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Supporting information: code for new approach

We first load the splines package and import the data as a csv file, obtained by downloading the data

from Dryad [38] and saving it as a csv with no other alterations. Within R, the column names for the

drug resistant strain (the strain we analyze here) are renamed so they can be quickly referenced later.

Additionally, all parasite counts are given as number per µL, but uninfected counts are given in units of

red blood cells ×106, and we indicate that in the object rbcUnit. This algorithm can be used to analyze

different data sets, provided that data is entered in the same format as the Dryad data set with one row

per observation. For different data sets, the parts of the code that need to be altered at the column

names below and the rbcUnit parameter. Specifically, the column names corresponding to red blood cell

counts, asexual parasite counts, and gametocyte counts need to be renamed “RBC”, “Asex” and “Gam”,

respectively. If the red blood cell counts are in different units, the rbcUnit parameter will need to be

changed.

library(splines)

# import data:

allData = read.csv("SH1 dryad data file.csv", header=TRUE, sep = ',')

# focus on non-drug treated infections

nodrugs = allData[allData$Drugs=="nodrugs",]

# select resistant clone

clones = nodrugs[nodrugs$Clone=="R",]

# rename columns for drug resistant asexuals and gametocytes

# for ease of referencing later

colnames(clones) <- c("Box","Mouse","Drugs","Clone","Day","Weight","RBC","Asex","S.asex","Gam",

"S.gam")

# set units for RBCs

# in this data set, RBC numbers are given in numbers that need to be multiplied by 10^6

rbcUnit = 10^6

We first write a function to compare the nested models fitted to the data. This getF function returns

a p-value from an F-test given sum squared errors for different model fits:

getF = function(n, nparms1,sse1,nparms2,sse2){

# function to return p-value associated with F statistic

# which follows an F distribution with df1 = p-q, df2 = n-p

# first determine which model has more parameters/

# smaller sum squared error:

if(nparms1>nparms2 & sse2>sse1){

sseOmega = sse1

p = nparms1

sseomega = sse2

q = nparms2

} # end test for model1 is more complex

if(nparms2>nparms1 & sse1>sse2){



2

sseOmega = sse2

p = nparms2

sseomega = sse1

q = nparms1

} # end test for model2 is more complex

if(nparms2>nparms1 & sse2 > sse1){

sseOmega = NA

p = NA

sseomega = NA

q = NA

print("Error: model fit is not a global optimum, refit with different starting parameters.")

} # if model2 has more parameters but doesn't fit better, that's an error

if(nparms1>nparms2 & sse1 > sse2){

sseOmega = NA

p = NA

sseomega = NA

q = NA

print("Error: model fit is not a global optimum, refit with different starting parameters.")

} # if model2 has more parameters but doesn't fit better, that's an error

Fstatistic = ((sseomega-sseOmega)/(p-q))/(sseOmega/(n-p))

pVal = pf(q=Fstatistic, df1=(p-q), df2=(n-p), lower.tail=FALSE)

return(pVal)

} # end getF function

The function uses if/then statements to determine which model is more complicated (i.e., has more

parameters), and then performs the F-test given in Eqn. 11 and returns the corresponding p-value. Models

with more parameters should always give a smaller sum squared error, and if the more complicated model

does not give smaller errors, it indicates that the global best fit has not been found. The getF function

returns an error in those cases.

The following code fits splines of increasing complexity to time series data for a single mouse, here

mouse 1. The mouseID is used to ensure that when output is written to files later on, each file name is

unique and does not overwrite the output for other mice. The period required for gametocyte development

is referred to as ‘tau’, and is set to two days [23], though it can be modified. The ‘maxCarryover’ refers to

the maximum allowed ε value.

maxCarryover=1

i=1

mouse=clones[clones$Mouse==i,]

mouseID=i

tau=2

The method requires continuous, daily counts of red blood cells and parasite numbers, and the

subsequent gametocyte counts, which can include missing values (‘NA’ in R). In this data set, mice were

sampled intermittently later in the experiment. We use the rle function in R to find the longest run of
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consecutive data.

