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Supplementary Note 1: Algorithm for whole-
sample ICC method based on linear mixed ef-
fects model
Suppose we have m independent samples measuring the methylation of p
CpGs. Assume each sample replicates ni(i=1, . . . ,m) times, totaling n=

∑m
i=1 ni

samples. Note in most studies, the majority of the samples are not replicated
and the majority of ni=1. Denote yij as the methylation M-value of a given
CpG for ith sample and its jth replicate after data normalization. We model
yij using a linear mixed effects model (LMM)

yij = µ+ ξi + εij i=1, · · · ,m and j=1, · · · , ni, (1)

where εij∼N(0, σ2
ε ) represents technical variability and ξi∼N(0, σ2

ξ ) repre-
sents biological variability. Denote yi = (yi1, · · · , yini) and Y = (y1,y2, · · · ,ym)T ,
we then have

Y ∼MVN (µ, V ) ,

with the mean µ = (µ, µ, · · · , µ)T and the covariance matrix V

V = σ2

A1

A2

. . .
Am


n×n

and Ai =

1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


ni×ni,

where σ2=σ2
ε+σ

2
ξ is the total variance and ρ=

σ2
ξ

σ2
ε+σ

2
ξ
is the intra-class cor-

relation coefficient (ICC). The score function of the log likelihood is given
by

Uρ = −
1

2
tr(V −1∂V

∂ρ
) +

1

2
(Y − 1µ̂)TV −1∂V

∂ρ
V −1(Y − 1µ̂),

where 1 is a column vector of 1’s and

µ̂ = (1TV −11)−1(1TV −1Y )

is a function of ρ. The maximum likelihood estimate (MLE) of ρ is given by
equating the score function with 0.

As we have far more independent samples than technical replicates (e.g.
1,000 independent samples, 20 technical replicates), µ̂ can be approximated
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and treated as free of ρ. To see this, we can study the range of µ̂ at different
ρ’s. By simple algebra, we get

µ̂ =

{ ∑m
i=1 yi1
m

if ρ = 1∑m
i=1

∑nj
j=1 yij

n
if ρ = 0.

Since the number of replicates is small, µ̂ at the two extremes (perfectly
correlated and no correlation) is very close and we can use either one as the
estimate of µ and substitute it into the score equation. In fact, both of µ̂
are working independence estimates and are consistent. Similarly, we can
estimate the total variance as

σ̂2 =

∑m
i=1(yi1 − µ̂)2

m
.

The inverse of V can be obtained analytically as

V −1 =
1

σ2


B1

B2

. . .
Bm


n×n

, Bi =


bi0 bi1 · · · bi1
bi1 bi0 · · · bi1
...

... . . . ...
bi1 bi1 · · · bi0


ni×ni,

where

bi0 =
1 + (ni − 2)ρ

(1− ρ){1 + (ni − 1)ρ}
and bi1 = −

ρ

(1− ρ){1 + (ni − 1)ρ}
.

The trace part can be simplified as

−1

2
tr(V −1∂V

∂ρ
) = −1

2

m∑
i=1

{ni(ni − 1)bi1},

and

V −1∂V

∂ρ
V −1 =

1

σ2


C1

C2

. . .
Cm


n×n

, Ci =


ci0 ci1 · · · ci1
ci1 ci0 · · · ci1
...

... . . . ...
ci1 ci1 · · · ci0


ni×ni,
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where

ci0 = (ni − 1)(ni − 2)b2i1 + 2(ni − 1)bi0bi1
ci1 = {(ni − 1)(ni − 2) + 1}b2i1 + 2(ni − 2)bi0bi1 + b2i0.

Finally, the score function can be simplified as

Uρ = −
1

2

m∑
i=1

{ni(ni − 1)bi1}+
1

2

m∑
i=1

(
yi − 1µ̂

σ̂
)TCi(

yi − 1µ̂

σ̂
).

For restricted maximum likelihood estimate (REML), the score function is
given by

UR
ρ = −1

2
tr(P

∂V

∂ρ
) +

1

2
(Y − 1µ̂)TV −1∂V

∂ρ
V −1(Y − 1µ̂),

where P = V −1 − V −11(1TV −11)−11TV −1. The only difference is the trace
part, which can be simplified as

−1

2
tr(P

∂V

∂ρ
) = −1

2

m∑
i=1

{ni(ni − 1)bi1}+
1

2d

m∑
i=1

ni{ci0 + (ni − 1)ci1},

where d =
∑m

i=1{ni(bi0 − bi1) + n2
i bi1}.

