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SUPPLEMENTARY FIGURES 
 

 
 
 
Figure S1 
A detailed description of each step is provided in Methods. 1. A null model for allelic 
counts from a single variant is estimated from DNA data. 2. A gene-test statistic is 
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calculated for each gene by pooling the SNV test statistic belonging to the gene. 3. A 
null model specific for each gene is calculated according to the characteristics of the 
gene (number of SNVs and read depth of each SNV), by sampling from the SNV null 
model obtained in the first step. 4. Given the observed gene test statistic from step 2 
and the null model from step 3, a p-value is obtained. 
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Figure S2. Fraction of CCDS (consensus coding DNA sequence) coverage for un-
treated samples (left panel) and LPS treated samples (right panel) at depths 1-100. Y-
axis, fraction of CCDS covered. X-axis, sequencing depth (as present after mapping 
of reads). 
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Figure S3. Principal component analysis of gene expression levels for the untreated 
(blue) and LPS treated (red) samples. We plot the first two principal components, PC1 
and PC2. 
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Figure S4. ASE analysis flowchart 
(A) Variation calling pipeline leading to static ASE analysis at the lower left and 
(highlighted) individual condition-dependent ASE (icd-ASE) at the lower right. (B) 
icd-ASE analysis. SNV, single nucleotide variant; DE, differential expression; SNR, 
signal-to-noise ratio, SNR = mean/standard deviation, calculated for each gene based 
on icd-ASE effect sizes for the SNVs in the gene. The numbers of accessible variants 
and the numbers of resulting ASE cases are indicated in the Figure. 
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Figure S5. Minor allele frequency spectrum. Y-axis: number of SNVs; x-axis: the 
number of individuals where a SNV was observed. 
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Figure S6. Sustained effect size across individuals for the 211 statistically significant 
icd-ASE variants. Y-axis, the absolute value of the difference in ASE between LPS-
treated (T) and untreated (U) samples in an individual. X-axis, enumeration of the 211 
variants and for each variant there are 8 values (corresponding to the 8 individuals 
used in this study). The dashed line corresponds to the 90th percentile of the observed 
amplitude of ASE changes among the 211 variants. 51 variants (24%) were above the 
threshold in at least one individual, and many in >1 individual (i.e., more than one 
dot/triangle above the dashed line). Color distinguishes SNVs and triangle indicates if 
a SNV had significant icd-ASE (P ≤ 0.05, Benjamin-Hochberg corrected).  
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Figure S7. False discovery rate (FDR) of variants showing significant individual 
condition dependent ASE (icd-ASE), against read depth (A) and against effect size 
(log2 of the odds ratio) (B). 
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Figure S8. Calibration of static-ASE GeneiASE. The p-value distributions from 
GeneiASE are uniform under the null hypothesis of no static ASE, implying that 
observed FDRs reflect expected FDRs. Colors indicates simulation replicates. DP: 
read depth 
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Figure S9. Calibration of icd-ASE GeneiASE. The p-value distributions from 
GeneiASE are uniform under the null hypothesis of no icd-ASE, implying that 
observed FDRs reflect expected FDRs. Colors indicate varying degrees of ASE (but 
which was identical for the untreated and treated condition), see inset in each panel. 
DP: read depth. 
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Figure S10. ROC-curves for static ASE show that GeneiASE consistently 
outperforms a simpler approach, under varying read depth, effect size and noise level. 
Dashed line indicates a simpler approach using meta-analysis of SNV test statistic of 
a gene, where a modified binomial test was used to calculate the SNV statistic 
(Methods). Color indicates the level of static ASE (see inset). 
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Figure S11. ROC-curves for icd-ASE show that GeneiASE consistently outperforms 
a simpler approach, under varying read depth, effect size and noise level. Dashed line 
indicates a simpler approach using meta-analysis of SNV test statistic of a gene, 
where Fisher’s test was used to calculate the SNV statistic (Methods). Color indicates 
the level of icd-ASE (odds-ratio), see inset in each panel. DP: read depth 
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Figure S12. Power analysis of GeneiASE analysis, with respect to effect size. A-B 
show results for static ASE and C-D for icd-ASE analysis. Color indicates read depth 
(A, C), where noise was set to 0.22 as estimated from empirical data, or noise level 
(B, D), where read depth was set to 100, see inset.  
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Figure S13. Sequencing depth power analysis. Y-axis indicates sensitivity at 
significance level alpha = 0.001. X-axis: read sequencing depth. At read depth 50 
(leftmost vertical line) the sensitivity is above 80% for variants showing an allelic 
ratio of 80:20 (blue line). Black, red, green, and blue lines represent allelic ratio of 
60:40, 67:33, 70:30, and 80:20, respectively (see inset). 
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SUPPLEMENTARY TABLES 

Table S1. Concordance between heterozygous SNV calls from RNA-seq and 
SNP-array (Illumina Omni 2.5M). Called SNVs had a read depth of at least 10. Het, 
heterozygous. 

Sample RNA-seq  
het.SNVS 

Het.SNVs 
(RNA-seq 
∩   
SNP-array) 

Concordant 
het.SNVs 
⊂   
(RNA-seq 
∩   
SNP-array) 

Disconcordant  
het.SNVs ⊂   
(RNA-seq ∩   
SNP-array) 

Percentage het. 
SNVs (RNA-seq  
∩  SNP-array) / 
RNA-seq 

Percentage  
concordant  
het.SNVs ⊂   
(RNA-seq ∩  
SNP-array) 

S1_LPS 20499 7519 6445 1074 36.7% 85.7% 
S1_U 18667 6806 5830 976 36.5% 85.7% 
S2_LPS 31257 10090 8885 1205 32.3% 88.1% 
S2_U 20406 7314 6384 930 35.8% 87.3% 
S3_LPS 22960 7815 6862 953 34.0% 87.8% 

S3_U 25941 8743 7695 1048 33.7% 88.0% 
S4_LPS 17868 6426 5610 816 36.0% 87.3% 
S4_U 26052 8424 7383 1041 32.3% 87.6% 
S6_LPS 26853 8617 7503 1114 32.1% 87.1% 
S6_U 16606 6268 5389 879 37.7% 86.0% 
S7_LPS 19615 7128 6233 895 36.3% 87.4% 

S7_U 8205 3810 3259 551 46.4% 85.5% 
S8_LPS 49629 14325 12860 1465 28.9% 89.8% 
S8_U 11091 4688 4153 535 42.3% 88.6% 
S9_LPS 17068 6134 5280 854 35.9% 86.1% 
S9_U 22309 7598 6572 1026 34.1% 86.5% 

 

Table S2. 211 variants showing significant icd-ASE (individual condition-
dependent ASE). Ref, reference allele; Alt, alternative allele; BH, Benjamin-
Hochberg multiple testing correction; ΔASE(T-U) ASE treated sample – ASE 
untreated sample. 

