
Supplementary Information

Supplementary Figures

Supplementary Fig. 1: Example of original and induced networks. (a) An example network with one gener-
ator (green square) and five loads (red circles); (b) The subgraph induced by the load nodes VL. Generator
buses separate the induced load subgraph into disconnected components in which voltage stability can be
assessed independently.

Supplementary Fig. 2: Locus of solutions to the one-dimensional power flow equation (20). The stable
solution v+ lies on the top portion of the curve, deviating from the open-circuit voltage v∗ by a small
percentage δ−. The unstable solution lies on the bottom portion of the curve, deviating from v∗ by a large
percentage δ+.
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Supplementary Fig. 3: Illustration of the construction leading to the parametric condition (31).

(a) (b)

Supplementary Fig. 4: Visualization of Supplementary Theorem 1 when ∆ ∈ ]0, 1[. (a) The partitioning of
load-space. The critical load profile which lies on the existence boundary is marked with a red star in (a),
and leads to the voltage solution marked with a star in (b). The light shaded region above the diagonal line
corresponds to the necessary solvability condition in Proposition 2. The dark shaded region is the convex
hull of load profiles which satisfy ∆ = 4δ±(1 − δ±). (b) The partitioning of voltage-space. Red crosses (x)
denote unstable power flow equilibria, while the green cross (x) indicates the stable equilibrium. The dark
shaded region is the stability set S(δ−) in which the unique voltage-stable solution is guaranteed to exist,
while the light shaded region is the open set of Supplementary Theorem 1 2), where solutions are forbidden.
The Venikov index KV =

√
1−∆ provides a guaranteed bound between stable and unstable equilibria in

voltage-space.
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Supplementary Notes

Supplementary Note 1 – Organization and Preliminaries

This supplementary information is organized as follows.

Supplementary Note 1 — Organization and Preliminaries — provides a table of contents for this
supplementary information and establishes some mathematical notation.

Supplementary Note 2 — Review of Explicit Voltage Stability Conditions — reviews the parametric
voltage stability conditions available in the literature.

Supplementary Note 3 — Mathematical Models — provides a detailed description of the considered
power network models, including transmission grid, generator, and load modeling. We also describe
the approximations which lead to the reactive power flow model considered in the main article.

Supplementary Note 4 — Energy, Voltage Stability & The Power Flow Jacobian — formally defines
the concept of long-term voltage stability, and relates voltage stability of an operating point to the
local minima of the energy function and to the non-singularity of the power flow Jacobian.

Supplementary Note 5 — Voltage Stability in Complex Power Networks — contains the mathe-
matical analysis leading to the main result presented in the article. We offer interpretations and
comments throughout along with several corollaries.

Supplementary Note 6 — Monotonicity of Stability Margins With Respect to Parameters: Results
and Counterexamples — examines how variations in grid parameters influence the proposed stability
margin of the grid.

Supplementary Note 7 — Voltage Stability Condition Incorporating Generator Injection Limits —
presents a generalized version of our main result which accounts for generator reactive power limits.

Finally, Supplementary Methods provides additional details regarding the extensive numerical sim-
ulations presented in the main article.

Sets, vectors and matrices: Given a finite set V, let |V| denote its cardinality. The set R (resp. R≥0,
R>0) is the field of real (resp. nonnegative real, strictly positive real) numbers, and C is the field
of complex numbers. For x ∈ Rn, [x] ∈ Rn×n is the associated diagonal matrix. Given x, y ∈ Rn,
we write x ≥ y if xi ≥ yi for each i ∈ {1, . . . , n}, and will occasionally write z ∈ [x, y] if x ≤ z ≤ y.
Similarly we define x > y and z ∈ ]x, y[ in the obvious ways. We let 1n and 0n be the n-dimensional
column vectors of unit and zero entries, with In the n× n identity matrix. For nonempty sets K1

and K2, K1 \ K2 = {x ∈ K1 | x /∈ K2} is the set of elements in K1 which do not also belong to K2.

M -Matrices: A matrix A ∈ Rn×n is a Z-matrix if Aij ≤ 0 for all i 6= j. The spectral radius
ρ(A) of a real-valued matrix A ∈ Rn×n is ρ(A) = max{|λ|C | det (λIn −A) = 0}, where |x|C is the
magnitude of x ∈ C. A Z-matrix A ∈ Rn×n is an M -matrix if it can be expressed as A = sIn −B,
where B ∈ Rn×n has nonnegative elements and s ≥ ρ(B). If A is a nonsingular M -matrix, then
the elements of A−1 are nonnegative [1]. Moreover, if the directed graph induced by the sparsity
pattern of A is strongly connected, then A is irreducible and the elements of A−1 are all strictly
positive [2, 1].

Geometry on the circle: The set S1 is the unit circle, an angle is a point θ ∈ S1, and an arc is a
connected subset of S1. The geodesic distance between two angles θ1, θ2 ∈ S1, denoted by |θ1− θ2|,
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is the minimum length of the counter-clockwise and clockwise arcs connecting θ1 and θ2.

The ∞-Norm and Unit Balls: The ∞-norm of x ∈ Rn is given by ‖x‖∞ = maxi∈{1,...,n} |xi|,
and the induced norm of a matrix A ∈ Rn×n is ‖A‖∞ = maxi∈{1,...,n}

∑n
j=1 |Aij |. It holds that

ρ(A) ≤ ‖A‖∞. The associated closed unit ball is defined by B∞(δ) , {x ∈ Rn | ‖x‖∞ ≤ δ}, with
B∞(δ) being its interior.

Nonlinear Equations: For a smooth map f : Rn → Rn, a solution x∗ ∈ Rn of f(x) = 0n is a regular
solution if the Jacobian matrix ∂f

∂x (x∗) is nonsingular. For a compact set X ⊂ Rn, a map f : X → X
is a contraction map on X if there exists an α ∈ [0, 1[ (the contraction rate) and a norm ‖ · ‖ such
that for any x, y ∈ X, ‖f(x)− f(y)‖ ≤ α‖x− y‖. If in addition X is convex and f is continuously
differentiable, then f is a contraction map on X with contraction rate α if ‖∂f∂x (x)‖ind < α for each
x ∈ X, where ‖ · ‖ind is the matrix norm induced by the vector norm ‖ · ‖.

Supplementary Note 2 – Review of Explicit Voltage Stability Conditions

In [3, 4, 5] the completely decoupled (γ = 0 in Assumption 3) power flow equations were analyzed
using fixed point techniques, resulting in vector-valued sufficient conditions of the form hi(V

min) ≤
Qi ≤ hi(V

max) for all i ∈ L, where V min and V max are upper and lower bounds on the nodal load
voltages. No guarantees are given on uniqueness of the stable equilibrium, the analysis is not clearly
related to the network structure, and the Jacobian must satisfy a diagonal dominance condition,
which is known to be restrictive and often violated when including line charging capacitors and
capacitive shunts [6]. Moreover, [3] requires an unrealistic tiering assumption on the network
structure, where all load (PQ) buses are at most once-removed from a generator (PV) bus. In
[6] the network stiffness was quantified by the product of the smallest eigenvalue (in magnitude)
of the admittance matrix |λ1(BLL)| and a desired lower bound on the voltage at any load bus,
with the severity of loading captured by the largest load ‖QL‖∞ = maxi∈L |Qi|. This conservative
sufficient condition heavily underestimates the network stiffness while overestimating the severity of
loading, and does not take into account the interaction between network structure and the spatial
distribution of load. The recent work [7] shows that a similar condition suffices for solvability
of the coupled active/reactive power flow equations, but in distribution networks with a single
generator. Other results on power flow solvability and security [8, 9, 10, 11] provide only necessary
solvability conditions, or use constant-impedance/current load models, and are therefore unable to
assess voltage collapse.

The papers [12, 13] provide branch-wise necessary conditions for voltage collapse, showing that
voltage collapse can occur only after at least one branch of the network is saturated past a limit,
termed the static transfer stability limit. While this is an insightful analysis framework, evaluating
the transfer limit conditions requires knowledge of branch-wise power flows and voltage magnitudes,
that is, the conditions are checked based on the output of a power flow program. In contrast, our
goal is to work directly from the given data of the problem (topology, impedances, loading, and
generator voltages) and develop conditions which guarantee the existence of a power flow solution
and characterize its robustness margins.
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Supplementary Note 3 – Mathematical Models

In this section we introduce the relevant power network models for the transmission network,
generators, and loads. Our focus is on high-voltage power transmission networks.

Transmission Network Modeling

Throughout this work we consider a connected, phase-balanced power network operating in sinu-
soidal quasisteady-state. The network is modeled as a weighted and undirected graph G(V, E , Y )
with nodes (or buses) V, edges (or branches) E ⊂ V × V, and complex edge weights (or admit-
tances) yij ∈ C. The network has two distinct types of buses: loads L and generators G, such that
V = L ∪ G. For notational simplicity, we set n , |L|, m , |G| and assume n,m ≥ 1. To each bus
we associate a phasor voltage Ui = Vie

jθi ∈ C where Vi ≥ 0 is the voltage magnitude and θi ∈ S1 is
the voltage angle, and a complex power injection Si = Pi + jQi.

Transmission lines are represented using the standard lumped parameter Π -model, which allows for
the inclusion of inductive/capactive shunts, tap-changing transformers, and line charging capacitors
[14]. We encode the weights and topology in the bus admittance matrix Y ∈ C(n+m)×(n+m), with
elements Yij = −yij and Yii = −

∑n+m
j=1 yij + yshunt,i, where yshunt,i is the shunt element at bus i.

