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1. Instrumentation 

An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer 

(abbreviated as HR-AMS hereafter) was used to for the real-time measurement of 

size-resolved non-refractory submicron aerosol (NR-PM1) composition including 

organics, sulfate, nitrate, ammonium, and chloride 1. The HR-AMS was operated with 

two ion optical modes, i.e., V-mode with more sensitive signals and W-mode with 

higher mass resolution in this study. The V-mode and W-mode alternated every 5 

minutes. Under V-mode operation, the HR-AMS cycled through the mass spectrum 

(MS) mode and the particle time-of-flight (PToF) mode every 10 s. A PM2.5 cyclone 

(URG-2000-30EN, URG Corporation) was supplied in front of the sampling line to 

remove coarse particles larger than 2.5 µm. After passing a silica gel dryer, the 

ambient air was sampling into the HR-AMS at a flow of ~0.1 L/min. The HR-AMS 

was calibrated for ionization efficiency (IE) and particle sizing before the 

measurements following the standard protocols 2,3. The 5 min detection limits (DLs) 

of NR-PM1 aerosol species determined as 3 times the standard deviations (3σ) of 

mass concentrations of particle-free ambient air are 17, 10, 1.6, 1.4, and 4 ng/m3 

respectively for V-mode and 30, 35, 26, 4.9, and 3.2 ng/m3 respectively for W-mode, 

which are close to the values reported in previous studies 1,4. Because HR-AMS 

cannot detect refractory black carbon (BC), a 2-wavelength Aethalometer (Model 

AE22, Magee Scientific Corporation) was used to measure BC in PM2.5 with a time 

resolution of 5 min. 

A Cavity Attenuated Phase Shift extinction monitor (CAPS PMext, Aerodyne 

Research Inc.) was used to measure the light extinction (630 nm) of dry fine particles 

at a time resolution of 1 second. The CAPS PMext measures the phase shift (ϑ) of a 

distorted waveform of the modulated light from a light emitting diode (LED) in the 

sample cell with two high reflectivity mirrors and the light extinction is determined 

based on its relationship with ϑ 5. In addition, a CAPS NO2 monitor utilizing the same 

technology as the CAPS PMext was used to measure the ambient NO2 at a time 

resolution of 1 second 6. Compared to the conventional commercially available 
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chemiluminescence (CL)-based method, the CAPS NO2 monitor that essentially has 

no interferences with nitrogen containing species has significant improvements in 

terms of sensitivity and accuracy. Other gaseous pollutants including CO, O3, NO, 

NOy, and SO2 were measured by a suite of commercial gas analyzers from Thermo 

Scientific.  

In addition to the real-time online measurements, PM2.5 quartz filter samples were 

also collected at the ground site using a high-volume air sampler (flow rate: 1.0 m3 

min–1). One daytime sample (7:00 – 18:00) and one nighttime sample (18:00 – 7:00) 

were collected for each day. After sampling, the filters were stored in a pre-

combusted glass jar (150 ml) with a Teflon-lined screw cap at –20°C until analysis. 

The size-segregated samples at two heights, i.e., the ground site and 260 m were also 

collected using two eight-stage non-viable Andersen cascade impactor (Series 20 – 

800, Thermo Scientific) from 30 October to 27 November 2014. The cutoff points of 

the size-segregated samples are 0.43, 0.65, 1.1, 2.1, 3.3, 4.7, 5.8 and 9.0 μm, 

respectively. In this study, two samples per week were collected. In addition, field 

blank samples were also collected at the beginning and the end of the sampling 

campaign by placing pre-baked blank filters onto the samplers for about 10 min 

without sampling ambient air. Both PM2.5 and size-segregated quartz filters (Pallflex) 

were pre-combusted for 6 h at 450°C in a muffle furnace. 

A dual-wavelength depolarization Lidar (Model: L2S-SM II) developed by the 

National Institute for Environmental Studies (NIES) was used to measure the vertical 

profiles of back scattering coefficient at 532 nm with 15-min intervals and 30-m 

height resolution 7. The extinction coefficient was retrieved using the Fernald 

inversion method 8 with a lidar ratio (extinction-to-backscatter ratio) of 50 sr. A 

Doppler Wind Lidar (Windcube 200, Leosphere, Orsay, France) was deployed at the 

same location to obtain the wind profiles from 100 m to 5000 m with a spatial 

resolution of 50 meters and a time resolution of 10 minutes. The wind lidar was 

operated at the near-IR wavelength (1.54 μm) with the pulse energy being 100 μJ. The 

radial wind speed along four cardinal geographical directions was measured 
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sequentially and the wind sector was then reconstructed. The accuracy for the 

measurements of wind speed and wind direction is 0.5 m s-1 and 1.5o, respectively. 