# to get the longest continuous run of data:

resLog=rle(diff(mouse$Day)==1)

# returns lengths of runs for which the difference in plausible indices is 1

runLength = max(resLog$lengths[which(resLog$values)]) # get the max length of

# the consecutive run

dummy=0

j=1

while(dummy==0 & j<length(mouse$Day)){

startDay=mouse$Day[j]

endDay=mouse$Day[(j+runLength)]

if(startDay+runLength==endDay){

startIndex=which(mouse$Day==startDay)

dummy=1}

j = j+1

}

Once we have isolated the usable data, we estimate the effective propagation (here denoted x) using

the methods described by [6]:

# regression approach

# set up time lags for asexual dynamics

times = mouse$Day[startIndex:(startIndex+runLength)]

rbcUI = rbcUnit*mouse$RBC[startIndex:(startIndex+runLength)] # infected & uninfected RBCs

para = mouse$Asex[startIndex:(startIndex+runLength)]

rbc = rbcUI-para # uninfected RBCs ONLY

gams = mouse$Gam[startIndex:(startIndex+runLength)]

Itplus1 = para[2:length(para)]

It = para[1:(length(para)-1)]

St = rbc[1:(length(rbc)-1)]

# Estimate effective propagation numbers

x = rep(NA, length(It))

for (p in c(1:length(It))){

if(is.na(It[p])==FALSE && is.na(Itplus1[p])==FALSE){

if(It[p]>0 & Itplus1[p]>0){

fitA = lm(log(Itplus1[p])~offset(log(It[p])+log(St[p])))

x[p] = exp(fitA$coef[[1]])}

}

} # end asex loop

x[x*St>20]=NA

length(x) <- length(times) # so that an NA is added for the last day,

# when effective propagation could not be estimated

Some of the effective propagation numbers will be unrealistically large due to the difficulty of accurately

quantifying small numbers of parasites. For example, in mouse 1, asexual parasite numbers appear to

increase more than 100-fold from day 4 to day 5, despite the fact that maximum burst sizes are on the

order of ten to 20 [45]. We can locate the faulty data by calculating the effective reproductive number (the

effective propagation number multiplied by the number of susceptible red blood cells), which represents



4

the number of emerging parasites that successfully invade red blood cells and should be less than the

maximum burst size, here set to 20. Any implausible effective propagation numbers are recoded as missing

values. We can then isolate the part of the data set with plausible effective propagation numbers:

subtimes = times[is.na(x)==FALSE]

subx = x[is.na(x)==FALSE]

subrbc = rbc[is.na(x)==FALSE]

subpara = para[is.na(x)==FALSE]

subgams = gams[is.na(x)==FALSE]

resPe=rle(diff(subtimes)==1)

# returns lengths of runs for which the difference in plausible indices is 1

runPeLength = max(resPe$lengths[which(resPe$values)]) # get the max length of

# the longest run

dummyPe=0

jPe=1

while(dummyPe==0 & jPe<length(subtimes)){

startPeDay=subtimes[jPe]

endPeDay=subtimes[(jPe+runPeLength)]

if(startPeDay+runPeLength==endPeDay){

startPeIndex=which(subtimes==startPeDay)

dummyPe=1}

jPe = jPe+1 }

tvals = subtimes[(startPeIndex):(startPeIndex+runPeLength)]

xt=subx[(startPeIndex):(startPeIndex+runPeLength)]

rbcToFit = subrbc[(startPeIndex):(startPeIndex+runPeLength)]

paraToFit = subpara[(startPeIndex):(startPeIndex+runPeLength)]

gamToFit = subgams[(startPeIndex):(startPeIndex+runPeLength)]

An effective propagation number calculated for time t can be used to predict gametocyte counts

at t + τ + 1. If transmission investment occurs on day t, invasion of committed parasites and initial

gametocyte development would have occurred when parasite populations are sampled on day t+ 1, and

gametocyte development would have been completed when samples are taken on day t+ 3. There may be

additional gametocyte counts that can be included in the analysis even if effective propagation could not

be estimated for those days, because those gametocytes would have been the result of effective propagation

occurring earlier. This code adds those extra gametocyte counts to the data to be fitted:

for (extraDays in c(1:(tau+1))){ # add one to tau because commitment

# occurs one day prior to gametocyte development

extrat = startPeDay+runPeLength+extraDays

# test that the extra day was included in the data set

if(extrat%in%mouse$Day){

gamIndex=which(mouse$Day==extrat)