The conductance matrix G and susceptance matrix B are defined by G = Re(Y ) and B = Im(Y ).
For the 100+ kV transmission-level networks we consider, the admittances of the transmission lines
are dominantly inductive. The real part of the bus admittance matrix is therefore negligible, and
Y ' jB [14]; see [15, 16] for studies concerning lossy models.

For later use we summarize for properties of the susceptance matrix.

Fact 1 (Properties of Susceptance Matrix [5]). If the network contains no phase-shifting transform-
ers and the transmission lines are not overcompensated by series capacitors, then for all i, j ∈ V

(i) Symmetry: Bij = Bji;

(ii) Sign Structure: Bij ≥ 0, with Bij > 0 if and only if {i, j} ∈ E;

(iii) Self-susceptances: Bii = −
∑n+m

j=1,j 6=iBij + Bi,shunt for all i ∈ V, where Bi,shunt is the
shunt element at node i. The shunt at node i is capacitive if Bi,shunt > 0, and inductive if
Bi,shunt < 0.

Partitioning the susceptance matrix according to load and generators as

B =

(
BLL BLG
BGL BGG

)
, (1)

our results to follow require the following weak assumptions on the sub-matrix BLL (sometimes
referred to as a grounded susceptance matrix) and the network topology.

Assumption 1 (Susceptance Matrix). The (negative) grounded susceptance matrix −BLL ∈ Rn×n
is a nonsingular M -matrix.

Assumption 2 (Connected Subgraph). The subgraph of G(V, E , B) induced by the load nodes L
is connected.
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Assumption 1 is universally satisfied in practical networks [6, Section III], and always satisfied in
the absence of line charging and shunt capacitors due to diagonal dominance [17]. Assumption 2
may be taken without loss of generality when studying the fundamental physics of reactive power
flow in transmission networks, as the voltage-regulated generator buses electrically isolate groups
of load buses from one another (Supplementary Fig. 1). Note that under Assumptions 1 and
2, −BLL is a symmetric, irreducible nonsingular M -matrix, and hence all elements of −B−1

LL are
strictly positive [2, 1].

Applying Kirchoff’s and Ohm’s Laws to the network, the vector of nodal complex power injections
S = (S1, . . . , Sn+m) is related to the susceptance matrix B and the vector of nodal complex voltages
U = (U1, . . . , Un+m) by S = [U ] · conj(Y U) = [U ] · conj(jBU), where conj(x) is the element-wise
complex conjugation of the vector x ∈ Cn+m. In components, the real and imaginary parts of the
product [U ] · conj(jBU) define the power flow functions gi, hi : Rn+m × Tn+m → R, which can be
quickly calculated to be

gi(V, θ) ,
∑n+m

j=1
ViVjBij sin(θi − θj) , (2a)

hi(V, θ) , −
∑n+m

j=1
ViVjBij cos(θi − θj) . (2b)

Physically, gi and hi are the active power and reactive power injected at node i ∈ V when the
voltage magnitudes and angles are V = (V1, . . . , Vn+m) and θ = (θ1, . . . , θn+m).

Generator Modeling

As standard in power flow analysis, the synchronous generators at nodes G are modeled as PV buses,
at which the active power injections Pi ∈ R are fixed by the prime movers and voltage magnitudes
Vi > 0 are tightly regulated by Automatic Voltage Regulators (AVR). This regulation is always
achieved under normal operating conditions, when field and stator currents have not reached their
operational limits [18, Chapter 3.3.5]. In the saturated case, the generator reaches its operational
reactive power limit. One approach to handling this saturation is to change the generator model
– reactive power output is held fixed at the operational maximum, and the terminal voltage is
allowed to float. In this modeling framework, the generator behaves as a negative constant-power
load [19, 20]. A downside of this approach is that the specific limits encountered depend on the
direction of the loading vector in the space of parameters. In Supplementary Note 6 we take
a different approach and instead present a condition under which generators meet their reactive
power overexcitation limits, thereby avoiding this issue. Our results can also be extended to include
distributed generation interfaced through power inverters with voltage-droop controllers [21, 22] or
microgenerators which inject constant amounts of current or power (modeled as negative loads).
Moreover, our results are not dependent on the inclusion of generator dynamics due to time-scale
separation: the transient instabilities associated with generator swing and flux decay dynamics
occur on the order of seconds [14], while the voltage collapse phenomena we consider occur over
minutes [23].

6



Load Modeling

Load models characterize the power consumed by individual or aggregate loads, while taking into
account relevant voltage and frequency-dependent behavior and/or dynamic phenomena. For study-
ing voltage collapse, we are concerned only with the long-term feasibility of the network operating
point, and therefore with no loss of generality may restrict ourselves to static load models [24, 25].
As such, the load models we consider have no internal state variable, and the active and reactive
power demands Pi, Qi ∈ R at load node i ∈ L are expressed as static functions Pi(Vi) and Qi(Vi)
of the local bus voltage magnitude. Kirchhoff’s Current Law requires that power injections given
by (2a)–(2b) equal the power demands Pi(Vi) and Qi(Vi) at each node, yielding the power flow
equations

Pi(Vi) = gi(V, θ) , i ∈ L ∪ G , (3a)

Qi(Vi) = hi(V, θ) , i ∈ L . (3b)

We focus on the n reactive power flow equations (RPFE) (3b); see [26, 27] and the references
therein for detailed analyses of the active power flow equations (3a). While in the main article we
considered constant power loads Qi(Vi) = Qi, here we consider the more general “ZIP” load model
[14]

Qi(Vi) = bshunt,iV
2
i + Ishunt,iVi +Qi , i ∈ L , (4)

which approximates the steady-state behavior of a wide class of practical loads. The model (4) is
a concatenation of three separate loads:

(a) “Z”-load: a shunt connection to ground through a susceptance bshunt,i ∈ R.

(b) “I”-load: a constant current device injecting a reactive current Ishunt,i ∈ R. The current is
leading if Ishunt,i > 0 and lagging if Ishunt,i < 0;

(c) “P”-load: a constant power device, injecting fixed reactive power Qi ∈ R. The load is called
capacitive if Qi > 0, and inductive if Qi < 0.

As we have already allowed for shunt loads in the admittance matrix B, we will without loss of
generality set bshunt,i = 0 in (4) for all i ∈ L. In practice, the literature has established that the
constant-power load model (c) is the most relevant one for steady-state security analysis [28], and
the one most relevant from the perspective of both classic [18] and modern [11, 29] power system
operation. This “stiff” (i.e., voltage independent) behavior may arise due to on-load tap-changing
transformers maintaining a constant voltage at the load supply point, or as an estimate of aggregate
load as in utility forecasts [28]. It can be shown that when the constant-power portion of the load
model (4) is zero, the reactive power balance (3b) degenerates into a system of linear equations in
the voltage magnitudes [30, 9, 10]. Moreover, it has been noted that constant power load modeling
is generic for feasibility studies in the sense that it tightly captures the transfer limitations of the
network, and allows the study of whether an operating point exists for any static or dynamic load
model, when the load consumes a specified amount of power [31]. If a feasible operating point can
be determined, it can then be used as part of the initial conditions for further numerical dynamic
stability studies. See [32, 33, 9, 21] for additional information and analysis.

7



Power Angle Decoupling

In practice, typical solutions to the power flow equations (3a)–(3b) have the property that |θi−θj | ≤
γ for each edge {i, j} ∈ E and some small value of γ > 0, and that load voltage magnitudes Vi are
roughly equal to the generator voltage level. This leads to an important (in)sensitivity relationship
for reactive power flow, which we now describe. Evaluating the derivative of the reactive power
injection (2b) around such a solution, we find that∣∣∣∂hi

∂θk

∣∣∣ = ViVkBik| sin(θi − θk)| ≤ ViVjBij sin(γ) ' 0 , k 6= i , (5a)∣∣∣ ∂hi
∂Vk

∣∣∣ = ViBij | cos(θi − θk)| ≥ ViBik cos(γ) ' ViBik , k 6= i . (5b)

with similar formulas holding for the diagonal elements. It follows that the reactive power injections
(2b) are insensitive to changes in the power angles θi − θj around such solutions, and that active
power enters through second order effects. It is therefore common to study (3b) under a decoupling
assumption, in which the power angles are treated as parameters [6, 30], or even assumed to be
negligible [4, 5]. We formalize these qualitative statements into the following technical assumption.

Assumption 3 (Power Angle Decoupling). The power angles are constant and such that |θi−θj | ≤
γ for some value γ ∈ [0, π/2[ and for all branches {i, j} ∈ E of the network. �

See [5] and Ref. 14 of [30] for analysis on the error introduced by total decoupling, that is, the
extreme case γ = 0 in Assumption 3. In practical networks, a typical value of γ in Assumption 3
would be 5◦. Under Assumption 3, from the form of (2b) it is clear that we can define an effective
susceptance matrix by grouping the original line susceptances Bij and the power angle terms cos(θi−
θj). The properties of the original susceptance matrix from Fact 1 also hold for the effective
susceptance matrix, and one may verify that if Assumption 1 holds, then the corresponding sub-
matrix of the effective susceptance matrix is also a nonsingular M -matrix. To keep notation simple,
in what follows we will denote by B the effective susceptance matrix with elements Bij cos(θi− θj)
for i, j ∈ V. With this notation, the power flow equation (3b) becomes

Qi + ViIshunt,i = −
∑n+m

j=1
ViBijVj , i ∈ L . (6)

The Reactive Power Flow Equations

In vector notation, the reactive power flow equation (6) can be written as

QL + [VL]Ishunt = −[VL] (BLLVL +BLGVG) , (7)

whereQL = (Q1, . . . , Qn) is the vector of constant power load demands, Ishunt = (Ishunt,1, . . . , Ishunt,n)
is the vector of constant current load demands, VL = (V1, . . . , Vn) > 0n is the vector of load voltage
magnitudes, VG = (Vn+1, . . . , Vn+m) > 0m is the vector of constant generator voltage magnitudes,
[VL] is the diagonal matrix of load voltages. Equivalently, we may write

QL = −[VL]BLL(VL − V ∗L ) , (8)
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where we have defined the open-circuit load voltages V ∗L ∈ Rn by

V ∗L , −B−1
LL(BLGVG + Ishunt) . (9)

The terminology open-circuit means that V ∗i is the voltage measured at load bus i ∈ L when the
constant-power loads are open-circuited, that is, Q1 = Q2 = · · · = Qn = 0. We make the following
standing assumption regarding the constant current portion Ishunt of the load.