See separate file Table_S2.Edsgard_et_al.2015.csv. (An .xlsx or .xls version is 
available upon request from the authors). 

 

Table S3. Signal-to-noise ratio (SNR) of 68 genes with at least two variants of 
which at least one showed significant icd-ASE (individual condition-dependent 
ASE). The SNR (mean/standard dev.) was calculated using the icd-ASE effects of the 
variants within a gene. 

Gene 
# of 
individuals 

Individual 
with max 
SNR 

# of het.SNVs 
in gene SNR 

CECR1 8 1 3 5.0 

PDE4DIP 8 2 2 4.5 

PARP4 7 9 2 24.2 

LILRB3 7 4 2 3.0 

NUP210 7 3 6 2.5 

MUS81 6 3 4 4.8 

HTT 6 1 3 2.8 
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PSME4 6 3 4 2.7 

PLXND1 6 4 7 2.3 

GAA 6 8 4 2.2 

DDX58 6 6 3 1.7 

GLRX 5 2 2 6.2 

CHSY1 5 1 2 4.5 

SLC12A7 5 6 2 33.5 

HECTD1 5 2 4 2.8 

MED16 5 8 4 2.4 

CD93 5 8 3 2.1 

SMCO4 5 8 2 10.5 

MEFV 5 7 5 1.7 

DFNA5 4 2 2 70.9 

MYOF 4 4 3 8.0 

CXCL16 4 1 2 7.6 

SLFN5 4 4 3 6.3 

FAM208A 4 3 2 5.5 

GBP3 4 2 2 5.0 

WDR11 4 4 6 2.9 

CNDP2 4 9 2 2.7 

FCAR 4 9 2 13.8 

TLR1 4 2 2 13.0 

ABCC1 4 4 5 1.5 

NPC1 3 3 2 6.8 

LILRA1 3 6 2 5.0 

CYFIP2 3 8 2 4.2 

ODF2L 3 3 8 2.5 

SP140L 3 6 4 2.1 

BLMH 3 8 2 1.9 

HLA-C 3 2 4 1.9 

ARRB2 3 3 2 1.5 

SULF2 2 4 2 8.9 

LILRB2 2 9 2 7.0 

SIGLEC5 2 8 2 6.7 

TMEM176A 2 3 2 4.4 

IL7R 2 6 3 4.2 

HLA-B 2 4 2 3.9 

MS4A7 2 2 3 3.8 

P2RX7 2 3 3 3.8 

LILRB4 2 2 2 2.9 

PIM1 2 6 2 2.5 

PGD 2 7 2 1.8 

ELMO1 2 2 2 1.7 

SAMSN1 2 2 8 1.6 

KIAA1429 2 2 2 1.6 

CSF1R 2 2 2 1.5 
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ITGB2 2 6 2 11.1 

CD82 1 3 3 9.7 

CD101 1 2 2 8.0 

GPNMB 1 8 2 29.1 

ASAH1 1 6 2 1.8 

EIF2A 1 1 2 1.6 

TMEM176B 1 1 3 1.5 

FCGR3A 1 2 2 1.1 

CUX1 1 2 2 1.1 

TARP 1 9 2 0.9 

SULT1A1 1 2 2 0.9 

TBC1D10A 1 7 2 0.9 

TPR 1 3 2 0.9 

CSGALNACT1 1 3 2 0.8 

BSG 1 8 2 0.8 

 

Table S4. Desired properties of methods used to detect cd-ASE in genes. We 
identified six properties, P1-P6, that a well-powered model should incorporate to 
identify genes with condition-dependent allele-specific expression (cd-ASE) from 
RNA-seq data for individuals where the diploid genome is unavailable (unphased 
data). (P1) Paired model, since the data is from the same individual under the 
different treatment conditions. (P2) Binomial model, rather than a Poisson, since the 
marginal sum of the counts from two alleles is fixed. (P3) Random effect model, since 
the effect may vary along a gene (for different variants), due to, e.g., technical noise. 
(P4) Variance stabilization of effect sizes for condition-dependent ASE. (P5) 
Estimation of the null model from DNA. (P6) Undirected effect, i.e., independence of 
the effect directionality between variants, since data is unphased. MH, Mantel-
Haenszel method 1. (DL), DerSimonian-Laird 2. LS, Liptak-Stouffer 3. Skelly, (Skelly 
et al. 2011). MMSEQ, (Turro et al. 2011). Pham, (Pham and Jimenez 2012). 
MBASED, (Mayba et al. 2014). na, not applicable. 

 Desired 
property GeneiASE MH DL Fisher's 

test + LS Skelly MMSEQ Pham MBASED 

P1 Paired x x x x  x x x 

P2 Binomial x x x x x na  x 

P3 Random 
effect x  x  x x x x 

P4 Variance 
stabilization x    x x   

P5 DNA null x    x na   

P6 Undirected 
effect x   x    (*) 

(*) MBASED performs pseudo-phasing on non-phased data using one of the two 
contrasted samples, causing the results to depend on the sample chosen for phasing 
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Table S5. All 19 genes with significant icd-ASE according to GeneiASE 
(including meta-analysis). GeneiASE results are shown for each individual. Genes 
are ordered according to their meta-analysis p-values. 

See separate file Table_S5.Edsgard_et_al.2015.xls. 