For both MLE and REML, since most of the terms in the summation are 0’s
(independent samples), it only involves samples with replicates. The compu-
tation can be vectorized and does not require any matrix multiplication and
inversion. Simple uniroot finding algorithm such as Newton method can be
applied to get the solution. It usually involves less than 10 iterations to get
the solution of desired numerical precision. Assume the number of technical
replicates is small compared to the sample size, the computational cost for
each iteration is only O(np), which is linear time in sample size and CpG
number.
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Supplementary Note 2: Effects of ICC-based fil-
tering on type I error and power
Independent filtering is a procedure that filters out those tests that are less
likely to show statistical significance, without even looking at their test statis-
tic. Typically, this results in increased statistical power at the same type
I error level. A good choice of independent filtering criterion is the one
that is (1) statistically independent from the test statistic under the null
hypothesis, and (2) correlated with the test statistic under the alternative
hypothesis. Statistical validity (controlled type I error) relies on the first
property, while increased power is the result of the second property (Bour-
gon et al., 2010). ICC-based filtering has both properties. Under the null
(non-differential CpG), the p-value is uniformly distributed in [0, 1] regard-
less of the ICC value. Under the alternative (differential CpG), however, the
p-value is correlated with the ICC value. This is because, given a fixed effect
size, differential CpGs with larger ICCs will appear more significant while
those with small ICCs look more like the non-differential CpGs. Therefore,
the ICC filter results in increased detection power by removing CpGs whose
p-values are distributed more or less uniformly in [0, 1].

To demonstrate the above theoretical properties, we conducted additional
simulations that mimic the real CpG methylation data. Based on the ob-
servation from Meng et al., 2010 as well as our own data, the methylation
array consists of a mixture of ‘good’ (high ICC) and ‘bad’ (low ICC) CpG
probes, that is, probes can either measure methylation accurately or not at
all. According to Meng et al., 2010, the proportion of the ‘bad’ probes can be
up to 60%. Therefore, we simulated the ICCs from a mixture of two compo-
nents (low and high ICCs) with a mixing proportion of 0.5 (Figure S2A). We
simulated 1,000 independent samples from two groups (500 each), and 10,000
CpGs, among which 10% were differentially methylated between the groups.
The differential CpGs were randomly distributed among the 10,000 CpGs.
Different numbers of technical replicate pairs (4, 6, 8, 10, 12) were simulated
to investigate the effects of the number of replicate pairs. Simulation were
repeated for 200 times. The detailed simulation setting was shown in R code
at the end.

We estimated the ICCs based on the whole-sample or replicate-sample
approach, and performed association tests using a simple linear model. We
then used the estimated ICCs to filter the CpGs at different quantile cutoffs,
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and applied both Bonferroni correction (BF) and false discovery rate (FDR)
control (Benjamini-Hochberg (BH) procedure) to identify significant CpGs
at the adjusted p-value cutoff of 0.05. Type I error (Family-wise error rate
(FWER) for BF, and observed FDR for BH) and power (the number of true
positives identified) were then calculated.

The distribution of the estimated ICCs had a spike at 0, and a bump
near 1 (Figure S2B), which was similar to what we observed from the Nor-
mative Aging Study data set. Since MLE constrained the estimate to be non-
negative, many of the estimates for low ICC probes were exact 0’s, forming a
spike at 0 (Figure S2B). Looking closely, the proposed method estimated the
ICCs quite accurately for the high-ICC component (Figure S2C) while the
estimates of low-ICC component had much larger variability, and the spike
at 0 mainly came from this component (Figure S2D). For these Bonferroni-
significant CpGs, they usually had high estimated ICCs (Figure S2E). For
these non-significant CpGs, they could come from either high-ICC compo-
nent or low-ICC component, resulting in a spike at 0 and a bump near 1
(Figure S2F).

As expected for an independent filtering procedure, the ICC-based fil-
tering controlled the type I error at the desired level for both Bonferroni
correction and false discovery control, and for both the whole-sample and
replicate-sample ICC method, at different numbers of technical replicate
pairs (Figure S3). Therefore, using the ICC criteria will not increase the
chance of false findings.

By filtering CpGs that were less likely to be significant, we achieve a
gain in power (Figure S4A). The power gained with the whole-sample ICC
method was consistently higher than the replicate-sample ICC method, at
all numbers of replicates, suggesting better ICC estimation by pooling all the
samples. Bonferroni correction yielded larger increases in power than FDR
control (15% vs 6%, whole-sample ICC, 12 technical replicate pairs). The
largest gain in power for whole-sample ICC method was achieved between
0.4-0.5 quantile cutoff, which was consistent with the results from the Nor-
mative Aging Study. As the number of replicates decreased, the increase
in power was also reduced. For Bonferroni correction, we achieved a good
improvement in power even at six replicate pairs in our simulation and six
replicate pairs were sufficient to outperform variance-based filtering in our
Normative Aging Study application as well. However, for FDR control, the
improvement was marginal for six technical replicate pairs, compared to the
power of no filtering in our simulation. Therefore, we recommend that CpG
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filtering be performed when at least six replicate pairs are available.
We also performed the the variance-based filtering. However, the method

performed much worse than ICC-based methods. In many cases, it did not
achieve any improvement in power at any quantile cutoff, compared to no
filtering. This is due to the fact that larger variance is not necessarily cor-
related with the test statistic under the alternative hypothesis, and a large
variance may be due to a large measurement error (small ICC) instead of the
group difference. Therefore, the traditional variance-based filtering appears
not to be suitable for CpG association studies, at least in the current simu-
lation setting, and it has the potential problem of enriching for noisy CpGs
(with low ICCs). Further investigation is needed to justify its use.