Assumption 4 (Shunt Current Restriction). The shunt currents are not overly inductive. In
particular, BLGVG + Ishunt > 0n.

Assumption 4 always holds if the loads draw capacitive currents (Ishunt ≥ 0n), and is always met
in practical networks. This assumption leads to positive open-circuit voltages.

Lemma 1 (Open-Circuit Voltages). Under Assumption 4, the open-circuit load voltages are strictly
positive. That is, V ∗L > 0n.

Proof: By Assumptions 1 and 2, the open-circuit voltages (9) are well defined and each element
of −B−1

LL is positive. Since BLGVG + Ishunt > 0n, every element of (9) is therefore strictly positive.
�

Equation (8) is our preferred formulation of the RPFE (3b)–(4) since it highlights the tendency of
the load voltages VL to align with their open-circuit values V ∗L .

Supplementary Note 4 – Energy, Voltage Stability & The Power Flow Jacobian

The term voltage stability has been appropriated over decades of research to refer to many different
static and/or dynamic stability concepts, ranging orders of magnitude in time-scales. Herein we
make use of the long-term quasi static notion of voltage stability [34, 35], which corresponds to the
way the high-voltage solution of a power network should change under small load perturbations
during regular operation. This is the notion of stability most relevant for guarding against static
voltage instability collapse.

Definition 1 (Local Voltage Stability). A regular solution VL ∈ Rn of the RPFE (8) is

(i) locally voltage-stable if for each pair of load buses i, j ∈ L,

∂Vi
∂Qj

> 0 , (10)

(ii) voltage-unstable if it is not locally voltage-stable.

Since a decreasing value of Qj in (10) corresponds to an increasing inductive load, voltage stability is
an “increasing load, decreasing voltage” condition. Definition 1 is the stability definition implicitly
used when discussing stability margins derived from Jacobian-based voltage stability indices, and is
the relevant stability concept at long time-scales on the order of minutes [23, 36]. Long-term voltage
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stability is time-scale separated from instabilities induced by fast generator or load dynamics, and
can therefore be studied separately [28].

The energy function introduced in the main article is particularly useful for understanding voltage
stability as in Definition 1. The following result relates the energy function, voltage stability, and
the Jacobian matrix of the power flow equation.

Lemma 2 (Energy, Stability, & The Power Flow Jacobian). Consider the reactive power flow
equation (6), its Jacobian matrix J(VL) ∈ Rn×n being given by

J(VL) = [VL]BLL + [BLL(VL − V ∗L )] , (11)

and the energy function E : Rn>0 → R defined by

E(VL) =
1

2

n∑
i=1

n+m∑
j=i+1

Bij(Vi − Vj)2 −
n∑
i=1

(
1

2
κiV

2
i + Ishunt,iVi +Qi ln(Vi)

)
, (12)

where κi ,
∑n+m

j=1 Bij. Suppose VL > 0n is a regular solution of the RPFE (6). Then the following
statements are equivalent:

(i) VL is a local minimum of the energy function (12);

(ii) VL is locally voltage-stable in the sense of Definition 1;

(iii) the Jacobian J(VL) given by (11) is Hurwitz.

Proof: (i) ⇐⇒(iii) : The critical points of E(VL) satisfy ∂E/∂VL = 0Tn , or in components for
k ∈ L

∂E

∂Vk
= 0 =

n+m∑
j=1

Bkj(Vk − Vj)− κkVk − Ishunt,k −
Qk
Vk

. (13)

After substituting for κk and simplifying, this becomes

0 = −Qk − Ishunt,kVk − Vk
∑n+m

j=1
BkjVj , (14)

which is the RPFE (6). It follows that the critical points of (12) are in one-to-one correspondence
with the solutions of (6). Some simple calculations show that the components of the Hessian matrix
H(VL) of E(VL) are given by

Hk`(VL) =
∂2E

∂Vk∂V`
= −Bk` − δk`

Qk
V 2
k

, k, ` ∈ L , (15)

where δk` = 1 if k = `, and is zero otherwise. Substituting for Qk from the power flow equation
(6), we arrive at

Hk`(VL) = −Bk` − δk`
1

Vk

(
Ishunt,k +

∑n+m

j=1
BkjVj

)
, (16)
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which in matrix notation reads as

H(VL) = −BLL − [VL]−1[BLLVL +BLGVG + Ishunt] (17a)

= −BLL − [VL]−1[BLL(VL − V ∗L )] , (17b)

where we have used (9). By comparison, we see that the Hessian H(VL) is exactly −[VL]−1 times
the Jacobian matrix (11) of the RPFE (8). It follows that the Hessian matrix is positive definite if
and only if the Jacobian (11) is Hurwitz.

(iii) =⇒(ii) : By definition the Jacobian matrix J(VL) relates infinitesimal changes in nodal
voltage to corresponding changes power injections via

∂QL
∂VL

= −J(VL) . (18)

The matrix representation (11) can be obtained from (8), either by a calculation in components or
via standard matrix identities. Note from (11) that for i, j ∈ L, Jij(VL) = ViBij ≥ 0. Thus, −J(VL)
is a Z-matrix. Defining the symmetric matrix M , BLL+[VL]−1[BLL(VL−V ∗L )], note that we may
write J(VL) = [VL]M . Since VL > 0n, the generalized Courant-Fischer Theorem [37] then implies
that all eigenvalues of J(VL) are real. So −J(VL) is a Z-matrix with real eigenvalues, and it follows
then from [2, Item C9] that J(VL) is Hurwitz if and only if −J(VL) is a nonsingular M -matrix.
Moreover, these equivalent conditions hold true if and only if the inverse matrix −J(VL)−1 exists
and has nonnegative elements [2, Item F15]. By Assumption 2 it holds that J(VL) is irreducible,
so J(VL) is in fact Hurwitz if and only if −J(VL)−1 exists and has strictly positive elements [1].
Since VL is a regular solution, the Inverse Function Theorem [38, Chapter 9] states that there exists
an open neighborhood U around VL (resp. an open neighborhood W around QL) and a smooth
function G :W → U such that VL = G(QL) for all QL ∈ W. Moreover, the Jacobian of G satisfies

∂G

∂QL
=
∂VL
∂QL

= −J(VL)−1 , (19)

where in the last equality we used the fact that QL appears linearly in (8). Since J(VL) is Hurwitz,
each element of −J(VL)−1 is strictly positive, and we conclude that VL is locally voltage-stable.

(ii) =⇒(iii) : Proceed by contraposition and suppose that J(VL) is not Hurwitz. Then by the
set of implications preceding sufficiency, either a) there exists i, j ∈ L such that the ijth element of
−J(VL)−1 is nonpositive, or b) J(VL)−1 does not exist. In the first case, this means precisely that
∂Vi/∂Qj ≤ 0, so VL is by definition voltage-unstable. The second case in which J(VL) is singular
cannot occur, because VL is a regular solution. �

Remark 1 (The Energy Function & Dynamic Stability). Voltage stability as considered in Def-
inition 1 is consistent with local exponential stability of any dynamic load model which attempts
to regulate power consumption to a constant value by demanding additional current under a drop
in terminal voltage [28]. A simple example of this is the dynamic shunt susceptance model [33]
ḃshunt,i = Qi− bshunt,iV

2
i , where the shunt susceptance bshunt,i at node i ∈ L is dynamically adjusted

to achieve a constant power injection Qi. More generally, such models include induction motors,
load tap changers, and thermostatically controlled loads [33]. The local minimum of the energy
function is clearly locally exponentially stable for an assortment of associated load dynamics, such
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as gradient βV̇L = −∇E(VL), or damped second-order dynamics αV̈L = −βV̇L − ∇E(VL) [39].
Static voltage stability is also relevant for slowly changing load profiles, where the fast stable load
dynamics adiabatically track the network operating point (should it exist). Indeed, as Pal notes in
[24], “ For loads with slow dynamics, the stability limit will occur at the same point as the max-
imum power [transmission capacity] determined from a power flow analysis.” For more general
dynamic load models, our results can be interpreted as necessary for local dynamic stability, as the
existence of a network operating point is an obvious prerequisite [40]. �

Supplementary Note 5 – Voltage Stability in Complex Power Networks

Single Load Example

To build intuition for our analysis in the case of complex networks, we present the results for the
classic problem of a single generator feeding a single constant power load. For n = 1, the RPFE
(8) is a single quadratic equation, and the necessary and sufficient condition for the existence of a
solution follows immediately [33, Section 2.2.3].