 

Table S6. All variants in the 19 significant icd-ASE genes detected by GeneiASE 
(including meta-analysis). Chromosomal location, dbSNP id, reference/observed 
allele, SNP location relative to gene annotation, variant type 
(synonymous/nonsynonymous), RNA-seq read depths and corresponding p-values for 
all variants in all individuals for the 19 genes with significant icd-ASE according to 
GeneiASE (including meta-analysis). There are in total 186 variants, whereof 51 (in 
14 genes) were shared by more than one individual (see column n.individuals). 

See separate file Table_S6.Edsgard_et_al.2015.xls. 

 

Table S7. All 1389 genes with significant static ASE according to GeneiASE 
(including meta-analysis). GeneiASE results are shown for each individual. Genes 
are ordered according to their meta-analysis p-values. 

See separate file Table_S7.Edsgard_et_al.2015.xls. 

 

Table S8. All variants in the 1389 significant static ASE genes detected by 
GeneiASE (including meta-analysis). Chromosomal location, dbSNP id, 
reference/observed allele, SNP location relative to gene annotation, variant type 
(synonymous/nonsynonymous), and RNA-seq read depths and corresponding p-
values for all variants in all individuals for the 1389 genes with significant static ASE 
according to GeneiASE (including meta-analysis).  

See separate files Table_S8a.Edsgard_et_al.2015.csv and 
Table_S8b.Edsgard_et_al.2015.csv. (An .xlsx or .xls version is available upon request 
from the authors). 
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Table S9. Genes with different cd-ASE calls when comparing unperturbed to 
perturbed data.  

 Unperturbed (actual) data Perturbed data 

Gene 
name 

Nominal 
p-value 

BH 
corrected p-
value 

Rank Nominal 
p-value 

BH 
corrected 
p-value 

Rank 

SIGLEC5 0.00181 0.21562 47 0 0 9 

CDC26 0.00019 0.05328 20 0.00011 0.03247 19 

CXCL1 0.00030 0.07537 22 0.00017 0.04307 21 

ZNF880 0.00018 0.05217 19 0.00017 0.04307 22 

SPP1 * 0.00014 0.04618 16 0.00022 0.05479 23 

All five cd-ASE genes that have a different cd-ASE call when introducing an artificial 
mapping bias. BH, Benjamini-Hochberg. Rank, the rank of the gene in the meta-
analysis. (*) SPP1 was the only gene that was present in the unperturbed set, but 
absent from the perturbed set; the other four genes in the table were present in the 
perturbed set, but absent from the unperturbed set.  

 

Table S10. All 22 variants selected for validation. This table includes detailed raw 
data in terms of read counts and real-time quantitative RT-PCR CT-values for all 
alleles. 

See separate file Table_S9.Edsgard_et_al.2015.xls. 
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Table S11. Number of detected ASE genes. 

Method mode 

Static cd-ASE 

ind ind+meta ind ind+meta 
GeneiASE regular 935 1389 11 19 

GeneiASE comparison -  - 8 11 

Intersection/Union 
(ratio) 

GeniASE 
comparison 
vs MBASED 

812/2585  
(0.31) - 7/9 

(0.78) - 

Intersection/Union 
(ratio)  

GeneiASE  
regular+meta 
vs MBASED 

   7/20  
(0.35) 

MBASED comparison 2462 - 8 - 

ind, individual; ind+meta, union of individual and meta-analysis across all 16 samples 
(static) or 8 individuals (cd-ASE). Regular (also called filtered) mode: GeneiASE 
static ASE run with no extra conditions, while GeneiASE cd-ASE was run pre-filtered 
on GeneiASE static ASE results – these two ways of running reflect the way the 
GeneiASE results and evaluation are presented in the manuscript. Comparison mode: 
no pre-filtering for cd-ASE; and results only include genes with at most 10 SNPs, 
since MBASED two-sample analysis stalled at genes with many SNPs. 
Intersection/union: intersection between and union of GeneiASE and MBASED 
results, with the fraction intersection/union within parenthesis. na: not applicable. 
MBASED was run in unphased mode since phase information is unavailable for these 
data. 

 

Table S12. Phased versus unphased detection of genes with ASE. 
 

  Number of genes 

Method mode 
Genes 

w. ASE 
Overlap with 

phased 
Haplotype 
swapping 

GeneiASE 
(unphased) 

static 59 46 (78.0%) 3 (5.1%) 

MBASED - 
unphased 

one-
sample 

85 68 (80.0%) 9 (10.6%) 

MBASED - 
phased 

one-
sample 

79 n.a. 0 (0%) 

 
"Genes w. ASE": number of genes exhibiting significant ASE. "Overlap. with 
phased": number of ASE genes that overlap with phase-aware determination of ASE. 
"Haplotype swapping": number of genes exhibiting ASE towards both haplotypes 
(which means that the direction of the ASE changes within a gene, such that different 
variants exhibit ASE biased towards different haplotypes). All numbers pertain to 
genes with at least two variants. Data are from RNA-sequencing of the HapMap 
individual NA12878 where phasing is available. 
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Table S13. The list of detected ASE genes from NA12878.  
The results include the results from GeneiASE, MBASED-unphased, and MBASED-
phased. All numbers pertain to genes with at least two variants. Data are from RNA-
sequencing of the HapMap individual NA12878 where phasing is available. 
 
See separate file Table_S13.Edsgard_et_al.2015.xls 
 
 
Table S14. All 3 cd-ASE genes with only one variant detected by GeneiASE.  
The results include the findings from meta-analysis across the individuals. 
 
See separate file Table_S14.Edsgard_et_al.2015.xls. 
 
 
Table S15. All 693 static ASE genes with only one variant detected by GeneiASE. 
The results include the findings from meta-analysis across the individuals. 
 
See separate file Table_S15.Edsgard_et_al.2015.xls.  
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SUPPLEMENTARY METHODS AND RESULTS 
 
Sample description 

Power analysis was performed to determine the appropriate number of individuals to 

be used for RNA-sequencing, and eight individuals were concluded to give sufficient 

depth given the sequencing constraints (described below). Eight volunteers (four 

males, four females) giving informed consent were recruited in line with ethical 

approvals (2009/1374-32). The average age was 35 (27-47). Peripheral blood was 

extracted and white blood cell fractions separated to be subsequently treated with 

lipopolysaccharide (LPS) of Escherichia coli O55:B5 (Sigma Chemical Company, 

MO, USA). Cells from each volunteer were incubated at a concentration of 1 x 106 

cells/ml in RPMI medium containing 10% FBS, 100 units/ml penicillin, and 100 

µg/ml streptomycin, and treated with 1µg/ml LPS or left untreated for 12 hours at 

37°C, 5% CO2. Note that for each individual, untreated sample was kept and also 

used in the analysis, enabling a comparison of treated and untreated samples. 