The detailed principles of the wind lidar are given in Ruchith et al. 9. Additional 15 

heights (8, 15, 32, 47, 63, 80, 102, 120, 140, 160, 180, 200, 240, 280, and 320 m) of 

meteorological parameters including wind speed, wind direction, relative humidity 

and temperature were also obtained from the measurements on the 325 m 

meteorological tower. 

The non-refractory submicron aerosol composition was also measured by the 

ACSM at 260 m on the Beijing 325 m meteorological tower. The ambient air was 

drawn inside the container where the ACSM was located at a flow rate of 3 L/min, of 

which ~0.1 L/min was sub-sampled into the ACSM. Similar to AMS setup, a PM2.5 

cyclone (Model: URG-2000-30ED) was supplied in front of the sampling line to 

remove coarse particles larger than 2.5 µm, and a silica gel dryer was used to dry 

aerosol particles before entering the ACSM. The ACSM was operated at a scanning 

rate of 500 ms amu-1 for the mass spectrometer from m/z 10 – 150. The data was 

saved every two cycles by alternating ambient air and filtered air, leading to a time 

resolution of ~ 5 min. The detailed operations and calibrations of the ACSM are given 

in Ng et al. 10 and Sun et al. 11. 

2. PMF analysis of HR-AMS and ACSM datasets 

Positive matrix factorization (PMF) 12 was performed on the HRMS of HR-AMS 

to resolve potential OA factors from different sources. The data and error matrices 

were pre-treated following the procedures detailed in Ulbrich et al. 13 before the PMF 

analysis. Ions with S/N ratio < 0.2 were removed from the HRMS data and error 

matrices. The “weak” ions with S/N between 0.2 and 2 were downweighed by 

increasing their errors by a factor of 2 13,14. In addition, the errors for H2O
+, HO+, O+, 

CO+, and CO2
+ were increased by a factor of 2.2 because they were all scaled based 

on its relationship to CO2
+ and may introduce additional weights in the PMF analysis 

13. The mass spectral profiles and time series of OA factors were evaluated following 

the steps recommended by Zhang et al. 15. A summary of key PMF diagnostic plots is 
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presented in Fig. S1 and Fig. S2. Eventually, a 6-factor solution with fPeak = 0 

(Q/Qexpected = 1.552) was chosen in this study, which includes a hydrocarbon-like OA 

(HOA), two cooking OA (COA), a biomass burning OA (BBOA), a semi-volatile 

oxygenated OA (SV-OOA), and a low volatility OOA (LV-OOA). The mass spectral 

profiles and time series of the six factors are shown in Fig. S3. To better compare with 

the results from PMF analysis of ACSM organic mass spectra, the four primary OA 

factors, i.e., HOA, COA, and BBOA were recombined into one POA factor, and the 

two OOA factors were recombined into one SOA factor. 
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Figure S1. A summary of diagnostic plots for the PMF analysis of HRMS of AMS: (a) 
Q/Qexpected as a function of the number of factors (p), (b) Q/Qexpected as a function of 
fpeak values for the 6-factor solution; (c) time series of the measured mass 
concentration and the reconstructed mass; (d) box plots of residuals for each ion 
fragment; (e) time series of ΣResidual, ΣAbs(residual), ΣResidual/Total, 
ΣAbs(residual)/Total, and Q/Qexpected values. 
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Figure S2. Correlations of six OA factors with external tracers (a) before and (b) 
during APEC.