Proposition 1 (Condition for Single Load). Consider the RPFE (8) for a single load (n=1)

0 = q + bv(v − v∗) , (20)

where b < 0, v∗ > 0, and let qcrit , 1
4b(v

∗)2 < 0. The following statements are equivalent:

(i) Small Loading: ∆ = q/qcrit < 1;

(ii) High-Voltage Solution: There exists a unique voltage-stable solution v+ to the RPFE (20)
such that

|v+ − v∗|
v∗

= δ− <
1

2
; (21)

(ii) Low-Voltage Solution: There exists a unique voltage-unstable solution v− to the RPFE
(20) such that

|v− − v∗|
v∗

= δ+ >
1

2
. (22)

Moreover, if any of the above statements are true, then δ−, δ+, and ∆ are related by

δ± =
(

1±
√

1−∆
)
/2 . (23)

Proposition 1 shows that a stable high-voltage solution exists only for loads which are less inductive
than the critical inductive load qcrit. Graphically, the situation is illustrated in Supplementary Fig.
2. Note that even in this simple scenario, the solution space of the RPFE is multi-valued. When
q = qcrit, the solutions v+ and v− coalesce at v∗/2 and vanish via saddle-node bifurcation [25]. In
this simple one-dimensional case, we can derive a parametric formula for the Venikov index, given
by [41, 42, 18]

kV ,
v+ − v∗/2
v∗/2

=
√

1− |∆| . (24)
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As one may deduce from examining Supplementary Fig. 2, the Venikov index kV measures the
distance between the high-voltage solution v+

L and the low-voltage solution v−L , and thus gives an
analytic measure of proximity to collapse.

Proof of Main Result for Complex Networks

The following simple necessary condition for solvability of (8) is inspired by the observations from
Proposition 1.

Proposition 2 (Necessary Feasibility Condition). Consider the decoupled reactive power flow equa-
tion (8), and define the critical load matrix Qcrit ∈ Rn×n by

Qcrit ,
1

4
[V ∗L ]BLL[V ∗L ] . (25)

If a solution to (8) exists, then
1TnQL

1TnQcrit1n
≤ 1 . (26)

Proof: Defining a new variable z , VL − 1
2V
∗
L and substituting for VL in (8), we obtain the

equivalent reformulation

QL = Qcrit1n −
1

2
[V ∗L ]BLLz +

1

2
[z]BLLV

∗
L − [z]BLLz . (27)

A necessary condition for the power flow equation(27) to hold true is that the sum over all equations
holds true. Performing the sum (equivalently, left-multiplying by 1Tn ), the cross terms cancel and
we obtain

1TnQL = 1TnQcrit1n − zTBLLz . (28)

Since −BLL is a symmetic nonsingular M -matrix (Assumption 1), BLL is negative definite. Hence
zTBLLz ≤ 0 for all z ∈ Rn and the result follows. �

We refer to [11] for an alternative proof of Proposition 2. We note that the necessary voltage
stability condition (26) is also tight, as it holds with equality when QL = Qcrit1n, and a comparison
with Proposition 1 shows that (26) is necessary and sufficient for a single load. Geometrically, the
necessary condition of Proposition 2 restricts the vector of loads QL to a half-space. A downside of
this necessary condition is that it provides only an aggregate bound on the load, and does not take
into account how the load is distributed throughout the network in relation to voltage-regulated
points, shunt capacitors, and so forth.

The following closed subset of voltage-space will help us quantify the area where desirable solutions
to (8) should exist. Using the open-circuit voltages V ∗L defined in (9), for δ ∈ [0, 1], define the
compact, convex and partially-ordered stability set by

S(δ) , {VL ∈ Rn≥0 | (1− δ)V ∗L ≤ VL ≤ (1 + δ)V ∗L} , (29)

with S(δ) being its interior. If VL ∈ S(δ), then |Vi − V ∗i |/V ∗i ≤ δ for each component i, and thus δ
is simply a percentage deviation from the open-circuit voltage level.
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Remark 2 (The Stability set & The Per-Unit System). From the definition of our stability set in
(29), the reader may be tempted to draw a one-to-one correspondence between the scaled voltages
Vi/V

∗
i (i ∈ L) and the classic per-unit measurement system used by power engineers, where all

voltage values in the network are scaled by uniform base voltage Vi/Vbase. We strongly caution
against drawing this equivalence. While the base voltage Vbase is constant and uniform, the open-
circuit voltages V ∗i defined in (9) vary bus-to-bus, and take into account non-uniform generator
voltages, network topology, shunt compensation, constant current demands, and active power trans-
fers through the power angles embedded in the effective susceptances Bij. The discrepancy between
Vi/Vbase and Vi/V

∗
i can be quite extreme in heavily shunt-compensated networks, and it has been

frequently noted in the literature that per unit voltages are poor indicators of proximity to voltage
collapse. Our results to follow suggest that the ratios Vi/V

∗
i of the voltage magnitudes to their

open-circuit values are more appropriate indicators of voltage stability margins.

Finally, we note that that explicit upper and lower bounds V lower ≤ VL ≤ V upper on the nodal
voltage magnitudes may be present due to operational constraints. In general however, these upper
and lower bounds may be asymmetric around the open circuit voltages, while the security set (29) is
defined symmetrically. To conservatively formulate these bounds in terms of the stability set (29),
one may assume that V lower ≤ V ∗L ≤ V upper and select δ as

δup
low = min

{
−max

i∈L

(
V lower
i

V ∗i
− 1

)
, min
i∈L

(
V upper
i

V ∗i
− 1

)}
∈ [0, 1] . (30)

With this choice, it holds that S(δup
low) ⊆ {VL | V lower ≤ VL ≤ V upper}, and thus any solutions which

exist inside the set S(δup
low) will also satisfy the explicit constraints. �

The main result from the article is more formally stated as follows.

Supplementary Theorem 1 (Voltage Stability Condition for Complex Power Networks). For the
RPFE (8), define the stiffness matrix Qcrit ∈ Rn×n as in (25). Assume that the network parameters
and loads satisfy

∆ , ‖Q−1
critQL‖∞ < 1 , (31)

and accordingly define the percentage deviations δ− ∈ [0, 1
2 [ and δ+ ∈ ]1

2 , 1] as the unique solutions
to ∆ = 4δ±(1− δ±). The following statements hold:

1) Secure Solution: There exists a unique locally voltage-stable solution VL ∈ S(δ−) of the
RPFE (8);

2) Solutionless Region: There exist no solutions of the RPFE (8) in the open set

{VL ∈ Rn | VL > (1− δ+)V ∗L and VL /∈ S(δ−)} . (32)

Moreover, the condition (31) is tight: there exists a critical load profile QL = Qcrit1n for which 1)
there exists no locally voltage-stable solution VL ∈ S(δ−) for any δ− ∈ [0, 1

2 [, and 2) there exists a
solution of the RPFE (8) in the open set (32) for any δ− ∈ [0, 1

2 [ and any δ+ ∈ ]1
2 , 1].
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Proof: Statements 1 and 2): Assuming for the moment that no component of VL is zero, we
may rearrange the RPFE (8) to obtain

VL = V ∗L −B−1
LL[VL]−1QL . (33)

Consider the bijective change of variable x , [V ∗L ]−1VL − 1n. The new variable x can be thought
of as a percentage deviation of VL from the open-circuit voltage V ∗L . Note that from the definition
of the stability set in (29), VL ∈ S(δ) (resp. S(δ)) if and only if x ∈ B∞(δ) (resp. B∞(δ)). Writing
(33) in terms of the new percentage deviation variable x, we obtain the equivalent representation

x = f(x) , −[V ∗L ]−1B−1
LL[V ∗L ]−1[QL]r(x) (34a)

= −1

4
Q−1

crit[QL]r(x) , (34b)

where Qcrit is as in (25) and r(x) , ( 1
1+x1

, . . . , 1
1+xn

). Having transformed the RPFE (8) into (34b),
we now apply contraction mapping arguments to (34b). This procedure consists of two steps:

Step 1: First, we regard (34b) as the equilibrium equation of the discrete-time dynamical
system

x(k + 1) = f(x(k)) , k ∈ {1, 2, . . .} , (35)

and, under the parametric condition (31), show that there exists a δ ∈ [0, 1[ such that the
∞-norm ball B∞(δ) is forward-invariant for the dynamics (35). In particular, we will show
that there exists a δ− ∈ [0, 1

2 [ and a δ+ ∈ ]1
2 , 1] such that B∞(δ) is forward-invariant for

each δ ∈ [δ−, δ+], and that the iterates of (35) originating in ]− δ+,∞[n eventually reach the
forward-invariant set B∞(δ−).

Step 2: Second, we show that f is a contraction mapping on the forward-invariant set
B∞(δ−), and apply the Banach Fixed Point Theorem [38, Chapter 9].