# test that gam count is included in the data set,

if(is.na(mouse$Gam[gamIndex])==FALSE){

gamToFit=append(gamToFit,mouse$Gam[gamIndex])}

} # end conditional
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} # end for loop

length(rbcToFit) <- length(gamToFit)

length(paraToFit) <- length(gamToFit)

dataToFit = cbind(rbcToFit,paraToFit,gamToFit)

numObs = length(which(is.na(gamToFit)==FALSE))-tau # the first tau observations are unusable

convTime = seq(tvals[1],by=1,length=(length(gamToFit)-tau-1)) # days corresponding to the

# transmission investment to be estimated

gamCountTime = seq(tvals[1]+tau,by=1,length=(length(gamToFit)-tau))

# (because there is no corresponding effective propagation number,

# and the (tau+1) entry of the gamToFit vector serves as the initial gametocyte count)

We also count the number of gametocyte counts that can be used to fit the models because it could

constrain the complexity of candidate splines. The first few gametocyte counts (i.e., the first τ days)

cannot be used because there are no corresponding data to estimate effective propagation.

Now we can estimate transmission investment by fitting splines of increasing complexity. We first set

the guess for the gametocyte mortality rate (mug) to an estimate from the literature, with the range of

subsequent guesses falling within the confidence intervals reported [20], and then determine the candidate

splines that are appropriate for the time series available. The starting guesses for the initial gametocyte

count follow at gamma distribution as described previously for P. chabaudi gametocytes [37]. For all of

the mice analyzed here, the time series were long enough to fit a cubic spline with an interior knot (the

most complicated spline considered).

# best guess for gametocyte mortality rate

mug = (log(2)/14)*24

candidateSplines = c(0,1,2,3,5) # degrees of freedom needed for candidate splines

nParmList = c(1:5)+2 # associated number of parameters

# print notification if there are too few observations to fit even constant conversion:

if(numObs<3){print("Error: too few observations to fit simplest model.")}

# no point in fitting splines that are too complicated to be compared with F-tests:

if(min(nParmList)<=numObs){

degrees = candidateSplines[nParmList<numObs]

if(min(nParmList)==numObs){degrees = min(candidateSplines)}

bestFit = as.data.frame(matrix(NA, ncol = (length(degrees)+5), nrow = length(degrees)))

colnames(bestFit) <- c(paste("p",c(1:(length(degrees)+2))),"numParms",

"numObs","sse")

for (val in c(1:length(degrees))){

dg=degrees[val]

print(dg)

if(dg<4){

if(dg==0){sVals = matrix(0.5,ncol=1,nrow = length(convTime))}

if(dg>0){sVals = bs(convTime,degree=dg,intercept=TRUE)}}

if(dg>=4){sVals = bs(convTime,df=dg,intercept=TRUE)}

# define objective function after creating sVals spline object

gobs <- function(parms,data){

cparms = parms[1:(length(parms)-2)]

cVal = exp(-exp(sVals%*%cparms))
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epsilon = maxCarryover*exp(-exp(parms[(length(parms)-1)]))

G3est = exp(parms[(length(parms))])

Stminus3 = data[,1]

Itminus3 = data[,2]

Gt = data[(tau+1):length(Stminus3),3]

GtPred = rep(NA, length(Gt))

GtPred[1] = G3est

for (Gindex in c(2:length(GtPred))){

j=c(1:(Gindex-1))

GtPred[Gindex]=sum((epsilon^((Gindex-1)-j))*(cVal[j])*xt[j]*

Itminus3[j]*Stminus3[j])+(epsilon^(Gindex-1))*G3est

}

GtPred[GtPred>1e20]=1e20

sse <- sum((log(GtPred+1)-log(Gt+1))^2,na.rm=TRUE)