 

Genotyping 

DNA was extracted from peripheral blood using the DNeasy Blood & Tissue Kit 

(Qiagen) and quantified using PicoGreen dsDNA Reagent according to 

manufacturer's recommendations (Invitrogen, Carlsbad, CA, USA). Genotyping was 

performed at the SNP&SEQ technology platform at Uppsala University (Sweden) 

using the Illumina Omni 2.5M SNP-arrays according to standard protocols. SNPs 

with a minor allele count of at least one were extracted and filtered requiring a 100% 

genotyping rate using plink (v.1.07), and converted to VCF (Variant Call Format) 

files using plinkseq (v.0.07). 

 

RNA-sequencing and RNA-seq variant calling 

Total mRNA from LPS-treated and untreated white blood cell fractions was extracted 

using Trizol® reagent (Invitrogen) and purified using the RNeasy Mini Kit following 

the manufacturer's instructions (Qiagen). Paired-end libraries were created according 

to standard protocols (Illumina Inc., San Diego, CA). Libraries were sequenced using 

Illumina HiSeq 2000 generating 2 x 100bp reads at the SNP&SEQ technology 

platform, Uppsala University, Sweden, according to the manufacturer's protocol using 

one Illumina HiSeq2000 flow-cell.  
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Before mapping, quality control was performed by 3’-trimming of reads, removing 

poly-A and poly-T tails as well as bases with a Phred score encoded by “B”, which is 

an Illumina 1.5+ read segment quality control indicator indicating that the read end 

should not be used in further analyses. If a read after trimming was less than 40 bases 

long it was removed. Further, reads having five or more bases with a Phred score of 

10 or lower, or ten or more bases with a Phred score of 20 or lower, were discarded. 

In addition, reads with four or more uncalled bases were also discarded. Overall 

quality after quality control filtering was verified by manual inspection of FastQC 

reports (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). 

 

Reads were mapped using TopHat (v.1.2.0; 4 to the hg19 reference genome using 

mate-distances from experimentally determined insert size distributions, exon 

annotations from Ensembl (v.59), and otherwise default parameters. Thereafter PCR 

duplicates were removed using Picard MarkDuplicates (v.1.41, 

http://sourceforge.net/projects/picard). Coverage was calculated using BEDTools 

(v.2.11.2; 5). 

 

RNA-seq variant calling was performed using SAMtools mpileup (v.0.1.18) adjusting 

the max per-sample depth from 250 to 10000 to handle highly expressed regions and 

setting the minimum mapping quality (-q) to 1 to remove non-uniquely mapped reads. 

Variants were called for each individual, using the information from all samples. 

 

Annotation of variants 

Annotation of variants was done using Annovar 6 (v.2011.05.06) and custom perl and 

R scripts. To link variants showing ASE to differentially expressed genes, variants 

annotated with a HUGO gene symbol were associated with the corresponding 

differential expression of the gene. 

 

Differential expression analysis  

Read counts were obtained using htseqcount (v.0.5.1) and were based on Ensembl 

gene annotations (Ensembl v.59). We used the default parameters of htseqcount apart 

from “--stranded=no” to specify that we did not use a strand-specific protocol. 

Subsequently, differential expression analysis was performed using the R package 
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DESeq v.1.4.1 7. Pathway enrichment of differentially expressed genes was done 

using a hypergeometric test on gene sets retrieved from KEGG 8, Reactome 9, 

BioCarta (http://www.biocarta.com), NCI-Nature curated pathways 10, GO 11, 

COSMIC 12, Cyclebase 13, protein-protein interaction complexes 14, OMIM (Online 

Mendelian Inheritance in Man, http://www.ncbi.nlm.nih.gov/omim) and MGI (Mouse 

Genome Informatics, http://www.informatics.jax.org). Terms annotating more than 

700 or less than five genes were excluded, since they do not produce meaningful 

statistical results. 

 

We used DESeq 7 (v.1.4.1) to perform a differential expression analysis of the group 

of LPS treated samples versus the group of untreated samples. Out of 35,215 Ensembl 

genes, 5,395 (15.3%) were significantly differentially expressed (adjusted P < 0.05). 

Pathway analysis of the top 250 differentially expressed genes resulted in 165 

significantly enriched terms, all related to immune response, including “response to 

lipopolysaccharide” (hypergeometric test, P = 7.2*10-8). In a principal component 

analysis of FPKM values (Fragments Per Kilobase of exon per Million fragments 

mapped), all 16 samples clustered in agreement with their condition 

(treated/untreated), apart from one of the LPS treated samples which showed a 

tendency of being an outlier (Supplemental Fig. S3). These results indicated a high 

quality of our data since LPS was intentionally used to induce an inflammatory 

response.  

 

Power analysis for allele-specific expression detection 

To estimate the sequence depth required to detect an allelic imbalance at different 

allelic ratios we performed power calculations. They showed that at a sequence depth 

of 50, a 2-fold difference in expression (67:33), and a significance level of P=0.001, 

the sensitivity is 19% (Fig. S13). The nominal significance level was chosen based on 

the assumption that we observe approximately 5000 heterozygous SNPs within a 

single sample with sequence depth above 50, and where 5% of these have a P-value 

less than 0.001, resulting in a multiple testing corrected false discovery rate (FDR) of 

~1%. These assumptions were based on the findings in Heap et al. 2010 15. Another 

study identified ~1500 heterozygote SNPs per individual, but using a read depth down 

to 6 16. Paired end sequencing using a whole flowcell (8 lanes) with Illumina HiSeq 