Step 1: Suppose x(k) ∈ B∞(1) for some k ∈ {1, 2, . . .}. Then there exists a δ ∈ [0, 1[ such that
x(k) ∈ B∞(δ), with ‖x(k)‖∞ = δ. We will first bound ‖x(k+ 1)‖∞, and look for a condition under
which ‖x(k + 1)‖∞ ≤ ‖x(k)‖∞. We compute using (35) and (34b) that

‖x(k + 1)‖∞ =
1

4
‖Q−1

crit[QL]r(x(k))‖∞ . (36)

Using Assumptions 1 and 2 and Lemma 1, it holds that −Q−1
crit = −4[V ∗L ]−1B−1

LL[V ∗L ]−1 has positive
elements. Moreover, QL has nonpositive elements, and each component of r(x(k)) is strictly positive
as ‖x(k)‖∞ = δ < 1. We therefore compute

1

4
‖Q−1

crit[QL]r(x(k))‖∞ ≤
‖Q−1

crit[QL]‖∞
4

‖r(x(k))‖∞ (37a)

=
‖Q−1

crit[QL]‖∞
4

‖r(x(k))‖∞ (37b)

=
∆

4

1

1− δ
. (37c)
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Using this result and the fact that ‖x(k)‖∞ = δ, it follows that ‖x(k+1)‖∞ ≤ ‖x(k)‖∞ if ∆
4

1
1−δ ≤ δ,

or equivalently
∆ ≤ 4δ(1− δ) . (38)

The right-hand side of (38) is a nonnegative and concave function of δ ∈ [0, 1[, which achieves
its global maximum of one at δ∗ = 1

2 . Thus, there exists a set of values for δ ∈ [0, 1[ with
non-empty interior satisfying the inequality (38) if and only if (38) is true with strict inequality
sign when δ = δ∗ = 1

2 . This corresponds exactly to the parametric condition (31). If these
equivalent conditions are true, there exist two unique values δ− ∈ [0, 1

2 [ and δ+ ∈ [1
2 , 1] satisfying

(38) with equality sign, given by δ± = 1
2(1±

√
1−∆). These arguments are shown graphically in

Supplementary Fig. 3. The preceding calculations show that for each δ ∈ [δ−, δ+], the set B∞(δ) is
forward-invariant for the discrete-time dynamics (35), since x(k) ∈ B∞(δ) leads to x(k+1) ∈ B∞(δ).
Moreover, for each δ ∈ [δ−, δ+] (resp. δ ∈ ]δ−, δ+[), we have that ‖x(k + 1)‖∞ ≤ ‖x(k)‖∞ (resp.
‖x(k + 1)‖∞ < ‖x(k)‖∞) if ‖x(k)‖∞ = δ. That is, the norm of iterates is non-increasing (resp.
strictly decreasing). It follows that iterates of (35) originating in B∞(δ+) eventually reach the
forward-invariant set B∞(δ−).

To complete this step, note that since every component ri(xi) = 1/(1 + xi) of r(x) is a monotone
decreasing function of xi, for x(k) ∈ ]− δ+,+∞[n, it follows that ‖r(x(k))‖∞ < 1/(1 − δ+), and
hence, by the previous result, that ‖x(k+1)‖∞ < ∆

4
1

1−δ+ = δ+; that is, we have x(k+1) ∈ B∞(δ+).

Since f is continuous on ]− δ+,+∞[n, it follows by combining the above results that all iterates
of (35) originating in ]− δ+,∞[n reach B∞(δ−). The discrete-time dynamics (35) therefore have
no equilibria within the set ]− δ+,∞[n \ B∞(δ−), and thus (34b) has no solutions within the same
set. This completes the proof of statement 2).

Step 2: Let δ ∈ [0, δ−], and let x ∈ B∞(δ). Using (34b), we calculate the Jacobian of f to be

∂f

∂x
(x) =

1

4
Q−1

crit[QL][r(x)]2 (39)

and as before, bound it for x ∈ B∞(δ) as∥∥∥∥∂f∂x (x)

∥∥∥∥
∞
≤ ∆

4

∥∥[r(x)]2
∥∥
∞ ≤

∆

4

1

(1− δ)2
. (40)

The map f is a contraction mapping on B∞(δ) if we have

∆

4

1

(1− δ)2
≤ α (41)

for some α ∈ [0, 1[ called the contraction rate. Selecting α , δ/(1−δ) < 1, the contraction condition
(41) is quickly seen to be equivalent to (38). We therefore once again have a set of values for δ
such that f is a contraction map if and only if (31) holds, with δ− being the limiting case of strict
equality, yielding the contraction rate α = δ−/(1 − δ−) < 1. Thus, f is a contraction mapping on
the invariant set B∞(δ−). It now follows from the Banach Fixed-Point Theorem [38] that f has
a unique fixed-point x∗ ∈ B∞(δ−), and therefore that the power flow (8) has a unique solution
VL ∈ S(δ−).

To complete the proof of statement 1), it remains only to show that the unique solution VL ∈ S(δ−)
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is locally voltage-stable. From Lemma 2 this occurs if and only if the Hessian H(VL) in (17b) of
the energy function (12) is positive definite. Inserting (33) into the second term of H(VL), we find
that

H(VL) = −BLL + [VL]−2[QL] . (42)

Substituting VL = [V ∗L ](1n+x), left and right-multiplying by [V ∗L ]/2 and simplifying using (25), we
obtain

M1 =
1

4
[V ∗L ]H(VL)[V ∗L ] = −1

4
[V ∗L ]BLL[V ∗L ] +

1

4
[QL][1n + x]−2 (43a)

= −Qcrit +
1

4
[QL][1n + x]−2 . (43b)

According to Sylvester’s Inertia Theorem [43], M1 has the same number of positive eigenvalues as
M2 , −Q−1

critM1, and thus M1 is positive definite if and only if

In −
1

4
Q−1

crit[QL][1n + x]−2 (44)

is anti-Hurwitz. Since −Qcrit is an irreducible M -matrix, the inverse Q−1
crit has strictly negative

elements. As it also holds that QL ≤ 0n, we conclude that 1
4Q
−1
crit[QL][1n + x]−2 is a nonnegative

matrix. The Gershgorin Circle Theorem [37] then implies that all eigenvalues of 1
4Q
−1
crit[QL][1n+x]−2

are contained within a disc centered at the origin of radius equal to the maximum row sum of the
matrix, or equivalently, its ∞-norm. We compute that

1

4
‖Q−1

crit[QL][1n + x]−2‖∞ ≤
∆

4

1

(1− δ−)2
≤ α < 1 . (45)

It follows that all eigenvalues of 1
4Q
−1
crit[QL][1n + x]−2 are less than one, which shows the desired

result.

Tightness: To show the moreover statement we proceed by contraposition, and construct a load
profile QL for which ∆ ≥ 1 and statements 1) and 2) fail. Consider the family of load profiles
parameterized by α ∈ [0, 1] defined by QL(α) = α · Qcrit1n. Using (25) and (9) we compute that
that

Qcrit1n =
1

4
[V ∗L ]BLL[V ∗L ]1n =

1

4
[V ∗L ]BLLV

∗
L (46a)

= −1

4
[V ∗L ]BLLB

−1
LL(BLGVG + Ishunt) (46b)

= −1

4
[V ∗L ](BLGVG + Ishunt) . (46c)

From Assumption 4 and Lemma 1, we therefore have that Qcrit1n ≤ 0n. Hence, for every α ∈ [0, 1],
QL(α) ≤ 0n, and (31) yields ∆ = ‖Q−1

critQL(α)‖∞ = ‖αQ−1
critQcrit1n‖∞ = α‖1n‖∞ = α.

Defining δ±(α) , 1
2(1±

√
1− α), one may verify by direct substitution that V +

L (α) = (1−δ−(α))V ∗L
and V −L (α) = (1 − δ+(α))V ∗L are both particular solutions of (8). Moreover, for each α ∈ [0, 1[,
it holds that V +

L (α) is the unique locally voltage-stable solution, located exactly at the vertex of
S(δ−(α)) closest to the origin, while V −L can be verified to be voltage-unstable, similarly located
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at the vertex of S(δ+(α)) closest to the origin. It follows that for α ∈ [0, 1[, V +
L (α) is the unique

solution in S(1/2), and that for α = 1, V +
L (α) = V −L (α) = V ∗L/2 and the two solutions coalesce at a

point of saddle-node bifurcation [25]. By continuity, we therefore have that no solutions can cross
the boundary of S(1/2) from exterior to interior (that is, from Rn \ S(1/2) to S(1/2)) as α → 1.
Said differently, no previously existing solutions now belong to S(1/2). The only remaining option
is that at α = 1, a solution appears in S(1/2) via a codimension one bifurcation [25]. However,
the sudden appearance of such a solution precludes the existence of a continuously differentiable
function G : R→ Rn defined on an open interval A of α = 1 such G(α) solves the RPFE (8) with
load profile QL(α) for each α ∈ A. It follows from the Implicit Function Theorem that the RPFE
Jacobian (11) evaluated at this solution is singular [38]. Lemma 2 then precludes this new solution
from being locally voltage-stable. Thus, there exists no value δ ∈ [0, 1

2 [ such that a unique, locally
voltage-stable solution exists in S(δ). This shows that statement 1) fails. To show that statement
2) fails as well, proceed by contradiction and assume that it holds. Then we expect there to exist
values δ− ∈ [0, 1

2 [ and δ+ ∈ ]1
2 , 1] such that the RPFE (8) possesses no solutions in the open set of

(32). However, inspection shows that for any such values δ− and δ+, VL = V ∗L/2 belongs to this
set. This is a contradiction, completing the proof of the converse. �

Remark 3 (Interpretations of Supplementary Theorem 1). Supplementary Theorem 1 generalizes
the one-dimensional result of Proposition 1 and Supplementary Fig. 2 to complex networks by
taking into account the coupling between nodes of the network. Under the equivalent conditions of
Supplementary Theorem 1, the positive orthant in the space of voltages is partitioned into three
disjoint sets: the stability set S(δ−) where the locally voltage-stable solution exists, a region sur-
rounding the stability set where all solutions are forbidden, and a low-voltage regime which may
or may not contain additional power flow equilibria. For the case of two loads, this partitioning is
shown in Supplementary Fig. 4(b), with the corresponding partitioning of parameter-space shown
in Supplementary Fig. 4(a). The inverse Q−1

crit can be interpreted as the sensitivity matrix relating
variations in load to variations in nodal voltage deviation (see (50) in “Power Network Perspective”
below). The eigenvector corresponding to the largest eigenvalue of −Q−1

crit determines the most sen-
sitive directions in load-space [44, 45, 46]. An interesting contrast to the seminal works [44, 45, 46]
is that Q−1

crit is symmetric, indicating that the same eigenvector describes both the most sensitive
direction in load-space as well as the most sensitive direction in scaled (Vi/V

∗
i ) voltage-space. �

Remark 4 (Necessity of Stability Condition). While in general only a sufficient condition for the
existence of a high-voltage solution, the condition (31) is tight for the critical loading profile QL =
Qcrit1n, for which ∆ = 1 and δ− = δ+ = 1/2, in agreement with the necessary and tight condition of
Proposition 2, that is, for this direction in load space, the condition is both necessary and sufficient.
To understand what this loading profile looks like, consider (46c) with Ishunt = 0n for simplicity.
Then the ith element of Qcrit1n is nonzero if and only if load bus i ∈ L is attached directly to a
generator. Thus, this critical load profile corresponds to loading only at the most well-supported
buses in the network, the load buses adjacent to generators. �

Complex Networks Interpretation: Defining Vmin , mini∈L(V ∗L )i, a sufficient condition for
(31) is that

‖QL‖∞ <
1

4
|λ1(BLL)|V 2

min , (47)
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where |λ1(BLL)| is the smallest eigenvalue (in magnitude) of BLL. This spectral condition, similar
to the ones in [6, 7], uses only the first eigenvalue of the admittance matrix BLL as a measure of
network connectivity, while our more precise condition (31) implicitly uses all n network eigenvalues.