} # end gobs fx

# loop to estimate conversion rates by finding coefficients

# of spline basis functions

tries = 1000 # tries to fit lowest number of parameter values

mugHi = (log(2)/5)*24

mugLo = (log(2)/41)*24 # confidence intervals from Reece et al. 2003

minEps = exp(-mugHi) # minimum allowable epsilon

maxEps = exp(-mugLo) # maximum allowable epsilon

parms0 = c(runif(ncol(sVals),min=-45,max=85),log(-log(runif(1, min=minEps, max = maxEps))),

log(1+rgamma(1,shape = 1/0.0582,scale = 0.0582*gamToFit[(tau+1)])))

parmTries = matrix(NA, nrow = tries, ncol = length(parms0)+1)

for (take in c(1:tries)){

dummy=1

while(dummy!=0){

convFit <- optim(parms0, gobs, data=dataToFit, control=c(maxit=5000))

dummy=convFit$convergence

parms0 = c(runif(ncol(sVals),min=-45,max=85),log(-log(runif(1, min=minEps, max = maxEps))),

log(1+rgamma(1,shape = 1/0.0582,scale = 0.0582*gamToFit[(tau+1)])))

sseVal = gobs(convFit$par, data=dataToFit)

print(c(i,take,convFit$convergence,parms0))

} # end while loop to get convergence

parmTries[take,] = c(convFit$par,sseVal)

} # end loop to get multiple convergent tries with different

# starting parameters

# set bar for sse

if(degrees[val]==min(degrees)){minSSE = min(parmTries[,(length(parms0)+1)])}

if(degrees[val]>min(degrees)){

while(min(parmTries[,(length(parms0)+1)])>minSSE){

take=take+1

parms0 = c(runif(ncol(sVals),min=-45,max=85),log(-log(runif(1, min=minEps, max = maxEps))),

log(1+rgamma(1,shape = 1/0.0582,scale = 0.0582*gamToFit[(tau+1)])))

convFit <- optim(parms0, gobs, data=dataToFit, control=c(maxit=5000))

print(c(i,take,convFit$convergence,parms0))

if(convFit$convergence==0){

sseVal = gobs(convFit$par, data=dataToFit)

newTry = c(convFit$par,sseVal)

parmTries = rbind(parmTries,newTry)}

} # end while loop

}

bestrow = parmTries[which.min(parmTries[,(length(parms0)+1)]),1:length(parms0)]
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parms = bestrow

bestFit[val,1:length(convFit$par)] = parms

numParms = length(convFit$par)

bestFit$numParms[val] = numParms

cparms = parms[1:(length(parms)-2)]

cVal = exp(-exp(sVals%*%cparms))

filelab = paste("ConversionMouse", i, "Degree", dg, ".txt", sep = '')

write.table(cVal,filelab)

epsilon = maxCarryover*exp(-exp(parms[(length(parms)-1)]))

G3est = exp(parms[(length(parms))])

Stminus3 = dataToFit[,1]

Itminus3 = dataToFit[,2]

Gt = dataToFit[(tau+1):length(Stminus3),3]

bestFit$numObs[val] = numObs

GtPred = rep(NA, length(Gt))

GtPred[1] = G3est

for (Gindex in c(2:length(GtPred))){

j=c(1:(Gindex-1))

GtPred[Gindex]=sum((epsilon^((Gindex-1)-j))*(cVal[j])*xt[j]*

Itminus3[j]*Stminus3[j])+(epsilon^(Gindex-1))*G3est

}

GtPred[GtPred>1e20]=1e20 # end predicting G by gobs algorithm

sse <- sum((log(GtPred+1)-log(Gt+1))^2,na.rm=TRUE)

minSSE=sse

bestFit$sse[val] = sse

res = as.data.frame(cbind(Gt,GtPred))

write.table(res, paste("ConversionMouse", i, "Degree", dg, "Pred.txt", sep = ''))

# plot fit

# get index of any NAs in gam counts

gamNA = which(is.na(Gt))

par(mfrow = c(1,1), bty = "n", mar = c(5,5,3,1))

plot(gamCountTime, log(Gt+1)-log(GtPred+1), pch = 16, col = "black",

xlab = "t", ylab = "Residual gametocyte abundance",

main = paste("degree = ", dg, sep = ""))

if(any(is.na(Gt))){

points(gamCountTime[gamNA],rep(0,length(gamNA)),pch = 4, col = "red")

}

} # end degree loop

# write results table

resLab = paste("SplineFitsMouse", i, ".txt", sep = '')

write.table(bestFit,resLab)

} # end conditional regarding number of data points

This code loops through increasingly complex splines to find the best parameters, and we set up

a table (bestFit) to hold the summary values we obtain from those fittings, including up to seven

parameter values associated with the splines, proportion of gametocytes persisting to subsequent samples