2000 was expected to yield approximately 100Gb of sequence according to 
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manufacturers specifications. Sequencing 16 samples was expected to result in an 

average sequence depth of the transcriptome of 85 before mapping and QC (100Gb / 

(16 samples * 70Mb)), where the transcriptome size (70Mb) was calculated from the 

UCSC hg19 RefSeq genes. Assuming that 59% of bases are retained after mapping 

and QC (Montgomery et al. 2010, who performed RNA-seq on 60 CEU individuals 

retained 56% on average per sample) would result in an average sequence depth 

above 50 if sequencing 16 samples. The vast majority of genes were anticipated to 

have a coverage below the average coverage, since the coverage per SNP 

approximately follows an exponential distribution 17. The expression of biologically 

relevant transcripts was however increased by activating an immune response by 

treating the cells with lipopolysaccharide (LPS). The genotype calling of 

heterozygous SNPs from the RNA-seq data was expected to be highly reliable at a 

coverage of 50. Simulations estimate that 97% of heterozygous genotypes are 

correctly inferred at an allelic imbalance of 80:20 17. Retrospectively we observed that 

a depth of 10 was sufficient to find a high number of significant variants exhibiting 

ASE after multiple testing correction in the static ASE analysis. This may in part be 

due to overly conservative assumptions in the a priori power analysis. 

 

Reference mapping bias 

An inherent problem in assessing static ASE using RNA-seq data is that the read 

mapping will be biased towards preferably mapping alleles identical to the reference 

genome, whereas reads differing from the reference genome will have a lower 

mapping quality or too many mismatches and thereby be at higher risk of being 

discarded. This could be resolved by mapping to a diploid genome if the individual’s 

diploid genome sequence is available 18,19, but often only RNA-seq data for a single 

familial representative is available, thus prompting the use of a reference genome for 

read mapping. For analysis of condition-dependent ASE this is less of an issue, since 

most of the mapping bias is cancelled out when comparing two conditions. However, 

for static ASE analysis where ASE, and not change of ASE, is to be detected, it 

remains a major issue. A number of approaches have been suggested to remedy the 

mapping bias issue given RNA-seq data, e.g. changing the expected allelic ratio, 0.5, 

to the mapping ratio of simulated reads with equal allelic ratio (Montgomery et al. 

2010); mapping reads to an individual-specific transcriptome reference generated 

from phasing of RNA genotype calls of the individual 20; and others 21, Heap et al. 
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2010, 22. It is yet unclear which approach is best and we therefore evaluated two 

methods to reduce the mapping bias, that of Montgomery et al and that of Turro et al. 

To evaluate the mapping bias we simulated read data with equal allelic ratio for all 

observed heterozygous variants in the same manner as Degner et al. (2009) 21, and 

observed a mapping bias for approximately 5% of the variants with significant ASE. 

We stratified the significant variants into those called as heterozygous by both the 

SNP-array and RNA-seq, by SNP-array only, and by RNA-seq only, and we observed 

mapping bias for 0.0%, 0.2%, and 10.3%, respectively, of these variants. To correct 

for the mapping bias we used the estimated bias from the simulated mapping ratios in 

a modified binomial test 16. Mapping bias was reduced but not eliminated by this 

method. We applied MMSEQ 20, which phases called variants to construct individual-

specific transcriptomes against which read mapping is performed. In our 16 samples, 

approximately 9% of variants per sample were successfully phased, resulting in a total 

of 4,329 phased unique variants, in 6,574 transcripts and 966 genes. ASE analysis 

retrieved 426 phased variants with significant ASE. Mapping bias was completely 

removed from the 4,329 phased variants and, accordingly, also from the 426 variants 

exhibiting ASE. 

 

Synthetic data generation 

(i) Synthetic data for assessing FDR of the empirical data set 

We generated a synthetic RNA-seq data set comprising 16 samples, with parameters 

sampled from our real data. The synthetic data was analyzed identically to the real 

data as to estimate FDRs at SNV level. SNVs from the 1000 Genomes Project (TGP) 

were downloaded (November, 2010, release) and all heterozygous SNVs in the CEU 

population that had a consensus genotype from at least two of the four TGP 

sequencing centers were extracted 23. Exonic variants were extracted using Ensembl 

annotation (v.64). Synthetic haplotypes were constructed by binomial sampling of 

alleles based on the minor allele frequency (MAF) in the CEU population. ASE levels 

of the haplo-isoforms were sampled from the expression distribution estimated by 

MMSEQ from the real RNA-seq data in this study, thus using haplotype information 

for reads spanning more than one SNV. Given the synthetic haplotypes and 

expression levels, paired-end reads were simulated using maqsim (MAQ 24; v. 0.7.1). 

Insert sizes from the real dataset were used and the base quality distribution was 

sampled from real data using maq simutrain (MAQ 0.7.1). Base qualities were 
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converted between phred+33 and phred+64 encoding using ill2sanger (MAQ 0.7.1) 

and seqret (EMBOSS 25; v. 6.4.0). FDRs were calculated by employing the same 

analysis on the synthetic reads as was done for the real data, including QC, read 

mapping, variation calling, and ASE analysis. The resulting significant variants were 

then compared to the set of true positives resulting from ASE analysis of the synthetic 

allele fractions.  

 

(ii) Synthetic data for assessing GeneiASE performance at varying noise levels, effect 

sizes, and read depths 

To estimate the performance with respect to different properties of the input count 

data we generated synthetic data sets varying the read depth, effect size and noise-

level. The effect size used for static ASE was the alternative allelic fraction, p = alt 

reads / (alt + ref reads), and it was varied from 0.55 to 0.8. The effect size used for 

icd-ASE was the odds-ratio and it was varied from 1.1 to 16. Read-depths, reflecting 

the sum of the read counts at the alternative and reference allele of a variant, were 

varied from 10 to 100.  We let the noise-level reflect the varying degree of ASE of 

different variants within a gene that is technical, non-biological, variation (see  

"random effect model" property, P3, below). We used the log-odds as a measure of 

the ASE effect and modelled it with a normal distribution, adding noise from ~N(0, 

sd), where sd thereby reflected the noise-level.  Using DNA data we estimated the 

true noise level to sd = 0.22. 