Power Network Perspective: In power system engineering, the nonlinear active power flow
equations (3a) are often approximated by a heuristic called the “DC” power flow [26]. In the DC
power flow, phase angles θi−θj are assumed to be sufficiently small such that sin(θi−θj) ' θi−θj ,
and voltage magnitudes Vi are approximated as Vi = 1 p.u. The active power balance (3a) then
becomes a linear equation relating active power injections to phase angle differences. We now define
a voltage/reactive power counterpart to this DC power flow approximation, and explain how its
solution can be used to interpret the nonlinear voltage stability condition (31). Linearizing the
right-hand side of (8) around the open-circuit solution V ∗L , we obtain [22, 7]

QL = −diag(V ∗L )BLL(Vapprox − V ∗L ) . (48)

Performing the change of variables to the percentage deviation vector xapprox via

Vapprox = diag(V ∗L )(1n + xapprox) (49)

and solving, we obtain the solution

xapprox = −1

4
Q−1

critQL . (50)

Hence, the voltage stability condition (31) reads simply as ‖xapprox‖∞ < 1/4, and can be interpreted
as follows: the nonlinear power flow equations (8) have a unique, stable solution satisfying |Vi −
V ∗i |/V ∗i < 1/2 if the percentage deviation calculated from the linear power flow (48) is less than
25% at each bus.

Resistive Circuit Interpretation: The voltage stability condition (31) can be interpreted as a
restriction on the solution of a linear resistive circuit, defined on a new graph. Consider the original
graph G(V, E) and construct a new graph GL(L, EL) by 1) removing all generator buses G, and 2)
removing each weighted edge {i, j} ∈ E between generator i and load j, and replacing it with a
shunt connection to ground of equal weight at node j; see Supplementary Fig. 1. For the nodal
current injections I , diag(V ∗L )−1QL, and letting v = (v1, . . . , vn) be the vector of nodal voltages,
the linear current balance relations are [14]

I = −BLLv ⇐⇒ v = RI , (51)

where R , −B−1
LL is the resistance matrix. Our voltage stability condition (31) then reads that

‖diag(V ∗L )−1RI‖∞ = ‖diag(V ∗L )−1v‖∞ ≤ δ(1 − δ). That is, the normalized solution of this linear
resistive circuit must have no node with voltage greater than δ(1 − δ). The elements Rij ≥ 0 of
the resistance matrix quantify the resistive distance between load nodes, accounting for all current-
carrying paths through the original circuit. The “driving point impedances” Rii satisfy Rii ≥ Rij
for all i, j ∈ L [4], and for distinct nodes i, j ∈ L, Rij > 0 if and only if there exists a path between
i and j in the new graph GL(L, EL). It follows from (51) that the voltage at node i ∈ L is most
sensitive to changes in its local load demand Qi, and decreasingly sensitive to load nodes that are
more electrically distant. This captures the classic power systems intuition that reactive power
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flows are localized in a network.

Supplementary Theorem 1 implies a useful voltage-space proximity index, which the reader may
have inferred from Supplementary Fig. 4.

Corollary 1 (Proximity to Low-Voltage Solution). Define the parametric Venikov index

KV ,
√

1−∆ , (52)

and let V other
L ∈ Rn be any solution of the RPFE (8) other than the secure solution of Supplementary

Theorem 1 statement 1). Then

|Vi − V other
i |

V ∗i
≥ KV , i ∈ L . (53)

Proof: While from Supplementary Theorem 1 statement 1) the secure solution belongs to the
set S(δ−), from Supplementary Theorem 1 statement 2) we have that all other solutions must lie
outside the set ](1−δ+)V ∗L ,∞n[, and therefore in particular outside the set S(δ+). We may therefore
write VL = [V ∗L ](1n + x) and V other

L = [V ∗L ](1n + xother) for x ∈ B∞(δ−) and xother ∈ Rn \ S(δ+).
We compute that

‖[V ∗L ]−1(VL − V other
L )‖∞ = ‖x− xother‖∞ ≥ δ+ − δ− . (54)

From Supplementary Theorem 1 it holds that ∆ = 4δ±(1 − δ±), and therefore that δ± = 1
2(1 ±√

1−∆). We therefore compute that

δ+ − δ− =
1

2

(
1 +
√

1−∆
)
− 1

2

(
1−
√

1−∆
)

(55a)

=
√

1−∆ = KV , (55b)

which completes the proof. �

By direct comparison, the index (52) is seen to be an appropriate multi-dimensional generalization
of the parametric Venikov index (24). To the authors knowledge, this is the first such parametric
result available in the literature. In terms of the energy function (12),

√
1−∆ can be understood

as a lower bound on the distance between the stable and unstable equilibria; c.f. Figure 1(c) of the
main article.

Remark 5 (The Effects of Power Angles and Decoupling). As can be seen by examining (2b), the
voltage phase angles θi−θj enter the reactive power flow equations as a product Bij cos(θi−θj) with
the off-diagonal elements of the admittance matrix B. It follows that any deviation of the phase
angle differences from zero tends to weaken the effective coupling term Bij cos(θi − θj) between
buses i, j ∈ L. This is particularly clear for the two node system of (20). In this case, one may
verify that v∗ = VG cos(θ), that qcrit = 1

4bV
2
G cos2 θ, and that ∆ = qL/qcrit, where θ is the angular

difference between the two nodes. As |θ| increases, the reactive power limit qcrit decreases, and
tends to zero as |θ| → π/2. Moreover, 1/qcrit is exactly the sensitivity of the loading margin ∆
with respect to changes in reactive power demands, and this sensitivity increases as active power
flows increase. This is elegantly expressed by Van Cutsem in [47], where he writes “. . . the reactive
power margin implicitly reflects the system stress imposed by the active power transfers, since the
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margin is a reserve after imposing the active load to be satisfied. As an example, if one would
(fictitiously) approach collapse through only active load increases, the reactive margin would tend
to zero as well.”

In terms of the vector formulation (7), the above observations translate to a reduction in the off-
diagonal elements of the sub-block BLL as well as a reduction in the non-zero elements of BGL.
Accordingly, this active/reactive power coupling tends to weaken the stiffness matrix Qcrit, thereby
increasing the network stress ∆. To summarize, increasing active power flows appear in our formu-
lation through the stiffness matrix Qcrit, and lead to increasing sensitivity of voltage deviations with
respect to changes in reactive power demands. While not a full description of the nonlinear cross-
coupling between active and reactive power flow, this behavior is consistent with the knowledge that
increasing active power demands compromise voltage stability and push the system towards voltage
collapse [47, 18, 48].

While active/reactive power coupling is mostly negligible in normal transmission system operation
and under light loading conditions, it can become the dominant effect as voltage collapse is ap-
proached. There are two factors to consider here. Firstly, using any fixed set of phase angles in the
effective susceptance matrix will underestimate the phase angles that occur as one moves closer to
voltage collapse; the stiffness of the effective stiffness matrix Qcrit will therefore be overestimated.
The second factor is less important and more subtle: solvability of the coupled power flow equations
is not equivalent to individual solvability of decoupled active and reactive power flow. We therefore
expect the analytic stability condition derived for the simplified decoupled reactive power flow (8) to
be optimistic near the point of collapse, unless power factors are low. Our voltage collapse simula-
tion study in the main article (see Experiment 2 in Supplementary Methods for details) confirms
this intuition. �

Supplementary Note 6 – Monotonicity of Stability Margins With Respect to
Parameters: Results and Counterexamples

We now briefly explore how perturbations in the network parameters influence the value of the
loading margin ∆ defined in (31). From the spring network analogy of Figure 1(b) in the main
article and from general intuition, one would expect the following monotonicity results:

(a) strengthening the connection between any generator and any load should decrease the value
of ∆;

(b) increasing generator voltage levels should decrease ∆;

(c) increasing shunt compensation should decrease ∆.

It turns out that statement (a) is false in general, while statements (b) and (c) are true.