 

Figure S3. (a) Mass spectral profiles and (b) time series of six OA factors, i.e., two 
cooking organic aerosol (COA), a hydrocarbon-like OA (HOA), a biomass burning 
OA (BBOA), a semi-volatile OOA (SV-OOA), and a low volatility OOA (LV-OOA). 
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Figure S4. A summary of diagnostic plots for the PMF analysis of ACSM OA mass 
spectra: (a) Q/Qexpected as a function of the number of factors (p), (b) Q/Qexpected as a 
function of fpeak values for the 2-factor solution; (c) time series of the measured mass 
concentration and the reconstructed mass; (d) box plots of residuals for each ion 
fragment; (e) time series of ΣResidual, ΣAbs(residual), ΣResidual/Total, 
ΣAbs(residual)/Total, and Q/Qexpected values. 
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The PMF was also performed on the unit mass resolution mass spectra of organic 

aerosol from the ACSM measurements. The PMF analysis was limited to m/z 120 

mainly due to large interferences of internal standard of naphthalene at m/z’s 127 - 

129. The PMF results were further evaluated with an Igor Pro-based PMF Evaluation 

Tool (PET, v2.04) 13, and the number of PMF factors were determined following the 

procedures detailed in Zhang et al. 15. Here, two OA factors including a primary OA 

(POA) and a secondary OA (SOA) were identified.  A summary of key PMF 

diagnostic plots is given in Fig. S4. The mass spectral profiles and time series of two 

OA factors are shown in Fig. S5.  

 

 

Figure S5. (a) Mass spectral profiles and (b) time series of two OA factors which is 
POA and SOA. 
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0.98) 16. The size distributions of POA were then obtained from the differences 

between the total OA and SOA. It should be noted that we might slightly overestimate 

the SOA concentration in small size ranges because ~17% of m/z 44 was found to be 

contributed by POA. 

4. Source apportionment of black carbon 

The sources of BC were investigated using a linear regression technique. Such a 

technique was used to characterize the sources of BC relating to different aerosol 

species in Lanzhou, China 17. The results showed that more than half of BC was 

associated with secondary aerosol (sulfate, nitrate, LV-OOA and SV-OOA), which 

was likely from regional transport. In this study, BC was apportioned into different 

sources using the following equation: 

[BC] = aHOA[HOA]+ aBBOA[BBOA]+ aCOA[COA]+ aSV-OOA[SV-OOA]+ aSNA[SNA] + C (1) 

where SNA refers to sulfate, nitrate, and ammonium, and C indicates the constant 

value. Because LV-OOA highly correlated with SNA (r2 = 0.98 and r2 = 0.94 before 

and during APEC, respectively), we didn’t include LV-OOA into the equation, and 

the LV-OOA associated with BC will be accounted for by the SNA. For a better 

quantification of the sources, the BC data before and during APEC was fitted 

separately, and the results are shown in equation (2) and (3), respectively: 

[BC]Before APEC = 0.85[HOA]+ 0.074[BBOA]+ 0.036[COA]+ 0.084[SV-OOA]+ 

0.043[SNA] + 0.30                                                                                           (2) 

[BC]APEC = 0.38[HOA]+ 0.0[BBOA]+ 0.030[COA]+ 0.027[SV-OOA]+ 0.060[SNA] 

+ 0.39                                                                                                                (3) 
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Figure S6. Correlations between predicted BC by Eq. (2) and (3) and measured 
values (a) before and (b) during APEC.  

As indicated in Fig. S6, the reconstructed BC concentrations using Eq. (2) and (3) 
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Figure S7. Time series of BC relating to different aerosol species. The two pie charts 
showed the average apportionment of BC before and during APEC. 
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(0.42 µg m-3 hr-1 and 0.25 µg m-3 hr-1, respectively). The growth rates of SIA and 

SOA at 260 m were also calculated which were similar to those before APEC. For 

example, the growth rate of SIA at 260 m was 0.38 µg m-3 hr-1, close to 0.41 µg m-3 

hr-1 at the ground site, and the growth rate of SOA at 260 m was 0.47 µg m-3 hr-1, 

which was also close to 0.55 µg m-3 hr-1 at the ground site. In this study, the growth 

rates of SIA and SOA calculated from the ground site was used for the concept 

framework for aerosol evolution. 

 

Figure S8. Time series of (a) temperature and (b) relative humidity at 260 m and the 
ground site, vertical profile of (c) wind speed and (d) wind direction, (e) vertical 
profile of extinction coefficient,  and (f,d) SOA and SIA at 260 m and the ground site. 
The dash lines represent the predicted accumulation of SIA and SOA, respectively. 
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Figure S9. Time series of non-refractory submicron aerosols (organics, sulfate, nitrate, 
ammonium, and chloride) measured by an Aerodyne aerosol chemical speciation 
monitor during 15 October to 15 November, 2012. The pie charts show the average 
chemical composition of four episodes marked in the figure and the number is the 
average mass concentration for each episode.  