 

 

The effect of alternative splicing on mapping bias in cd-ASE 

We have identified one rare exception where the mapping bias is not cancelled out in 

cd-ASE analysis. This exception can arise in the event of alternative splicing when an 

exon with a heterozygous variant is expressed in both conditions while a nearby exon 

is expressed in only one of the conditions, and where that nearby exon contains a 

region within read length distance from the heterozygous variant, and where this 

region also has such properties so as to introduce mapping bias. This mapping bias 

would then affect the read counts for all coordinates within read length distance. 

Thus, alternative splicing might generate false positives for a small set of genes where 

all these conditions are satisfied. The sensitivity (false negative rate) of cd-ASE 

analysis can, however, be affected due to a reduced number of reads stemming from 
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mapping bias, and the direction of ASE can be reversed in extreme cases. For 

instance, consider the case where the actual expression level of the alternative allele is 

higher than the reference allele in the treated state, but the expression levels of the 

two alleles are equal in the untreated state. Mapping bias against the alternative allele 

could then cause the alternative allele to appear as being lower expressed (than the 

reference allele) in the untreated state and the two alleles being expressed at equal 

levels in the treated state. However, since this is a systematic shift across the two 

conditions, the difference in ASE between the two conditions, ΔASERNA-seq(T-U), 

would be the same as if mapping bias was not present. 

 

Using GeneiASE for ASE detection in single variant genes 

In the main text, we used GeneiASE with filters that included the requirement that 

two dbSNP variants should be present. This setting precludes GeneiASE to detect 

genes with only a single variant. For these genes, we instead relied on Fisher's exact 

test for cd-ASE and a modified binomial test for static ASE. There were two main 

reasons for this: (i) To facilitate comparison of the number of variants and genes that 

exhibit ASE in our particular dataset as compared to datasets in previous studies, 

which have used such (more conventional) approaches; and (ii) To provide baseline 

reference results using previously accepted methods16,21, against which the novel 

GeneiASE results could be compared. However, we also ran GeneiASE focusing on 

genes with only a single variant, resulting in 3 cd-ASE and 693 static ASE genes. 

These results are shown in Supplemental Tables S14 (cd-ASE) and S15 (static). 

 

In the two approaches outlined above (GeneiASE vs. Fisher's exact test/modified 

binomial test), we also used two different read count models: modified binomial for 

variant ASE detection, and beta-binomial for GeneiASE gene level detection. These 

models are actually not as different as it first may seem. Using the DNA allelic 

information in the GeneiASE construction, we attempted to account for technical 

variation as well as sequence specific bias, and we modeled this with the 

overdispersion parameter of the beta-binomial. In the single-variant analysis, we 

handled potential reference mapping bias by simulating data as in Degner et al21 and 

adjusting the null-hypothesis of the binomial. This in effect renders a similar model 

since it will cause each variant to have a different null-p, which is exactly what the 
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beta-binomial models imply (a varying p, sampled from an underlying stochastic 

distribution). 

 

The relationship between GeneiASE and other methods 

We identified six properties, P.1-P.6, that a well-powered model should incorporate to 

identify transcripts with condition-dependent allele-specific expression (cd-ASE) 

from RNA-seq data for individuals where the diploid genome is unavailable 

(unphased data). P.1) Paired model, since the data is from the same individual under 

the different treatment conditions. P.2) Binomial model, rather than a Poisson, since 

the marginal sum of the counts from two alleles is fixed. P.3) Random effect model, 

since the effect may vary along a gene (for different variants), due to for example 

technical noise. P 4) Variance stabilization of effect sizes. P.5) Estimation of the null 

model from DNA. P.6) Independence of the effect directionality between variants, 

since unphased data.  Several of these properties are also valid for detection of static 

ASE. 

To our knowledge there is no method that features all six properties, which motivated 

us to design a method that can be used to detect cd-ASE. In particular, most methods 

designed to analyze similar problems would need to be modified as to be able to 

accommodate unphased data (P.6). Below we list a number of methods that handles 

similar problems and discuss their drawbacks with respect to testing for cd-ASE. A 

comparison between these methods with respect to the five properties listed above is 

summarized in Supplemental Table S5. 

The read count data from two alleles under two treatments can be represented by k 

2x2 tables, where k is the number of variants (strata). Two classical meta-analysis 

methods to analyze such data is the Mantel-Haenszel method (MH) 1 and 

DerSimonian-Laird (DL) 2. MH is a fixed effect model where the null hypothesis is 

that there is no association in any stratum, and that the counts in each stratum (each 

2x2 table) follows a hypergeometric distribution. The association effect, β, can be 

calculated as the log-odds ratio, which under the null hypothesis of a hypergeometric 

distribution is normally distributed with variance σ2, where σ2 is the sampling error. 

Drawbacks with this method is: first, the observed counts will not follow a 

hypergeometric, since there is noise in the data (P.3), second, even if the noise would 

be neglible the effect will not be normally distributed, but rather follow a half-normal, 
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since we take the absolute value of the effect to handle unphased data (P.6). The 

model of DerSimonian-Laird do account for a random effect, where the estimated 

effects are assumed to follow, βj = βj + εjβ! = β! + ε!, where βj is the true effect, with 

variance τj
2, and εj is a normal variate with variance σ2 reflecting the standard error. 

However, the heterogeneity in effect between SNVs, encoded by τ, is typically 

estimated from observed counts within a single gene, which makes the estimation 

worse than if using whole-genome DNA data (P.5). Second, DL does not handle 

unphased data (P.6).  

Another meta-analytical approach is to combine a set of p-values. Two common 

methods are those of Fisher and Liptak-Stouffer (LS). In Fisher's method the p-values 

are multiplied, and -2*log of the product has a central χ2 distribution under the null-

hypothesis. In Liptak-Stouffer each p-value is converted to a Z-score and summed up, 

LS = ∑Φ-1(1 − pj )/√k, which has a unit normal distribution under the null-hypothesis. 

Multiplication of the p-values implies a null hypothesis that there is no association in 

any stratum, whereas the addition in LS implies a tendency to require an effect in 

several strata. We applied LS using Fisher's test for each 2x2 table. We observed 

lower power and a conservative non-uniform p-value distribution for this approach as 

compared to GeneiASE, which is likely due to two reasons. First, Fisher's method 

assumes a hypergeometric distribution, and does therefor not take over-dispersion 

(noise) into account (P.3). Second, even when setting the noise to zero in our 

simulations, lower power and non-uniform p-value distributions were still observed. 