Example 1 (Counterexample to (a)). Consider two generators at voltages V1 and V2 connected to
a single load at voltage V0 through susceptances −b1 and −b2, with a shunt capacitor of susceptance
bs present at the load. Assumption 1 in this case becomes b1 + b2 − bs > 0, and we assume for
simplicity that no constant current load is present at the load. Then the reactive power balance
equation (7) becomes

QL = V0 ((b1 + b2 − bs)V0 − b1V1 − b2V2) . (56)
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One may verify explicitly that Qcrit in this case is given by

|Qcrit| =
(V1b1 + V2b2)2

4(b1 + b2 − bs)
. (57)

Since there is only a single load, monotonicity of ∆ = QL/Qcrit with respect to changes in b1 or
b2 is equivalent to monotonicity of Qcrit. In particular, conventional engineering wisdom suggests
that |Qcrit| should be an increasing function of either parameter, that is, strengthening the network
should reduce the risk of collapse. An easy calculation gives that

d

db2
|Qcrit| =

V2

4

(V1b1 + V2b2)

b1 + b2 − bs

(
b2 − 2bs + 2b1

(
1− 1

2

V1

V2

))
. (58)

When b2 > 2bbs−2b1(1−V1/2V2), |Qcrit| is a monotone increasing function of b2 as expected. When
this inequality is violated however we find that strengthening the second transmission line decreases
stability margins. In the case bs = 0, this turning point will exist if and only if V1 > 2V2, while if
V1 = V2 = V , this turning point exists if and only if bs > b1/2. While these parametric conditions
are extreme and would not occur in real-world networks, this example highlights the theoretical issue
with claim (a), and nonetheless suggests that one should be cautious when upgrading transmission
infrastructure. �

In this example we observe that either strong heterogeneity of generator voltages, the presence of
large shunts, or both can cause a lack of monotonicity. We will show that when these factors are
absent, the original intuition is correct. Consider a nominal network, and let bLG ∈ Rn×m≥0 be a
nonnegative matrix where the ijth element is the desired increase in coupling between generator
i ∈ G and load j ∈ L. To avoid the trivial case where the original and modified networks are
identical, we assume that at least one element of bLG is strictly positive. The modified network is
represented by the new network matrices BLG = BLG+bLG, and BLL = BLL−diag(bLG1m), along

with the new open-circuit voltages V ∗L = −B−1
LLBLGVG. For simplicity, we ignore constant current

loads in the following proposition.

Proposition 3 (Effects of Load-Generator Coupling Increases). Consider the nominal network
and the modified network as described above, with stiffness matrices Qcrit = 1

4 [V ∗L ]BLL[V ∗L ] and
Qcrit = 1

4 [V ∗L ]BLL[V ∗L ] respectively. Assume that there are no shunt susceptances present, and that
all generator voltages are equal to the same constant Vg > 0. Then it holds element-wise that

Q
−1
crit > Q−1

crit.

Since Q−1
crit and Q

−1
crit are strictly negative matrices (Assumptions 1–2), the inequality Q

−1
crit > Q−1

crit

indicates that the elements of Q
−1
crit are smaller in magnitude than those of Q−1

crit. It follows imme-
diately that ∆ < ∆; the network stress has decreased. Comparing Proposition 3 to the results of
Example 1, we note that the assumptions of no shunt susceptances and uniform generator volt-
ages are only sufficient for monotonicity, and not necessary. Nonetheless, the parametric setting in
Proposition 3 is much closer to reality than the exotic parameters required in Example 1.

Proof. Under the assuption of no shunt susceptances, the matrices −B−1
LLBLG and −B−1

LLBLG are
both row-stochastic [49, Lemma II.1]. Since VG = Vg1m, it follows that V ∗L = V ∗L = Vg1n, and
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hence that Qcrit = V 2
g BLL/4 and Qcrit = V 2

g BLL/4. By Assumptions 1–2, it holds that −BLL is an

irreducible M -matrix, and since bLG is nonnegative, it follows that −BLL = −BLL + diag(bLG1m)
is also an irreducible M -matrix. We conclude that −BLL + BLL is positive definite. It follows

immediately by properties of irreducible M -matrices [50] that −B−1
LL < −B−1

LL element-wise, and
the result follows.

To study changes in generator voltages, we again consider a nominal network and a modified
network, where now the modified network is constructed by changing the generator voltage setpoints
to V G = VG + vG, where vG ≥ 0n with at least one strictly positive element. The open-circuit
voltages in the modified network are given by V ∗L = −B−1

LLBLGV G. In this case, we observe, as
expected, that raising the generator voltages improves the distance to voltage collapse.

Proposition 4 (Effects of Generator Voltage Increases). Consider the nominal network and the
modified network as described above, with stiffness matrices Qcrit = 1

4 [V ∗L ]BLL[V ∗L ] and Qcrit =
1
4 [V ∗L ]BLL[V ∗L ]. Then it holds element-wise that Q

−1
crit > Q−1

crit.

Proof. Note that V ∗L = −B−1
LLBLGV G = −B−1

LLBLG(VG+ vG) = V ∗L + v∗L, where v∗L = −B−1
LLBLGvG.

From Assumptions 1–2, it follows that −B−1
LLBLG is a positive matrix, consequently v∗L > 0n

component-wise, and hence that V ∗L > V ∗L component-wise as well. Note then that for any i, j ∈ L,

−(Q
−1
crit)ij =

−4(B−1
LL)ij

V ∗i · V ∗j
<
−4(B−1

LL)ij
V ∗i · V ∗j

= −(Q−1
crit)ij , (59)

which shows the desired result.

Finally, to study changes in shunt compensation we again consider a nominal network and a modified
network. We let Bs = diag(bs,1, . . . , bs,n) ≥ 0n denote the diagonal matrix of additional shunt
capacitors affixed at the load nodes, and we assume that at least one element of Bs is strictly
positive. The grounded susceptance matrix for the modified network is given by BLL = BLL +Bs,
which we assume is also a (negative) M -matrix. The modified open-circuit voltages are V ∗L =

−B−1
LLBLGVG. We omit the proof of the following result, which can be shown similarly to the

previous two. The following result confirms the conventional practice that shunt compensation
improves the stability of the network. We omit the proof, which follows analogous arguments as
the proofs of Proposition 3 and 4.

Proposition 5 (Effects of Shunt Capacitor Increases). Consider the nominal network and the
modified network as described above, with stiffness matrices Qcrit = 1

4 [V ∗L ]BLL[V ∗L ] and Qcrit =
1
4 [V ∗L ]BLL[V ∗L ]. Then it holds element-wise that Q

−1
crit > Q−1

crit.

In summary, we find that the stability margin ∆ defined in (31) can be leveraged to provide insight
into how the parameters of the original network influence voltage stability, and that the stability
margin may display a lack of monotonicity with respect to parameters.
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Supplementary Note 7 – Voltage Stability Condition Incorporating Generator
Injection Limits

As discussed in the generator modeling of Supplementary Note 2, synchronous generators are
typically subject to capability curve limits [18], which in the context of this paper correspond
to upper and lower limits on the reactive power Qi which can be injected at a generator i ∈ G.
While the results of Supplementary Theorem 1 (or equivalently, Theorem 1 of the main article)
give sufficient conditions for the existence of a unique voltage-stable solution of (6), no a priori
constraints were placed on the resulting generator reactive power injections, which are determined
a posteriori by evaluating the right-hand side of (2b) at the system operating point. There may
be situations where the physical network is able to support the transfer of reactive power (that
is, (6) possess a voltage-stable solution), but the resulting generator limits are violated, meaning
that the operating point is infeasible in practice. Our goal now is to generalize the voltage stability
condition of Supplementary Theorem 1 to ensure the existence of a voltage-stable solution subject
to generator reactive power injections satisfying predetermined limits.

The generator reactive power injections QG ∈ Rm, given by (2b) at nodes i ∈ G, are written in
vector notation as

QG = −[VG](BGGVG +BGLVL) , (60)

where BGG and BGL are the appropriate blocks of the effective susceptance matrix (refer back
to the block partitioned matrix (1)). Here we will focus on generator injection upper bounds
Qupper
G ∈ Rm (so-called overexcitation) since this is the most relevant case for voltage collapse;

analogous arguments can be made for underexcitation limits. We introduce two quantities related
to generator injections that will help us to succinctly state our results. We define the open-circuit
generator injections Q∗G ∈ Rm and the auxiliary injections Qaux ∈ Rm≥0 by

Q∗G , −[VG](BGGVG +BGLV
∗
L ) , (61)

Qaux , [VG]BGLV
∗
L . (62)

The open-circuit injections Q∗G are the generator injections one would observe when the con-
stant power loads QL are set to zero, while the vector of auxiliary injections Qaux will serve
as useful scaling factors. We make the plausible and necessary assumption that Q∗G < Qupper

G

component-wise; the open-circuit injections satisfy the generator limits. For convenience, let
Ḡ = {i ∈ G | there exists j ∈ L s.t. Bij 6= 0} be the set of generators which are connected to
at least one load. It is straightforward to see that if i ∈ Ḡ then the corresponding component of
Qaux as defined in (62) is non-zero.

The next result generalizes Supplementary Theorem 1 (and hence, Theorem 1 of the main article)
to account for generator limits.

Supplementary Theorem 2 (Voltage Stability Condition Including Generator Limits). Consider
the RPFE (8) and the generator injections (60). Let Qupper

G ∈ Rm be desired upper bounds in the
generator injections, QG < Qupper

G , and let the open-circuit injections Q∗G and the auxiliary injec-
tions Qaux be as defined as in (61)–(62). Consider the (normalized) minimum generator injection
slack

δconstr , min
i∈Ḡ

Qupper
G,i −Q∗G,i
Qaux,i

> 0 , (63)
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and let ∆ > 0 be defined by

∆ ,

{
4δconstr(1− δconstr), if δconstr < 1/2,

1, if δconstr ≥ 1/2.
(64)

Assume that
∆ , ‖Q−1

critQL‖∞ < ∆ , (65)

and accordingly define the percentage deviation δunconstr as the unique solution to ∆ = 4δ(1 − δ)
belonging to the interval [0, 1

2 [. Finally, set δ− = min(δconstr, δunconstr) ∈ [0, 1
2 [. Then the RPFE

(8) has a unique voltage-stable solution VL ∈ S(δ−) and the generator injections (60) satisfy the
constraints QG < Qupper

G .

