64    | 7.70E-07 | 0.00 |
| GO:0007017 | microtubule-based process             | 111   | 2.80E-06 | 0.00 |
| GO:0000278 | mitotic cell cycle                    | 99    | 6.20E-06 | 0.00 |
| GO:0007051 | spindle organization                  | 68    | 1.00E-05 | 0.00 |
| GO:0007049 | cell cycle                            | 142   | 1.00E-03 | 0.07 |
| GO:0022402 | cell cycle process                    | 125   | 3.00E-03 | 0.11 |
| GO:0022403 | cell cycle phase                      | 107   | 3.10E-02 | 0.41 |
| GO:0000279 | M phase                               | 101   | 5.80E-02 | 0.52 |



#### Supplementary information

#### **Supplementary methods**

#### **Plasmid construction**

pAc–EGFP–Flag–H2A(wt) and pAc–EGFP–Flag–H2A(K5A, K8A) were constructed by inserting EGFP–Flag–H2A and –H2A(K5A, K8A) mutant cDNA into the pAc5.1/V5-HisA vector for expression in S2 cells.

#### ELISA

Unmodified and acetylated H2A peptides diluted with Tris-buffered saline and Tween (TBST) buffer were immobilized on polystyrene plates for 2 hours at RT and then blocked with 5% BSA in TBST for 16 hours at 4 °C. After washing three times with TBST, purified antibodies in TBST were added and incubated for 1 hour at RT. After three washings in TBST, horse radish peroxidase (HRP)-conjugated anti-rabbit IgG was added and incubated for 1 hour at RT. After a further four washings, 2.5 mg/ml orthophenylenediamine, 0.002%  $H_2O_2$  in 24 mM citric acid, and 130 mM Na<sub>2</sub>HPO<sub>4</sub>, pH 5.0, were added, and the reaction was stopped by adding 1 M  $H_2SO_4$ .

#### **Supplementary Figure Legends**

#### **Supplementary Figure 1**

(a) Western blotting showing the specificity of the anti-SMARCAD1 and anti-CBP antibodies. Whole-cell lysate of S2 cells (lanes 1, 3) and embryos (lane 2) were analyzed by SDS-PAGE and western blotting, performed using anti-SMARCAD1 (left

panel) or anti-CBP antibodies (right panel). (b) ELISA analysis of acetylated H2A antibodies using unmodified peptide, K5-acetylated H2A 1–9 peptide, or K8-acetylated H2A 4–12 peptide. Unmodified and acetylated peptides were immobilized on 96-well plates, and the ELISA was performed using purified anti-H2A AcK5 and anti-H2A AcK8 antibodies (bottom). (c) The level of histone acetylation was analyzed by western blotting with purified anti-H2A AcK5 and anti-H2A AcK8 antibodies using whole lysates from different embryonic developmental stages. (d) Sequence alignment of the N-termini of *Drosophila* canonical H2A and *Drosophila* H4. (e) *In vitro*-acetylated native core histones were blotted onto PVDF membranes and subjected to N-terminal automated sequencing.

#### **Supplementary Figure 2**

Edman degradation of the N-terminus of recombinant dH2A (a) and that of recombinant dH2B (b) yielded the sequence SGRGKGGKVK and the mixture of MPPKTSGKAA and PPKTSGKAAK sequences, respectively. The chromatogram of the PTH standards and the products of the first ten Edman degradations are shown.

#### **Supplementary Figure 3**

Confirmation of knockdown efficiency by RT-qPCR and western blotting. (a) RT-qPCR analysis of SMARCAD1 (left panel) and CBP (right panel) mRNA extracted from S2 cells treated with EGFP (as a control), SMARCAD1, and CBP dsRNAs. Values were normalized to dACT79B as a control. (b) Western blotting of whole-cell extracts of S2 cells after 3-day treatment with EGFP, SMARCAD1, and CBP dsRNAs was performed (left). Whole-cell extracts of S2 cells after 3-day treatment with EGFP, SMARCAD1, and S2 cells stably expressing EGFP–SMARCAD1 were analyzed by western blotting (right). Amido black staining of the membrane was used as a loading

control. (c) ChIP-qPCR analysis of normal rabbit IgG enrichment at the indicated promoter. qPCR following ChIP was performed using TSS-specific primers. (d) RT-PCR analyses of *dAct79B*, *SMARCAD1*, and *CG12477* levels in S2 cells transfected with EGFP, EGFP–SMARCAD1, EGFP–H2Awt, or the EGFP–H2A(K5A, K8A) mutant.

#### **Supplementary Figure 4**

Distribution of SMARCAD1 binding sites. (a) The genome-wide occupancy of SMARCAD1 (left panel) and CBP (right panel) and the percentage of the total number of sites (bottom table). The genome was partitioned into six discrete regions, based on annotated UCSC coordinates: downstream, downstream of the TES; includeFeature, containing the gene-coding sequence; inside, intergenic; overlapEnd, overlapping with the TES; overlapStart, overlapping with the TSS; and upstream, upstream of the TSS. (b) Functional categories of genes bound by SMARCAD1 showing the P value for the molecular function (upper table) as well as the biological process GO terms (bottom panel). (c) The SMARCAD1- and CBP-concentrated regions were determined using ChIPpeakAnno. (d) Target genes of SMARCAD1 and CBP in S2 cells: genome browser views. ChIP-seq signals are shown for anti-SMARCAD1 and anti-CBP antibodies after loading BedGraph (bdg) files on the Integrated Genome Browser.

#### **Supplementary Tables**

#### **Supplementary Table 1**

List of peptide sequences corresponding to Fig. 1d. Sequences further verified by LC-MS/MS are indicated.

#### **Supplementary Table 2**

List of primer sequences using RT-qPCR and ChIP-qPCR.

#### **Supplementary Table 3**

Microarray dataset from S2 cells transfected with control vector or SMARCAD1.

#### **Supplementary Table 4**

Microarray dataset from S2 cells treated with dsRNA from the control, SMARCAD1, or CBP.