This is due to the discreteness of the data, and in fact Fisher’s test is known to be 

conservative even at relatively high sample sizes such as 1000 26. This effect is further 

exacerbated when combining the results from several Fisher’s test. 

More recent methods which have been applied to problems similar to that of 

identifying cd-ASE using RNA-seq data, include a Bayesian beta-binomial model 27, 

MMSEQ 20, MBASED (Mayba et al. 2014), and an inverted beta model 28.  

Skelly's method is designed to identify ASE in samples for which the diploid genome 

is known (P.6). We attempted to run Skelly's method in a modified manner by setting 

the ASE to be in the same direction for all SNVs within a gene, but did not succeed in 

obtaining reasonable results. Even if one would make a modification to Skelly's 

method that could handle unphased data, the test is not paired (P.1) and one would 
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therefor only be able to test changes from no significant ASE in one condition to 

significant ASE in the other, or vice versa.  

MMSEQ is a pipeline that infers the expression levels of the isoforms from each 

haplotype, so called haplo-isoforms, and it relies on phasing the data as to infer the 

haplotype. We ran the method by using the genotype calls from the RNA-seq data as 

input to the phasing procedure, which was part of the MMSEQ pipeline, but only a 

few percent of all variants were successfully phased. With better phasing the method 

may have worked but the phasing is likely to contain many errors as long as no DNA 

is available (P.6).  

Pham and coworkers 28 designed a paired sample test for count data using an inverted 

beta model. Their model is intended to identify a treatment effect on the total 

expression level (differential expression) in a paired experimental design given a set 

of individuals. Since they model total expression of a protein (or transcript) rather 

than allele-specific expression they let the observed counts of a transcript be Poisson 

distributed, each with a parameter πi*t, where t is the total number of reads from a 

sample. The treatment effect is specified as a quota between the effects from the 

treatment groups, ϕ= πit / πiu, and they introduce random effects (variation in effect 

between individuals) by letting ϕ be a random variable generated from an inverted 

beta distribution. Two drawbacks of this model with respect to applying it to cd-ASE 

is that they use a Poisson distribution rather than a binomial distribution (P.2) and, 

more importantly, that it assumes that the effect in different strata is in the same 

direction (P.6).  

The MBASED method (Mayba et al. 2014) is presented in the setting of ASE in 

cancer tissues and cell lines, and is possible to run both in one-sample and two-sample 

modes, corresponding to our static and cd-ASE modes, respectively. Thus, their 

method deals with paired samples (P.1). It relies on a pseudo-phasing of the RNA-seq 

data (P.6) if provided data are not phased, and builds on combining ASE scores 

derived from the major/minor allele frequencies for multiple SNPs within a gene in a 

sample (P.3). In two-sample mode, the two samples are treated in an asymmetrical 

way, such that the phasing is transferred from the reference sample to the other 

sample (it is of course possible to swap reference and other). The background is 

estimated from the RNA-seq data and for their two-sample analysis they do not 
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perform a variance stabilization of the effect sizes although this is performed for their 

one-sample analysis (i.e., P.4 and P.5 not fulfilled).  

Using our data to compare with other ASE detection methods 

Skelly’s method 3, MMSEQ 20, and MBASED 29 v1.2.0 were downloaded and run 

locally according to instructions, and tested on the RNA-seq data in our study (LPS+/-

; 8 individuals; unphased).  

The MMSEQ pipeline (v. 0.9.18) was applied with some modifications. Reads were 

first subjected to quality control, and duplicates were removed after read mapping 

(Supplemental Methods). Due to the large size of the dataset the pipeline needed to be 

run on many CPU’s in parallel and necessary amendments of the MMSEQ pipeline 

were performed to this end, in particular the steps related to the phasing of variants.  

 

MBASED was tested in both one-sample and two-sample modes, including, as for 

GeneiASE, genes with >1 variant. The methods were run on a powerful 128-core 512 

Gb RAM shared-memory Linux server. MBASED in one-sample mode worked 

without any issues in our testing, however, running MBASED in two-sample mode on 

our data set, it was far from finishing after seven days, despite running it in parallel on 

a 128-core 512Gb 64-bit shared-memory Linux server. We back-traced the problem 

to genes with many SNPs. For example, using 10 bootstrap-samplings and inputting a 

single gene from a single individual, genes with less than five SNPs finished in less 

than one second, whereas a gene with 19 SNPs took 9.3 minutes. Given that the 

recommended bootstrap-size by the MBASED authors is 100,000, and since the 

computational complexity is linear, we concluded that the reason that MBASED 

program stalled on our data set was that it contained genes with many SNPs. To 

ensure that it was not a version or package dependency issue, we ran both the latest 

version of MBASED (v1.2.0 under R 3.2.0) as well as an older version (v1.0.0 under 

R 3.1.0) on two different computers. To make the comparison with GeneiASE as fair 

as possible on the real data set, a (non-optimal) GeneiASE cd-ASE "comparison 

mode" was constructed, where any genes with more than 10 SNPs were removed, and 

the static-ASE gene filtering was not applied.  The results of the comparison between 

GeneiASE and MBASED are presented in Supplementary Table S11. 
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GeneiASE was also compared against more simplistic approaches, using either the 

binomial exact test, where the null hypothesis of the mean was adjusted for mapping 

bias (for static ASE, Fig. S10), or Fisher's exact test (for icd-ASE, Fig. S11), in 

combination with Stouffer's method. Briefly, p-values were calculated for each SNV 

within a gene. The p-values were transformed to Z-scores by the inverse of the normal 

distribution and the Z-scores were combined by Stouffer's method 3: Zpooled= ∑Φ-1(1 − 

pj )/√k. The p-value was then obtained from one minus the quantile of the normal 

distribution at the pooled Z-score value. 