(ε), and initial number of gametocytes observed, the number of parameters in each model, the number of

observations in the data, and the sum squared error (sse). We then construct the spline basis functions for



8

a given degree (the matrix sVals), and define the objective function for optim to evaluate the sum-squared

error (gobs). The key part of the code is the gobs function, which predicts the gametocyte count according

to Eqn. 9 given parameters for the spline, epsilon and the initial number of gametocytes. The sum

squared error is then calculated from the logged gametocyte abundances, since gametocyte counts can

span many orders of magnitude. We add one to observed and predicted gametocyte counts in case either

is zero. Within the objective function, we cap the maximum number of predicted gametocytes at 1× 1020

in case a starting value yields an infinite number of gametocytes.

There is no guarantee that the optimization algorithm will return a global optimum, so to im-

prove the odds we try many randomly chosen starting values, at least 1000 runs with convergence

(convFit$convergence= 0). Since we cycle through nested models, we can detect that the algorithm has

failed to locate a global optimum when a model with more parameters does not improve the fit. After

1000 attempts at fitting a constant investment model, we save the sum squared error associated with the

best fit as minSSE. We add a while loop to continue trying different starting values until the algorithm

locates a fit with a sum squared error less than minSSE, a plausible global best fit. We then set minSSE

equal to this new, smaller sum squared error and proceed to fit more complicated splines.

For each fitted spline, the code takes the best parameters found, reconstructs the spline (which would

not have been saved in the successive optimizations) and exports it as a text file under a file name

indicating the mouse and degree of the spline (for example, “ConversionMouse1Degree3.txt”). The code

recalculates the predicted gametocyte abundances and exports them along with the observed values so

that the fits can be examined later (e.g., “ConversionMouse1Degree3Pred.txt”). A plot of the residuals

for each best fitting spline is generated. Finally, when the five candidate splines have been fit for a given

mouse, the bestFit table is exported (“SplineFitsMouse1.txt”).

Afterwards, the bestFit tables can be used to determine whether more complicated models are

justified by the data. We use forward model selection, meaning that we take the simplest model (constant

investment) and compare it to each more complicated model to determine if the fit is significantly

better (p < 0.05), using the getF function defined earlier. If the fit is better, we then select that model

and compare more complicated models to determine whether more parameters are justified. Once the

appropriate model is selected, the code reads in the transmission investment, as well as the observed and

predicted gametocyte abundances as “estConv1” (for mouse 1) and exports those numbers for use later

on.
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The best fitting pattern of transmission investment can then be plotted. This code is available as an

executable R file (S1 Code).

# run F-test

res = read.table(paste("SplineFitsMouse",i,".txt",sep=''))

m=1

k=2

pVal=1

forwardseln = 1

while(k<=length(res[,1]) & pVal>0.05){

pVal = getF(res$numObs[1],res$numParms[m],res$sse[m],res$numParms[k],res$sse[k])

print(c(m,k,pVal))

if(pVal<0.05){forwardseln=k; m=k; pVal=1}

k=k+1

}

bestPar = res[forwardseln,1:(res$numParms[forwardseln])]

bestEpsFull = maxCarryover*exp(-exp(bestPar[(length(bestPar)-1)]))

bestEps = c(bestEpsFull[[1]])

conv = read.table(paste("ConversionMouse",i,"Degree",degrees[forwardseln],".txt",sep=''))

bestConv = conv[,1]

gamEst = read.table(paste("ConversionMouse",i,"Degree",degrees[forwardseln],"Pred.txt",sep=''))

length(convTime) <- length(gamCountTime)

length(bestConv) <- length(gamCountTime)

length(bestEps) <- length(gamCountTime)

res.output = as.data.frame(cbind(convTime,bestConv,gamCountTime,gamEst$Gt,gamEst$GtPred,bestEps))

colnames(res.output) <- c("Days","Conversion","GamDays","Gt","GtPred","epsilon")

assign(paste("estConv",i,sep=''),res.output)

write.table(res.output,paste("estConv",i,".txt",sep=''))

plot(estConv1$Days,estConv1$Conversion, type = "o", col = "purple3",pch=16)
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