Before proving Supplementary Theorem 2 we make several comments. First, note that ∆ depends
only on δconstr, which in turn depends only on fixed parameters of our problem setup, such as the
network topology/weights, generator voltage setpoints, and generator injection limits. Thus, like
the stability condition (31) in Supplementary Theorem 1, the stability condition (65) is purely
parametric.

Second, to see that the unconstrained case of Supplementary Theorem 1 is embedded in Supple-
mentary Theorem 2, consider what happens when the generator injections limits Qupper

G are large.
Then the generator injection slack δconstr in (63) is large, ∆ in (64) evaluates to 1, and the stability
condition (65) reduces to the previous condition of Supplementary Theorem 1. In this regime, the
network is limited only by insolvability of the reactive power flow equations, and not by generator
limits; the same argument holds whenever δconstr > δunconstr. Conversely, when δconstr < δunconstr,
network stability is limited by generator limits, and ∆ − ∆ becomes the loading margin which
implicitly quantifies the remaining slack in parameter-space for which generation limits are guar-
anteed to be met. The conservativeness of this stability margin will vary from network to network
depending on the precise values of the generator limits Qupper

G .

Proof: We first prove the statements regarding the unique solution of (8). First consider the case
where δconstr ≥ 1/2. It then holds that ∆ = 1, the condition (65) reduces to the unconstrained
stability condition (31) of Supplementary Theorem 1, δ− = δunconstr = (1 −

√
1−∆)/2, and all

the conclusions follow. In the case where δconstr < 1/2, the inequality (65) takes the form ∆ ≤
4δconstr(1− δconstr). Comparing this to (38) from the proof of Supplementary Theorem 1, it follows
that there exists a unique voltage-stable solution VL ∈ S(δconstr) to the RPFE (8). Moreover,
since ∆ < ∆ < 1, δunconstr also remains well defined, so there exists a unique voltage-stable
solution VL ∈ S(δunconstr) as well. It follows that there exists a unique voltage-stable solution
VL ∈ S(δconstr) ∩ S(δunconstr) = S(δ−) as claimed.

It remains only to show that the generator constraints are satisfied. Under the assumed conditions
we can write the load voltages as VL = [V ∗L ](1n + x) where x belongs to the vector interval x ∈
[−δ−1n, δ−1n]. Using this and (61), substitution shows that the generator injections (60) can be
written as

QG = −[VG](BGGVG +BGLVL) = Q∗G − [VG]BGL[V ∗L ]x = Q∗G −Qauxx . (66)

Since [VG]BGL[V ∗L ] is a nonnegative matrix and VL ∈ S(δ−) (meaning that all xi ∈ [−δ−, δ−]), we
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may upper bound the right-hand side of (66) by inserting −δ−1n for x, resulting in the element-wise
vector inequality

QG ≤ Q∗G + δ− ·Qaux ≤ Q∗G + δconstr ·Qaux , (67)

where the second inequality follows since δconstr ≥ δ− by definition. There are now two cases
to consider. If Qaux,i = 0, then the corresponding constraint is satisfied since Q∗G,i < Qupper

G,i by

assumption. If Qaux,i 6= 0, then the corresponding constraint Q∗G,i < Qupper
G,i is satisfied if and only

if δconstr ≤ (Qupper
G,i −Q∗G,i)/Qaux,i at each generator i ∈ G, which holds by the definition of δconstr.

Thus the generator constraints are satisfied, completing the proof. �

Supplementary Methods

Here we provide additional details regarding the numerical experiments presented in the main
article.

Experiment 1 – Voltage Stability Assessment for Test Networks

To establish the accuracy of the voltage stability condition (31) over a large set of power networks,
we consider a smart grid scenario in which both generation and demand are subject to fluctuations
due to a high penetration of renewable generation and controllable demand response. To generate
a large sample of randomized test cases, we modify the nominal simulation parameters [51, 52] as
follows. For each of the eleven test cases under consideration, we construct 1000 realizations by

(i) Fluctuating load: Through a uniform distribution over all buses, we first select 30% of
buses in the network for load randomization. The base case active/reactive power injections
(Pi, Qi) at each selected bus are randomized as (1 + αi)Pi and (1 + αi)Qi, where αi is pulled
from a Gaussian distribution with mean zero and standard deviation 0.5.

(ii) Fluctuating generation: Through a uniform distribution over all generator buses, we first
select 30% of the generators in the network for randomization. The base case active power
generation Pi at each selected generator is randomized as (1 +αi)Pi, where αi is pulled from
a Gaussian distribution with mean zero and standard deviation 0.3.

(iii) Redispatch: Since the above randomization procedure can lead to a large imbalance between
total scheduled generation and total demand, we calculate the imbalance (neglecting losses)
and distribute the imbalance uniformly across the unrandomized generators.

For each realization, we numerically calculate using MATPOWER [51] the exact solution (θ, VL) ∈
Tn+m×Rn>0 to the lossless coupled power flow equations (3a) (if the Newton-Raphson solver diverges
while attempting to find the solution, we discard the trial and repeat it). We then compute the
maximum voltage deviation of the exact solution as

δexact , max
i∈L

|Vi − V ∗i |
V ∗i

. (68)
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To apply our theory, we use the calculated phase angles θ to build the effective susceptance matrix
(Supplementary Note 2, Power Angle Decoupling), we compute the open-circuit voltages (9), the
stiffness matrix (25), compute ∆ from (31) and finally compute our estimate δ− = 1

2(1−
√

1−∆)
of the worst case normalized voltage deviation. The first column of Table 1 in the main article
indicates that for all realizations constructed, it held that ∆ < 1 and that δexact ≤ δ− as expected
from Supplementary Theorem 1. The second, third, and fourth columns of Table 1 list the average
values obtained for δexact, δ− and (δ− − δexact)/δexact over all realizations for each network.

Experiment 2 – ∆ as an Indicator of Voltage Collapse

In this experiment the continuation power flow implemented in MATPOWER was used to drive
the New England 39 bus system towards voltage collapse, and test whether and how well the
metric ∆ performs as a predictor of collapse. The direction in parameter space along which the
system is incrementally loaded is specified in terms of a baseline set of loads and a target set of
loads. The system is then loaded along the ray connecting the baseline configuration and the target
configuration, tracing out the top-half of the nose curves shown in Figures 3 and 4 of the main
article.

For our first study, the baseline profile was chosen as the default loading profile (P,QL). The average
power factor for load buses in this baseline profile is 0.88. The target profile was constructed by
modifying the baseline profile as (P, 3.1×QL), where the numerical value of 3.1 was selected such
that the average power factor of load buses in the target profile equaled 0.7. This corresponds to
a heavily reactive target profile, and hence as the system is loaded from the base profile through
the target profile, the power factors of loads decrease, as is often the case under stressed network
conditions.

For our second study, the baseline profile was again chosen as the default loading profile, and the
target profile was also chosen as the default loading profile. Thus, as the system was loaded towards
voltage collapse, all power injections were simply scaled up proportionally, with loads maintaining
their original power factors of 0.88 on average.

For both studies, V ∗L and ∆ were computed as described in Experiment 1 for the lossless coupled
power flow model (3a)–(3b). Bus four was selected for plotting purposes since it represented the
most stressed bus in the network, displaying both the lowest per unit voltage along with having
the highest component value from the vector Q−1

critQL. This was therefore the bus at which our
theoretical bound Vi ≥ V ∗i (1− δ−) was most likely to be violated. As can be seen in Figures 3 and
4, the bound is quite tight near the base case and becomes looser as the system is progressively
loaded.

Experiment 3 – Corrective Action

In this case study, we illustrate the utility of our condition (31) for online network stability mon-
itoring and corrective action. First, we highlight how capacitive shunt compensation acts as a
double-edged sword: capacitor banks assist in supporting the voltage magnitudes at load buses of
the network, but simultaneously makes the true network stress unobservable through the network
voltage profile. We show that our condition (31) can be used to accurately assess this hidden danger
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by providing a quantitative estimate of network stress. Second, we show how the voltage stability
condition (31) suggests corrective action schemes to increase the stability margin of the network.

The stressed network case was created as follows, beginning from the base case data for the NE 39
bus system from MATPOWER. First, the network contained two capacitive loads, which we flipped
in sign to create a heavier inductive loading profile. Next, all power demands in the network were
scaled up uniformly by 70%, with their original power factors maintained. To avoid unrealistically
overloading the slack bus, the resulting imbalance was dispatched uniformly over all generators.
Loading at buses seven through nine was increased an additional 50%, again maintaining the
original power factors. The power factor of bus eight was then lowered to 0.82 by adding additional
reactive load. Shunt compensation was placed uniformly across the network to bring most of the
voltages back within operational limits, with additional shunt compensation being placed locally
at buses seven through nine to compensate for the additional loading present. The power flow was
then solved for the full coupled power flow model including branch conductances.

Control action was implemented by curtailing the reactive power demands at buses seven and
nine in the manner described in the main article. Accompanying this curtailment was an equal
reduction in shunt compensation across buses seven through nine. That is, the total MVAR which
would have been injected by the removed capacitors (at 1 p.u.) equaled the total reactive power
curtailment applied at buses seven and nine. This can also be seen from Figure 5; the per-unit
voltage profiles before and after are nearly identical, but stability margins (plotted as Vi/V

∗
i ) are

substantially improved by substituting stiff reactive power injections for shunt compensation, and
properly selecting the locations for reactive power injection.
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