 

Figure S10. The episode anomalies (%) of aerosol species for each episode referring 
to the average of five episodes the ground site. The numbers show the change rates of 
chemical species for the two episodes during the APEC. Secondary species show 
evidently larger reductions than primary species during the APEC.  
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Figure S11. The change rates of various pollutants (PM2.5, PM10, PM2.5-10, CO, NO2, 
and SO2) during the episode of APEC (7 – 11 November, APEC2) referring to the 
average of five episodes (EpAvg, marked in Fig. 1). The selected sites include an urban 
site Aotizhongxin (AT) and a rural site Huairou (HR) in Beijing, Tianjing, four cities 
in Hebei province (Langfang (LF), Baoding (BD), Shijiazhuang (SJZ), and 
Zhangjiakou (ZJK)) and Dezhou (DZ) in Shandong province. The change rates shown 
in the figure were calculated as [EpAvg – APEC2]/ [EpAvg]. The red numbers indicate 
reductions and the blue ones indicate enhancements. The PM2.5-10 was calculated as 
PM10 – PM2.5. All the data were from the China National Environmental Monitoring 
Center (CNEMC) (http://113.108.142.147:20035/emcpublish/). The maps were drawn 
by Igor Pro (version 6.3.7.2, WaveMetrics, Inc., Oregon USA), 
http://www.wavemetrics.com/.  
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Figure S12. Spatial distributions of PM2.5 (a) before APEC and (b) during APEC. (c) 
shows the difference before and during APEC, i.e., [Before APEC] – [APEC], and (d) 
shows the change ratio of PM2.5 during APEC, which is ([Before APEC] – 
[APEC])/( [Before APEC]). The maps were drawn by Igor Pro (version 6.3.7.2, 
WaveMetrics, Inc., Oregon USA), http://www.wavemetrics.com/. 
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Figure S13. (A) Average organic aerosol composition and oxygen-to-carbon ratio 
(O/C) before and during APEC, (B) Average size distributions of SIA, SOA and POA 
during five episodes which are marked in Fig. 1.  
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samples at (A) the ground site and (B) 260 m during N-APEC (10/30 17:00 – 11/3 
10:00) and APEC (11/6 11:00 – 11/10 10:00). (C) shows the change rate of three 
species during the APEC which is calculated as [N-APEC – APEC]/[N-APEC].  
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Figure S15. Variations of meteorological variables (a) wind speed, (b) wind direction, 
(c) temperature, and (d) relative humidity during two episodes, i.e., 17 – 18 October 
and 7 – 8 November. The two episodes show similar WS, WD, and RH with the 
largest difference in temperature. 
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Figure S16. Time series of PM2.5 mass concentration in different cities (see Fig. S11 
for detail).  
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Figure S17. Weather analysis chart on (A) 18 October (8:00 am) and (B) 8 November 
(8:00 am). The charts were downloaded from 
http://web.kma.go.kr/eng/weather/images/analysischart.jsp. 

 

Figure S18.  The footprint region (altitude below 100 m height in the planetary 
boundary layer (PBL)) of sampling at the site was determined by five days’ backward 
simulations of air mass movement on the basis of the FLEXPART model, which is a 
Lagrangian particle dispersion model that has been widely applied in calculating long-
range and meso-scale dispersion of air pollutants. A detailed description and 
validations of this model can be found in the literature 18. In the present study, the 
FLEXPART model (Version 8.23) was driven by meteorological field (spatial 
resolution = 28 km, time resolution = 3 hours) from Global Forecast System produced 
by the National Centers for Environmental Prediction (NCEP). In simulations, 10,000 
tracer particles were released from the site at a height between 200 and 500 m and the 
model was run backwardly to determine the source-receptor-relationship for specified 
observation period. The longer the tracer stayed in that cell, the greater the impact 
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from surface emission sources. The maps were drawn by Igor Pro (version 6.3.7.2, 
WaveMetrics, Inc., Oregon USA), http://www.wavemetrics.com/. 

 

Figure S19. A conceptual framework to describe the 72 hr evolution of primary and 
secondary aerosol without emission control before the APEC (A1 and A2) and with 
the emission control during the APEC (B1 and B2).  This figure is similar to Fig. 4 
yet with the evolution of primary species starting from mid-night. 
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