1 np ← 10000 # Number of CpG sites
2 ns ← 1000 # Number of samples
3 nr ← 10 # Number of replicates
4 ntp ← 1000 # Number of differential CpGs
5 ntn ← 9000 # Number of non-differential CpGs
6 e f f .m ← 0 . 2 # Mean of effect sizes
7 e f f . s d ← 0 .05 # SD of effect sizes
8 # Biological variability (vb)
9 vb ← rep (1 .0 , np )

10 # Techincial variability (ve)
11 ve ← sample ( c (exp(rnorm(np ∗ 0 .5 , −1.5 , 0 . 5 ) ) ,
12 exp(rnorm(np ∗ 0 .5 , 1 .5 , 0 . 5 ) ) ) )
13 Y1 ← matrix (NA, np , ns ) # Non-replicated samples
14 Y21 ← matrix (NA, np , nr ) # Replicate sample 1
15 Y22 ← matrix (NA, np , nr ) # Replicate sample 2
16

17 for ( j in 1 : np) {
18 i f ( j ≤ ntp ) {
19 # Differential CpGs
20 e f f ← rnorm(1 , e f f .m , e f f . s d )
21 e f f ← c ( rep ( eff , ns/2) , rep (0 , ns/2) )
22 y1 ← rnorm( ns , eff , sqrt ( vb [ j ] ) ) +
23 rnorm( ns , 0 , sqrt ( ve [ j ] ) )
24 } else {
25 # Non-Differential CpGs
26 y1 ← rnorm( ns , 0 , sqrt ( vb [ j ] ) ) +
27 rnorm( ns , 0 , sqrt ( ve [ j ] ) )
28 }
29
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30 y20 ← rnorm( nr , 0 , sqrt ( vb [ j ] ) )
31 y21 ← y20 + rnorm( nr , 0 , sqrt ( ve [ j ] ) )
32 y22 ← y20 + rnorm( nr , 0 , sqrt ( ve [ j ] ) )
33 Y1 [ j , ] ← y1
34 Y21 [ j , ] ← y21
35 Y22 [ j , ] ← y22
36 }
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Figure S1: Effects of ICC cutoff values on the number of significant sites
identified in the Normative Aging Study data set. CpG filtering was per-
formed at different cutoffs using the three methods being compared. An
epigenome-wide analysis of age was then performed on the subsets of filtered
CpG sites, followed by Bonferroni correction. CpG sites with Bonferroni-
adjusted p values less than 0.05 were declared significant hits. The x-axis is
the stringency of the filtering cutoff, and the y-axis is the number of signif-
icant sites. The abrupt change of the whole-sample ICC method is due to
the large number of probes (30%) with an estimated ICC of 0. The dashed
horizontal line shows the 6,673 hits when using no filter. The dotted lines
are the intersection of those 6,673 results with the hits from a given level of
the filtering methods. The maximum number of significant sites achieved is
from the whole-sample ICC method with 7,336 significant sites using a fil-
ter above the 0.48th quantile (analyzing only the 251,152 sites with an ICC
above 0.52). This cutoff leads to a boost of an additional 10% of sites, com-
pared to the analysis using all sites. At the 0.48th quantile cutoff, 6,508 sites
overlapped with those discovered without CpG filtering. In comparison, the
maximum number of significant sites achieved for replicate-sample ICC and
total variance filter are 7,255 and 7,156 significant sites using a filter above
the 0.52th and 0.38th quantile, respectively.
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Figure S2: Distribution of simulated and estimated ICCs. Whole-sample ICC
method was used with 10 replicate pairs. The performance of ICC estimation
was compared on different subsets of ICCs.
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Figure S3: Effects of ICC-based CpG filtering on the type I error of associ-
ation tests based on simulation. Both Bonferroni Correction (BF) and FDR
control (Benjamini-Hochberg procedure (BH)) were investigated. FWER is
defined as the proportion of the simulations that makes at least one false
claim. Observed FDR is defined as the proportion of false positives in the
claimed positives. The solid red line indicates the desired level, and dashed
lines indicate the 95% confidence interval.
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Figure S4: Comparison of the statistical power of whole-sample ICC and
replicate-sample ICC method for CpG filtering based on simulation. Power
(number of true positives identified) was evaluated at different numbers of
replicates, and at different quantile cutoff values. Both Bonferroni Correction
(BF) and FDR control (Benjamini-Hochberg procedure (BH)) were investi-
gated.