 

Mapping-bias influence on GeneiASE cd-ASE gene level results 

We tested whether GeneiASE cd-ASE detection was robust with respect to mapping 

bias by perturbing the read counts of our LPS treated and untreated data sets. The 

perturbation was performed such that the reference allele read count was increased 

and the alternative allele count was decreased (see below). In effect, this means that 

we construct an artificial mapping bias in our data. We performed GeneiASE cd-ASE 

analysis to retrieve significant genes, in the same manner as for the unperturbed 

empirical data, including the meta-analysis. From DNA-data we have estimated the 

variability of measured ASE between variants. Since this variability is partly due to 

varying mapping bias between different loci we considered it reasonable to use a 

degree of perturbation similar to this variability in studying the effect that mapping 

biases may have on GeneiASE meta-analysis results. The log-odds of the ASE 

distribution approximately follows a normal distribution, we therefore fitted a normal 

distribution to the DNA data, observing a standard deviation of 0.22. This 

corresponds to a change of the ASE of 0.05, where the ASE is defined as the fraction 

of alternative allele read counts, p = n.alt / (n.alt + n.ref). The perturbation given the 

log-odds is derived from the logistic equation, p = logit(log.odds) = 1 / (1 + exp(-

log.odds)). We then perturbed the read counts at each variant such that, p.perturbed = 

p - 0.05, that is, reducing the alternative allele counts and increasing the reference 

allele counts. We kept the read sum fixed, since otherwise the power would be 

affected. 1.2% of the variants would get a negative value by this, since they had very 

low or zero read count, and was therefore not perturbed. We note that perturbing 

98.8% of the variants is still a greater perturbation than what would be expected from 

sequence-specific mapping bias and we are therefore not underestimating its effect.   
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At the individual level, GeneiASE detected 14 genes in the perturbed data, adding 

three additional genes to the 11 found in the unperturbed case. The three genes 

included CD101, CNOT2, and SIGLE5C. All three of these genes had multiple-testing 

adjusted p-values in the range 0.05-0.06 in the unperturbed case and were therefore 

borderline significant with respect to a significance level 0.05. Furthermore, CD101 

and CNOT2 were picked up in the meta-analysis of the unperturbed data.  

With respect to meta-analysis across individuals we found 22 genes in the perturbed 

data as compared to the 19 genes for the unperturbed data presented in the results of 

the main text, where four were unique to the perturbed set and one to the unperturbed. 

Three of the four additional genes found in the perturbed data were borderline 

significant in the unperturbed data with p-values 0.052, 0.053 and 0.075, whereas the 

fourth gene had a p-value of 0.21; however, this fourth gene was SIGLE5C which was 

borderline significant at an individual-level in the unperturbed data. SPP1 was the one 

gene that was lost when introducing artificial mapping bias. In summary, even though 

we use a perturbation that is stronger than one would expect to be present due to 

mapping bias, very few additional genes pass the significance threshold, and those 

that do are already border-line significant in the original unperturbed data. The results 

are summarized in Supplementary Table S9.   

 

Consistency of meta-cd-ASE with regards to individual variability 

We checked the consistency with respect to the direction of the cd-ASE among 

variants that were carried by several individuals. In the 19 cd-ASE genes, there were 

51 variants in 14 genes that were shared by more than one individual (column 

“n.individuals” in Supplementary Table S6). Four of the 51 variants had a cd-ASE 

direction that differed between at least two individuals. We considered cd-ASE 

direction to be different if the log-odds-ratio had a different sign and if its confidence 

interval did not overlap 0. 

 

Phasing 

We tested GeneiASE (static) and phased and unphased variants of MBASED (one-

sample mode) on HapMap individual NA12878 for which phased data from a single 
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condition RNA-sequencing experiment is available. The results are presented in the 

main manuscript and in Supplementary Table S12. 

 

Haplotype swapping: ASE that changes haplotypes within genes 

To investigate how common it is that the ASE is changing haplotypes within genes 

(which means that the direction of the ASE changes within a gene, such that different 

variants exhibit ASE biased towards different haplotypes), we analyzed the NA12878 

data from this perspective. We note that it is only relevant to assess this among 

significant genes, since in genes with no ASE, exhibiting a 50/50 expression ratio 

between the haplotypes, a varying direction is frequently observed due to sampling 

error. Furthermore, the sampling error is especially pronounced for variants with low 

read counts. Due to this, we took the read depth at a variant into account by 

calculating the confidence interval of the ASE for each variant using Wilson’s 

method, and deemed a gene to have varying ASE (haplotype swapping) if it had at 

least two variants with ASE in the opposite direction and whose confidence intervals 

did not overlap 0.5. For GeneiASE, 5.1% (3/59) of the genes exhibited ASE towards 

both of the haplotypes, at different variants, while for unphased MBASED, 10.6% 

(9/85) of genes, exhibited varying direction of the ASE, (and none for phased 

MBASED). The results are summarized in Supplementary Table S12 and the full list 

of detected genes is in Supplemental Table S13. 

 

Real-time quantitative RT-PCR validation 

Validation of ASE was performed as previously described with minor modifications 
30. 500ng of mRNA from each sample were reversed transcribed using the 

SuperScriptTM II reverse transcriptase enzyme and the synthesized cDNA was used 

for real-time quantitative RT-PCR validation of ASE candidates. The TaqMan® SNP 

Genotyping assay (pre-designed or customized) for each ASE candidate was mixed 

with TaqMan® Gene expression master mix (Applied Biosystems) to a final volume 

of 25 µl. Optimal reaction conditions were 95°C for 10 min and 40 cycles of 95°C for 

15 s, 60°C for 60 s. The fluorescence emitted by the two alleles (VIC or FAM dye) 

was reported as cycle threshold (CT) value. Each sample was subjected to three 
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independent RT-PCR validations, yielding technical triplicates of each CT-value. The 

change of ASE between the two conditions in the RT-PCR experiments is defined as: 

ΔASERT-PCR(T-U) = ASERT-PCR(T) – ASERT-PCR(U),  

where ASERT-PCR is the difference in mean cycle threshold values between the two 

alleles for either condition (T or U). Supplementary Table S10 contains detailed raw 

data in terms of read counts and real-time quantitative RT-PCR CT-values for all 

alleles selected for validation.  
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